
  

 

Abstract— In this paper, we extend the coverage control 

problem by using adaptive coordination with exponential 

forgetting and power aware control laws. The Centroidal 

Voronoi Tesellations enable the nonholonomic mobile nodes 

position themselves sub-optimally according to a time-varying 

density function. The Lyapunov stability analysis of the adaptive 

and decentralized approach is presented. The synchronization 

among the mobile nodes is achieved by using a linear consensus 

protocol. Also, repulsive forces prevent nodes from collision. 

Simulation results show that by using power aware control laws, 

energy consumption of the nodes can be reduced. 

I. INTRODUCTION 

Multi agent coordination problems are challenging topics 
studied intensively in the past years. In many applications, 
using more than one agent is necessary to achieve better 
results. This is the case in multi agent coverage problem. 
Distributed coverage control topic has its importance in mobile 
sensor networks. It uses locational optimization to place the 
sensors in optimal way in order to improve coverage 
performance. 

In literature, there are various examples of placing sensors 
in an environment using locational optimization. Luna et. al 
[1], propose an adaptive and decentralized version of coverage 
control approach which uses nonholonomic mobile sensors 
and time varying density functions. In [2], a distributed control 
law and coordination algorithm is proposed which uses 
location dependent sensing models. Another example [3] 
proposes an adaptive and distributed approach which uses 
gradient descent algorithms to ensure optimal coverage and 
sensing policies.  

In [4], a Local Voronoi Decomposition algorithm is 
proposed which accomplishes a robust and online task 
allocation. The results of algorithm is verified in the problem 
of exploration of an unknown environment. Okabe et. al [5] 
investigates eight types of locational optimization problems 
that can be solved by using Voronoi diagrams. The solution of 
these problems may involve different types of Voronoi 
diagrams. Another work in [6] considers a mobile sensor 
network which is capable of self-deployment. A potential field 
based approach is proposed which enables the nodes to be 
repelled by other nodes and obstacles. In [7], distributed 
optimal control problems for interacting subsystems are solved 
by using a distributed horizon control implementation. The 
implementation is used in multi-vehicle formation 
stabilization. 

Another approach is to use probabilistic models to achieve 
optimal configuration. In [8], anisotropic sensors are defined 
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by a probabilistic model and distributed control algorithms are 
proposed which maximize joint detection probabilities. 
Another distributed coverage approach [9] uses mobile sensors 
with limited range defined by a probabilistic model. It also 
uses joint detection probabilities and communication cost is 
integrated into coverage control problem. 

There are also some examples which take energy 
consumption into account. Gusrialdi et al. [10], present a 
standard distributed coverage control algorithm combined 
with leader-following algorithm which maintains optimal 
energy utilization. Kwok et al. [11] uses power-aware 
coverage algorithms to adjust the energy consumption over the 
sensor network with two modified Llyod-like algorithms. In 
[12], an approach for agents with limited power to move 
considering power constraints is presented. Several types of 
Locational Optimization Functions are used and objective 
functions take global energy and different coverage criteria 
into account. Another example [13] discusses an energy 
efficient deployment algorithm based on Voronoi diagrams. 
The performance of the proposed algorithm is tested in terms 
of different criteria. 

There are several contributions of this paper to the 
literature. A power-aware control law is proposed which 
reduces the energy consumption of the nodes optimally. To the 
best of author’s knowledge, this is the first work that uses 
adaptive coverage with power-aware control laws and 
exponential forgetting. Also, repulsive forces are used to 
prevent nodes from collision.  

The paper is organized as follows: In Section II, 
mathematical background of the optimal coverage control 
problem is given. In Section III, the adaptive coverage control 
with integrator dynamics is mentioned. Section IV describes 
the application of the adaptive coverage control for 
nonholonomic sensors. In Section V, we present the energy 
consumption model and the power-aware adaptive coverage 
control laws. In Section VI, the Lyapunov stability analysis of 
the power-aware adaptive coverage control law is presented. 
Section VII presents the simulation results and the conclusions 
of the presented work are given in Section VIII. 

