
 

 

 
Abstract—Markov analysis is a powerful modelling and analysis 

technique with strong applications in time-based reliability and 
availability analysis. The reliability behavior of a system is 
represented using a state-transition diagram, which consists of a set 
of discrete states that the system can be in, and defines the speed at 
which transitions between those states take place. Markov models 
consist of comprehensive representations of possible chains of 
events, i.e. transitions within systems which, in the case of reliability 
and availability analysis, correspond to sequences of failures and 
repair. The paper describes specific computational approach to 
reliability analysis of complex systems, which behavior is described 
by the Markov chain finite-state transition diagram which contains 
two no crossing  sets of arbitrary configuration states, transitions 
between which is possible only through an one intermediate state. 
The method of calculation of stationary probabilities of states of the 
original system includes it decomposition into two separate 
subsystems and calculation of stationary probabilities of the original 
model from the known values of stationary probabilities of 
subsystems using the proposed transitional equations. 
 

Keywords—Markov chain model, reliability analysis, state 
transition diagram.  

I. INTRODUCTION 

Reliability of complex systems often is described by the 
homogeneous Markov process [1]. In general case the precise 
equations for the definition of the reliability indexes of such 
systems may be quite complex.  

Therefore, for the practice it is interesting to use 
applications which simplify case studies.  Different methods 
designed to simplify the description of different models on the 
base of discrete-time Markov chain: failure biasing [2], [3]; 
selective failure biasing [4]; distance-based selected failure 
biasing [5] and others.  

This work presents the simple method of the computing of 
the state’s stationary probabilities for the systems with two 
nonoverlapping subsets of states ߨଵ and ߨଶ when the 
transitions between them are possible only via a certain 
intermediate ௡ܲ state.  
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For example, to this class of systems it is possible to put 
technical objects with the computer-aided diagnostics where 
the regime of the operation and control do no coincide in time 
as well as the wide class of the systems with the preventive 
maintenance when the equipment is switched off. In the 
mentioned systems state  ௡ܲ presents the initial state of normal 
operation, multitude ߨଵ describes the process of systems 
operation in the working mode, and, the multitude ߨଶ 
characterizes the behavior of the system in the mode of 
diagnostics or during the technical maintenance. 

Another example of Markov models with two 
nonoverlapping subsets of states is complex systems with 
redundancy. In this class of models the multitude  ߨଵ describes 
the failure process of main unit of redundant system; state  ௡ܲ 
presents the transition state of work from main to standby unit; 
the multitude  ߨଶ characterizes the behavior of the system in 
the standby mode.   

II. FORMULATION OF THE PROBLEM 

The behavior of the complex system is described by the 
Markov Chain set of states transition diagram (Fig.1):  

 
ߨ ൌ ଵߨ ∪ ሼ ௡ܲሽ ∪  ଶߨ

 
where ߨଵ ൌ ሼ ௜ܲ: ݅ ൌ 1,… , ݊ െ 1ሽ, ߨଶ ൌ ሼ ௝ܲ: ݆ ൌ ݊ ൅ 1,… ,݉ሽ. 
 

The set of states ߨ includes the aggregate of nonoverlapping 
subsets ߨଵ and ߨଶ, each of them is ensemble of states are 
connected among themselves and with ௡ܲ by the derivative 
way, and the direct connections between two subsets ߨଵ and 
 .ଶ are absentߨ

Let us make a decomposition of the initial Markov Chain 
set of states into the two independent subsets  ሼܪ௜: ݅ ൌ 1,… , ݊ሽ 
and  ሼ ௝ܴ: ݆ ൌ ݊, … ,݉ሽ. The graph of the first states transition 
diagram ሼܪ௜ሽ has identical appearance to the part  ߨଵ ∪ ሼ ௡ܲሽ  
of the initial Markov Chain set of states, and the graph of the 
second states transition diagram ሼ ௝ܴሽ has identical appearance 
to the part ሼ ௡ܲሽ ∪  .ଶ of the initial Markov Chain set of statesߨ