II. PROBLEM FORMULATION 

In this section, preliminary information for adaptive 

coverage control problem is presented. 
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A. Voronoi Tessellations 

As given in [1], the set Vk is called Voronoi tessellation of 

open set 𝑆 ⊆ ℝ𝑁 if 𝑉𝑘 ∩ 𝑉𝑙 = ∅ for 𝑘 ≠ 𝑙 and ⋃ 𝑉𝑘 = 𝑆𝑘 . The 
Voronoi region Vk is defined by: 

 𝑉𝑘 = {𝑞 ∈ 𝑆 | ‖𝑞 − 𝑝𝑘‖ ≤ ‖𝑞 − 𝑝𝑙‖, 𝑘 ≠ 𝑙} (1) 

The ‖ ‖ operator is defined as Euclidean norm in ℝ𝑁 and 

the points 𝑝𝑘 are called as generator points.  

Fortune’s Sweepline algorithm is used for calculating 

Voronoi regions. 

B. Optimal Coverage Formulation 

Consider 𝑆 ⊂ ℝ𝑁 as a bounded environment and 𝜙: ℝ𝑁 →
ℝ+ as a density function. Let 𝑓:ℝ+ → ℝ  be a non-increasing 
performance function. Then we define locational optimization 
function as follows: 

 ℋ(𝑝1, 𝑝2, … , 𝑝𝑚) = ∑ ∫ 𝑓(‖𝑞 − 𝑝𝑘‖)𝜙(𝑞)𝑑𝑞𝑉𝑘

𝑛
𝑘=1  (2) 

 

The Vk is Voronoi region k and 𝑝𝑘 is the generator point of 

the corresponding Voronoi cell and m is the number of the 

generator points. 

 

 

Figure 1. Example Voronoi Tessellation 

 

The centroid 𝐶𝑉𝑘 and mass 𝑀𝑉𝑘 of Voronoi regions are 

defined in [3] are given by the following equations: 

 

 𝐶𝑉𝑘 =
1

𝑀𝑉𝑘
∫ 𝑞𝜙(𝑞)𝑓(𝑞)𝑑𝑞
𝑉𝑘

 (3) 

 

 𝑀𝑉𝑘 = ∫ 𝜙(𝑞)𝑓(𝑞)𝑑𝑞
𝑉𝑘

 (4) 

 

If we define the function 𝑓(‖𝑞 − 𝑝𝑘‖) =  ‖𝑞 − 𝑝𝑘‖
2 and 

take the partial derivative of locational optimization function 

ℋ with respect to 𝑝𝑘, we get the following equations: 

 

 ℋ = ∑ ∫
𝜕𝑓

𝜕𝑝𝑘
𝜙(𝑞)𝑑𝑞

𝑉𝑘

𝑛
𝑘=1  (5) 

 

 
𝜕ℋ

𝜕𝑝𝑘
= ∑ 2𝑀𝑉𝑘(𝑝𝑘 − 𝐶𝑉𝑘)

𝑛
𝑘=1  (6) 

 

In order to minimize the locational optimization function 

given in (2), the positions of the agents should be equal to the 

centroid positions calculated in (3). These types of diagrams 

are called as Centroidal Voronoi Tessellations. 

 Additionally, the density function 𝜙(𝑞) may change with 

respect to time or time-invariant. In the first case, 𝜙(𝑞, 𝑡) is 

called as time-varying distributed density function. If it is 

time-invariant, 𝜙(𝑞) is called as time-invariant distributed 

density function, as defined in [1].  

III. ADAPTIVE COVERAGE CONTROL WITH INTEGRATOR 

DYNAMICS 

In the integrator dynamics case, the agents are modeled as 

single integrators. The parameter vector 𝜍 ∈ 𝑆 → ℝ+
𝑚 and 

vector function Ζ ∈ 𝑆 → ℝ+
𝑚 are defined in [1] as follows: 

  

 𝜙(𝑞) = Ζ𝑇(𝑞)𝜍 (7) 

 

For each element of vector 𝜍, the following condition 

should be also satisfied: 

 

 𝜍(𝑗) ≥ 𝛼 , 𝑓𝑜𝑟 𝑗 = 1, 2, …𝑚 (8) 

 

The lower bound of the vector 𝜍 prevents the distributed 

density function from taking zero values while calculating the 

centroids of the Voronoi regions. 