Let us solve the problem of determination of the stationary 
probabilities ݌௞ of states ௞ܲ, ݇ ൌ 1,… ,݉ of the initial system 
according to the known probabilities ݄௜ and ݎ௝ of the states ܪ௜ 
and  ௝ܴ of the sub-systems obtained as a result of the 
decomposition of initial system.  
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Fig.1. Model of the studied Markov Chain 

 
 

III. SOLUTION FOR THE SYSTEM WITH THE TRANSITIVE 

TRANSITION GRAPH OF MARKOV PROCESS 

In the mathematical field of graph theory, a vertex-transitive 
graph is a graph ܩ such that, given any two vertices ݒଵ and ݒଶ 
of ܩ, there is some automorphism ݂: ܸሺܩሻ → ܸሺܩሻ such that 
݂ሺݒଵሻ ൌ  ଶ . In other words, a graph is vertex-transitive if itsݒ
automorphism group acts transitively upon its vertices [6]. 

For the systems described by the Markov Chain set of states 
with the transitive transition graph the stationary probabilities 
of the initial system states are defined by the expressions [7] 
 

௞݌ ൌ ሺ݇	ଵ݌௞ߠ ൌ 1,… ,݉ሻ ,                          (1) 
where 

௞ߠ ൌ
ఒభమఒమయ…ఒೖషభ,ೖ
ఓమభఓయమ…ఓೖ,ೖషభ

		                                  (2) 

 
 ௞,௞ିଵ - the intensity of the direct and reverseߤ  ௞ିଵ,௞  andߣ
transitions from the state ௞ܲିଵ into the state ௞ܲ accordingly. 

For the stationary probabilities ݄௞ and  ݎ௞ of the states ܪ௞ 
and ܴ௞ of the sub-systems the following equations are valid:  

 
݄௞ ൌ ሺ݇		௞݄ଵߠ ൌ 1,… , ݊ሻ                           (3) 
௞ݎ ൌ ሺ݇		ଵݎ௞ߠ ൌ ݊,… ,݉ሻ                           (4) 

where  ߠ௞ is defined by the equation (2). Comparing (1) with 
(2) and (3) we obtain 

௣ೖ
௣೙
ൌ ቐ

௛ೖ
௛೙
	 , ݇ ൌ 1,… , ݊

௥ೖ
௥೙
	 , ݇ ൌ ݊,… ,݉

                             (4) 

Using the received expressions it is possible to write 

෍݌௞ ൌ ௡݌ ൬
1 െ ݄௡
݄௡

൅
1
௡ݎ
൰ ൌ 1

௠

௞ୀଵ

 

from which 

௡݌ ൌ
௥೙௛೙

௥೙ା௛೙ି௥೙௛೙
                                (5) 

Unknown probabilities ݌௞  can be defined by known 
probabilities ݎ௞ and ݄௞ putting ݌௡ from equation (5) into 
expressions (4).  

IV. SOLUTION FOR THE SYSTEM WITH THE ARBITRARY 

TRANSITION GRAPH OF HOMOGENEOUS MARKOV PROCESS 

Let us consider the transition rate matrix ܣ which is an 
array of numbers describing the rate a continuous time 
Markov chain moves between states [8].  
After the elimination from matrix  ܣ the line and column with 
number ݊  we will get matrix ܣ௡ which has a block type 
structure 

௡ܣ ൌ ቚܣ′ 0
0 "ܣ

ቚ 

 
where ܣ′ and ܣ" - infinitesimal matrixes of the transitions of 
subsystems derived as a result of decomposition with the 
eliminated elements of the n-th line and n-th column. 

If we denote as  തܽ௡ the n-th column of matrix ܣ  without the 
element of the n-th line, and as ̅݌௡ , ̅ݎ௡ , ത݄௡ - vectors of the 
stationary probabilities of the corresponding Markov chains 
without n-th state, it is possible to write the following matrix 
equations [8]: 
 

௡̅݌௡ܣ ൌ തܽ௡݌௡  ,  ܣᇱ ത݄௡ ൌ ܽ′ഥ௡݄௡ ,  ݎ̅"ܣ௡ ൌ ܽ"തതത௡ݎ௡ 
 

From these relations we have 
 
௡̅݌ ൌ ௡ିଵܣ തܽ௡݌௡,  ത݄௡ ൌ ሺܣ′ሻିଵܽ′ഥ௡݄௡,  ̅ݎ௡ ൌ ሺܣ"ሻିଵܽ"തതത௡ݎ௡      (6) 
 

In accordance as 
 

௡ିଵܣ ൌ ฬ
ሺܣᇱሻିଵ 0
0 ሺܣ"ሻିଵ

ฬ 

 
from equations (6) we can obtain the equation (4). At the same 
time the value of  ݌௡ determined by the expression (5).  