The estimate of parameter vector and estimated value of 

the distributed density function and estimation error for kth 

agent can be represented as: 

 

 �̂�𝑘(𝑞) = Ζ
𝑇(𝑞)𝜍�̂� (9) 

 

 𝜍̃𝑘 = 𝜍̂𝑘 − 𝜍𝑘 (10) 

 

An adaptive control law proposed in [1] is used to 

calculate estimated centroid locations and to drive the agents 

to an optimal configuration. Also, a linear consensus protocol 

is used in estimation to speed up the convergence of the 

parameter error vectors to zero. 

 

IV. ADAPTIVE COVERAGE CONTROL FOR TEAM OF 

NONHOLONOMIC AGENTS 

An adaptive control law with linear consensus for a 
nonholonomic agent model is proposed in this section. 

 
Figure 2. Position of the agent and model parameters 
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A. Control Law for Nonholonomic Agents 

In this work, the control law used in [1] with a unicycle 
model proposed in [14] is used to drive the agents to the 
centroid locations. 

 (

𝑒
̇
𝑘

𝜓
̇𝑘
𝜃
̇𝑘

) =

(

 
 

𝑢𝑘 𝑐𝑜𝑠𝜓𝑘

−𝜔𝑘 + 𝑢𝑘
𝑠𝑖𝑛𝜓𝑘

𝑒𝑘

𝑢𝑘  
𝑠𝑖𝑛𝜓𝑘

𝑒𝑘 )

 
 

 (11) 

 

The control law proposed in [1] is: 

 

 (
𝑢𝑘
𝜔𝑘
) = (

(𝛾𝑐𝑜𝑠𝜓𝑘)𝑒𝑘
2𝛾𝑠𝑖𝑛𝜓𝑘𝑐𝑜𝑠𝜓𝑘 + 𝜆(𝜓𝑘 + 𝜃𝑘)

) (12) 

 

In Figure 2, the position of the agent and the centroid 

location for a single agent is given as 𝑝𝑘 and 𝐶𝑉𝑘. Here, 𝑢𝑘 

and 𝜔𝑘 are linear and angular control inputs, respectively. 𝜑𝑘 

is the heading angle, 𝑒𝑘 is the Euclidean distance between the 

agent and the centroid, 𝜓𝑘 is the angle between the agent and 

the centroid. 

 

Here, 𝛾 > 0 and 𝜆 > 0 are control gains. The control law 

drives the agents to the centroid 𝐶𝑉𝑘 positions. 

B. Nonholonomic Adaptive Coverage Control 

The adaptation law proposed in [1] is used to estimate the 

parameters of the distributed density function: 

 

 𝑒1 = 𝑍(𝜍
̂
𝑘 − 𝜍𝑘) (13) 

 

 𝜍
̂̇
𝑘 = −PZ

𝑇𝑒1 − 𝜂∑ (𝜍
̂
𝑘𝑙∈ℒ𝑘
− 𝜍
̂
𝑙) (14) 

 

 𝑃
̇
(𝑡) = 𝜆𝑓(𝑡)𝑃 − 𝑃𝑍

𝑇𝑍𝑃 (15) 

 

Here, 𝜆𝑓(𝑡) > 0 is the time-varying forgetting factor,  𝜂 >

0 is the consensus gain, 𝐼 is the identity matrix and 𝛧 denotes 

the vector function given in (7). 

 

The first term in (14) is the least squares estimator with 

exponential forgetting [15] and the second term gives the 

consensus protocol [1]. The stability analysis of the 

adaptation rule will be given in the related section. 

 

A linear consensus protocol is used in the estimation of 

the parameter vector for a single agent. In an undirected graph 

of the mobile agents and vertices 𝑉𝑔 = {𝑣1, 𝑣2, … , 𝑣𝑛}, the 

agents share their estimated parameter vector. Let the 

neighborhood of kth agent be defined as: 

 

 ℒ𝑘 = {𝑙 | {𝑣𝑘 , 𝑣𝑙} ∈ 𝐺} (16) 

 

The communication among the nodes can be represented 

by the edges 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑚} where jth element of G is 

𝑔𝑗 = {𝑣𝑘 , 𝑣𝑙}. The consensus protocol speeds up the 

convergence of the estimation for the mobile agents. 

 

V. POWER-AWARE ADAPTIVE COVERAGE CONTROL 

In real applications, the mobile agents have limited energy 
storage. Thus, power aware control laws considering the 
energy consumption of the mobile agents are proposed in this 
section. The energy consumption model and control laws are 
given and in the third section, the repulsive forces are used for 
collision avoidance. 

A. Energy Consumption Model 

The energy consumption model [10] is based on the 

motion of the agent. The linear and angular velocities 𝑝
̇
𝑘 and 

𝜑
̇
𝑘 is the main variables in energy consumption model. 

 

 𝐸
̇
𝑘(𝑡) = −𝑘𝑒𝛽𝑡

𝐸𝑘
2

𝐸𝑚𝑎𝑥
2 (‖𝑝

̇
𝑘‖
2 + ‖𝜑

̇
𝑘‖
2) (17) 

 

where 𝐸𝑘(𝑡) ∈ [0, 𝐸𝑚𝑎𝑥] is the capacity of embodied 

energy and 𝑘𝑒 > 0, 𝛽𝑡 > 0 are the model coefficients. 

B. Power-Aware Control Laws 

According to the energy consumption model (17), we 

propose the following power-aware coverage control laws 

which take the energy consumption of the mobile nodes into 

account. For the agents with single integrator dynamics, the 

control law is: 

 

  𝑢𝑘 = 𝑘1(𝑝𝑘 − 𝐶𝑉𝑘) − 𝑘2 (𝑝
̇
𝑘,𝑥
2 + 𝑝

̇
𝑘,𝑦
2) (18) 

 

where 𝑘1 > 0,  𝑘2 > 0 are the control gains. 

 

For the non-holonomic agents, the control laws are given 

as in (19): 

 

 (
𝑢𝑘
𝜔𝑘
) = (

(𝛾1𝑐𝑜𝑠𝜓𝑘)𝑒𝑘 − (𝛾2𝑐𝑜𝑠𝜓𝑘(𝑝

̇
𝑘,𝑥

2 + 𝑝

̇
𝑘,𝑦

2))𝑒𝑘

2(𝛾1 − 𝛾2(𝑝

̇
𝑘,𝑥

2 + 𝑝

̇
𝑘,𝑦

2))𝑠𝑖𝑛𝜓𝑘𝑐𝑜𝑠𝜓𝑘 + 𝜆1(𝜓𝑘 + 𝜃𝑘)
) (19) 

 

where 𝛾1 > 0,  𝛾2 > 0, 𝜆1 > 0 are the control gains. 

The stability analysis of the control law is given in the 

following section. 

C. Repulsive Forces 

Repulsive forces are used to prevent the robots from 

collision and the theory comes from the potential functions 

[16]. The definition of the potential functions is the addition 

of the attractive forces pulling the robot to the end 

configuration and the repulsive forces keeping the robot 

distant from other objects. The forces are defined as: 

 

 �⃗�(𝑞) = −∇⃗⃗⃗Α(𝑞) (20) 

 

The potential function is defined as: 

 

 Α(𝑞) = Α𝑎𝑡𝑡(𝑞) + Α𝑟𝑒𝑝(𝑞) (21) 

 

The definition of the repulsive potential function is: 

 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 10, 2016

ISSN: 2074-1278 88



  

 Α𝑟𝑒𝑝(𝑞) = {
1

2
𝜁 (

1

𝜌(𝑞)
−

1

𝜌0
)
2

𝑖𝑓𝜌(𝑞) ≤ 𝜌0 

0 𝑖𝑓𝜌(𝑞) > 𝜌0

 (22) 

where 𝜁 > 0 is a positive scaling factor, 𝜌0 is distance of 

influence and 𝜌(𝑞) is the distance function from obstacle 

region 𝐶𝐵 to the agent. It is taken as: 