V. AN ILLUSTRATIVE EXAMPLE 

 The proposed approach is illustrated with the following 
example. Given a backup system with repair permitted for 
either component with a single repair crew and no failures 
while in standby. A system has two modes of reliability: a 
degraded mode and failed mode.   

A system described by the states: ଵܲ - system is in fully 
operational state; ଶܲ – main system operates in degraded 
mode; ଷܲ – failed mode of main system, backup system begins 
to work, it is in fully operational state; ସܲ – backup system 
operates in degraded mode; ହܲ - failed mode of backup 
system. 

The behavior of the examined system is described by the 
Markov Chain state transition diagram (Fig. 2), where ߣଵ is 
rate of transition to degraded mode, ߣଶ – rate of transition 
from degraded mode to failed mode, ߣଷ – rate of transition 
from fully operational state to failed mode, μ – repair rate.  

Let’s define the stationary probabilities ݌௞ of states ௞ܲ ,	 
݇ ൌ 1,… , 5. 
 

Steps of solution: 
1. The transition graph of the initial system (Fig.2) divided 

into two independent graphs (Fig.3, Fig.4).   
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Fig. 2. State transition diagram of the examined system. 

 
 

     
 
       Fig. 3. The first graph                Fig. 2. The second graph 
obtained after transformation      obtained after transformation 
 
 
2. The state probabilities for each graph of the subsystems 

(Fig.3, Fig.4) are possible to take from [9]: 
 

݄ଵ ൌ ଷݎ ൌ ଶ݄ , ߛ ൌ ସݎ ൌ ଷ݄ , ߛߙ ൌ ହݎ ൌ  , ߛߚ
 

where  ߙ ൌ ఒభ
ఒమ

ߚ ,  ൌ ఒభାఒయ
ఓ

ߛ ,  ൌ ሺ1 ൅ ߙ ൅  .  ሻିଵߚ

 
3. In accordance with (5) we can obtain the equation for  ݌ଷ:   
  

ଷ݌ ൌ
ଷ݄ଷݎ

ଷݎ ൅ ݄ଷ െ ଷ݄ଷݎ
 

 . 
4. In accordance with (4) we can obtain the equations for 
other states   ݌௜, ݅ ൌ 1,2,4,5 : 
 

ଵ݌ ൌ ݄ଵ݌ଷ ݄ଷ⁄ ൌ ଶ݌ ,߮ߛ ൌ ݄ଶ݌ଷ ݄ଷ⁄ ൌ  ,߮ߛߙ
ସ݌ ൌ ݄ସ݌ଷ ݄ଷ⁄ ൌ ହ݌ ,߮ߛߚߙ ൌ ݄ହ݌ଷ ݄ଷ⁄ ൌ  ,߮ߛଶߚ

 
where  ߮ ൌ ሺ1 ൅ ߚ െ  . ሻିଵߛߚ

  

VI. CONCLUSION 

The paper describes specific computational approach to 
reliability analysis of complex systems, which behavior is 
described by the Markov chain finite-state transition diagram 
which contains two no crossing  sets of arbitrary configuration 
states, transitions between which is possible only through an 
one intermediate state. 

The method of calculation of stationary probabilities of 
states of the original system includes it decomposition into 
two separate subsystems and calculation of stationary 
probabilities of the original model from the known values of 
stationary probabilities of subsystems using the proposed 
transitional equations. 

The proposed method is particularly comfortable in case if 
earlier the system has been already investigated, but with more 
strong limitations, for example, without factors of 
maintenance, redundancy or others. In this case in the 
framework of the submitted method there is a possibility to 
use the obtained earlier results and, therefore, the 
simplification of the conducted calculations.    
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