 

  𝜌(𝑞) = min
𝑞′∈𝐶𝐵

‖𝑞 − 𝑞′‖ (23) 

 

The repulsive force can be calculated as: 

 

 𝐹𝑟𝑒𝑝(𝑞) = {
𝜁 (

1

𝜌(𝑞)
−

1

𝜌0
)

1

𝜌2(𝑞)
∇⃗⃗⃗𝜌(𝑞) 𝑖𝑓𝜌(𝑞) ≤ 𝜌0 

0 𝑖𝑓𝜌(𝑞) > 𝜌0
 (24) 

 

 𝐹𝑟𝑒𝑝,𝑥(𝑞) = ‖𝐹𝑟𝑒𝑝(𝑞)‖cos (𝜑𝑘 − 𝜗) (25) 

 

 𝐹𝑟𝑒𝑝,𝑦(𝑞) = ‖𝐹𝑟𝑒𝑝(𝑞)‖sin (𝜑𝑘 − 𝜗) (26) 

 
where 𝜗 is the angle between the obstacle and the robot. 

The repulsive force is then multiplied with a coefficient 𝑐 and 
integrated once to obtain the velocity. 

 𝑢𝑘
′ = ∫ 𝑐𝐹𝑟𝑒𝑝,𝑥(𝑞)𝑑𝑡 (27) 

 

 𝜔𝑘
′ = ∫𝑐𝐹𝑟𝑒𝑝,𝑦(𝑞)𝑑𝑡 (28) 

 

 𝑢𝑘̅̅ ̅ = 𝑢𝑘 + 𝑢𝑘
′ (29) 

 

 𝜔𝑘̅̅ ̅̅ = 𝜔𝑘 + 𝜔𝑘
′ (30) 

 

The final velocity formulation in (29) and (30) provides 

collision avoidance among the mobile agents. 

VI. STABILITY ANALYSIS 

In this section, the Lyapunov stability analysis of the 

proposed controller will be given. We consider n non-

holonomic agents with dynamics (11) and control laws (13)-

(15) and (19). So, we start with defining 𝑚𝑘: 

 

 𝑚𝑘 = 𝑝𝑘 − �̂�𝑉𝑘 = −(
𝑒𝑘cos (𝜓𝑘 + 𝜑𝑘)
𝑒𝑘sin (𝜓𝑘 + 𝜑𝑘)

) (31) 

 

We define the Lyapunov function candidate as follows: 

 

 𝑉 = ∑ (
𝑚𝑘

𝑇Κ1𝑚𝑘 + 𝜍�̃�
𝑇Κ2𝜍�̃� +

𝜅3(𝜓𝑘 + 𝜃𝑘)
2 + 𝐸𝑘(𝑡)

)𝑘  (32) 

 

Here Κ1 ∈ ℝ
2𝑥2 and Κ2 ∈ ℝ

𝑚𝑥𝑚 denote positive definite 

matrices and 𝜅3 is a positive constant. Taking the derivative 

of the Lyapunov candidate yields: 

 

 �̇� = 2∑

(

  
 

𝑚𝑘
𝑇Κ1�̇�𝑘 + 𝜍�̃�

𝑇Κ2𝜍̃̇𝑘

+𝜅3 (
𝜓𝑘�̇�𝑘 + 𝜓𝑘�̇�𝑘
+�̇�𝑘𝜃𝑘 + 𝜃𝑘�̇�𝑘

)

−𝑘𝑒𝛽𝑡
𝐸𝑘
2

𝐸𝑚𝑎𝑥
2 (‖�̇�𝑘‖

2 + ‖�̇�𝑘‖
2))

  
 

𝑘  (33) 

 

If we replace (13) in ((29)) we get the derivative of the 

Lyapunov function as follows: 

 

 �̇� = 2∑

(

 
 
 
 
 

𝑚𝑘
𝑇Κ1�̇�𝑘

−𝜍̃𝑘
𝑇Κ2𝑃𝑍

𝑇𝑍𝜍�̃�
−𝜂𝜍�̃�

𝑇Κ2 ∑ (𝜍�̂�𝑙∈ℒ𝑘
− 𝜍�̂�)

+𝜅3 (
𝜓𝑘�̇�𝑘 + 𝜓𝑘�̇�𝑘
+�̇�𝑘𝜃𝑘 + 𝜃𝑘�̇�𝑘

)

−𝑘𝑒𝛽𝑡
𝐸𝑘
2

𝐸𝑚𝑎𝑥
2 (‖�̇�𝑘‖

2 + ‖�̇�𝑘‖
2))

 
 
 
 
 

𝑘  (34) 

 

The first term is negative. The proof is given in [1]. 

 

 �̇�𝑘 = −(
(𝛾1 − 𝛾2(�̇�𝑘,𝑥

2 + �̇�𝑘,𝑦
2))𝑐𝑜𝑠𝜓𝑘𝑒𝑘cos (𝜓𝑘 +𝜑𝑘)

(𝛾1 − 𝛾2(�̇�𝑘,𝑥
2 + �̇�𝑘,𝑦

2))𝑐𝑜𝑠𝜓𝑘𝑒𝑘sin (𝜓𝑘 +𝜑𝑘)
) (35) 

 

where 
𝛾1

𝛾2
≥ max (�̇�𝑘,𝑥

2 + �̇�𝑘,𝑦
2). 

 
 ∑ 𝑚𝑘

𝑇Κ1�̇�𝑘𝑘 = 

             −∑ (𝛾1−𝛾2(�̇�𝑘,𝑥
2 + �̇�𝑘,𝑦

2))𝑒𝑘
2
𝑐𝑜𝑠2𝑘 𝜓𝑘 ≤ 0 (36) 

 

Since 𝑃(𝑡) is positive definite and converges to zero as 

given in [15], the second term gives: 

 

  −𝜍�̃�
𝑇Κ2𝑃𝑍

𝑇𝑍𝜍�̃� ≤ 0 (37) 

 

For the third term, the proof is given as below. The 

detailed proof for the binary protocol is given in [17]. Here 

𝐴𝑘𝑙 denotes the adjacency matrix. 

 

−𝜂∑𝜍�̃�
𝑇 ∑(𝜍�̂�
𝑙∈ℒ𝑘

− 𝜍�̂�)

𝑘

 

= −
1

2
𝜂∑∑ 𝐴𝑘𝑙

𝑙∈ℒ𝑘

(𝜍�̂� − 𝜍̂𝑙)
𝑇(𝜍�̂� − 𝜍̂𝑙)

𝑘

 

 ≤ −
1

2
𝜂 ∑ ∑ ‖𝜍�̂� − 𝜍̂𝑙‖

2
𝑙∈ℒ𝑘𝑘  (38) 

 

The fourth term becomes: 

 

 ∑ 𝜅3 (
𝜓𝑘�̇�𝑘 + 𝜓𝑘�̇�𝑘
+�̇�𝑘𝜃𝑘 + 𝜃𝑘�̇�𝑘

)𝑘   

 = ∑ 𝜅3(𝜓𝑘 + 𝜃𝑘)𝑘 (2𝑢𝑘
𝑠𝑖𝑛𝜓𝑘

𝑒𝑘
− 𝜔𝑘) 

 = ∑ 𝜅3𝜆1(𝜓𝑘 + 𝜃𝑘)
2

𝑘 ≤ 0 (39) 

 

The fifth term is negative since 𝐸𝑘, ‖�̇�𝑘‖ and ‖�̇�𝑘‖ are 

positive. 

 

 −𝑘𝑒𝛽𝑡
𝐸𝑘
2

𝐸𝑚𝑎𝑥
2 (‖�̇�𝑘‖

2 + ‖�̇�𝑘‖
2) ≤ 0 (40) 

 

Since 𝑉 is positive definite and lower bounded, �̇� ≤ 0 and 

�̈� is bounded, then by Barbalat’s Lemma 𝑒𝑘 → 0, |𝜓𝑘| → 0, 
|𝜃𝑘| → 0, 𝜍�̃� → 0 and ‖𝜍�̂� − 𝜍̂𝑘‖ → 0 as 𝑡 → ∞. 
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VII. SIMULATION RESULTS 

Simulations are carried out in MATLAB environment with 

5 agents. The dimensions of the map are 10 by 10 meters.  

The coefficients used in simulations are 𝛾1 = 0.3,  𝛾2 =

0.4, 𝜆1 = 2.5, 𝜆𝑓 = 8.0 and 𝜂 = 2. For the repulsive fields, 

the gains are chosen as 𝜁 = 10,  𝜌0 = 0.5 and 𝑐 = 1. 

The distributed density function 𝜙(𝑞) is chosen as 

expanding circle and it is triggered at certain times in the 

simulation. The estimated density function �̂�𝑘(𝑞) is divided 

into 64 cells. The vector function Ζ is chosen as: 

 

 Ζ𝑘(𝑞) = 𝑒
−(𝑞−𝜇𝑘)

2

2𝜎𝑘
2
> 0 (41) 

 

where 𝜎𝑘
2 = 0.05. Ζ𝑘 denotes 𝑘𝑡ℎ term of the vector 

function and 𝜇𝑘 is the center of the Gaussian function.   

The results of the simulation carried out are given in 

figures 3-9.  Figure 3 shows two simulation frames in which 

the position and orientation of mobile agents and 

corresponding density functions are given. 

 
Figure 4. Distance and angular errors 

In Figure 4, the distance and angular errors of 5 agents 

show that the multi-agent system with the proposed controller 

is asymptotically stable.  

In Figure 5 and Figure 6, the parameters converge to the 

actual values with a linear consensus protocol. As given in the 

proof in stability analysis section, the errors are going to zero 

asymptotically as the time goes to infinity. 

 
Figure 5. Parameter estimation errors 

 

In Figure 6, the resulting errors of the linear consensus are 

given. The errors converge to zero as given in the result in the 

stability analysis section. 

 
Figure 6. Consensus errors with linear consensus protocol 

 

Figure 7 shows the effect of the power-aware control laws 

to the power consumption of the nodes for 5 agents. By 

changing the controller coefficients the total energy 

consumption of the nodes can be reduced. The result is 

verified with different coefficients. 

 

 
Figure 7. Energy consumption of the nodes with respect to 

controller parameters (5 agents) 

In Figure 8, the simulation results with 10 agents show 

that the power consumption of the nodes are affected by 

changing the controller coefficients appropriately. By 

 

 

 

 
(a) (b) 

 

 

 

 
(c) (d) 

 

Figure 3. The positions and orientations of the mobile 

agents given in (a) and (c), and corresponding density 

functions given in (b) and (d) 
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increasing the coefficient 𝛾2 = 𝑘𝑠, there is more energy left in 

the storage mediums. 

 
Figure 8. Energy consumption of the nodes with respect to 

controller parameters (10 agents) 

 

In Figure 9, the simulation results with 15 agents are 

shown. By increasing the control coefficient 𝛾2, again, the 

power consumption is reduced. 

VIII. CONCLUSIONS 

In the paper, a new approach to the coverage control 

problem using adaptive coordination and power-aware 

control laws is proposed. The non-holonomic mobile agents 

estimate the dynamic density function and a linear consensus 

law are used.  

 
Figure 9. Energy consumption of the nodes with respect to 

controller parameters (15 agents) 

 

A new adaptive power-aware controller is proposed and its 

stability analysis is given. According to the simulations 

carried out in MATLAB environment, the results show that 

with the used adaptive control laws, the mobile nodes 

estimate the density function. The estimation and consensus 

errors reach to zero asymptotically while the time goes to 

infinity.  

By using the estimated density function, the mobile nodes 

position themselves by using the proposed power-aware 

control laws. Besides, the repulsive forces provide collision 

avoidance. Also, the simulation is carried out with 5, 10 and 

15 agents. By changing the controller coefficients the total 

energy consumption of the mobile agents can be reduced. The 

theoretical results are verified with simulation results.  
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