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Abstract—We propose a two-phase construction heuristic for
the solution of the classical Euclidean (uncapacitated) vehicle
routing problem in which the minimum cost k distinct vehicle
tours are to be formed for the given n customer locations. At
the first phase we construct a polygon in the 2-dimensional Eu-
clidean space that girds all the given points (customer locations
and the depot). The second phase combines the clustering and
the routing stages which are performed in an alternate fashion.
Iteratively, if the current clustering doesn’t bring us to k distinct
tours then it is modified and a new routing attempt is made until
k distinct tours are formed.
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I. INTRODUCTION

One of the most practical and also complex combinatorial
optimization problems is the Vehicle Routing Problem (VRP)
proposed by Dantzig and Ramser in early 1959. The basic
(uncapacitated) version of this problem can be stated as
follows. We are given an undirected weighted (complete)
graph G = (V,E) with edge weights we, for all e ∈ E, a
distinguished node vd from set V (called depot) and a positive
integer number k. (i, j) ∈ E is the edge connecting node i
with node j. For any Y ⊆ V containing node vd, a tour
TY defined by set Y is a directed cycle that starts at that
node, visits every node in Y exactly once and returns to
the same node vd; in other words, TY = (i1, i2, . . . , il, 1),
where (i2, . . . , ıl) is an enumeration of the nodes in set Y
not including node vd and i1 = vd. The cost of tour TY ,
c(TY ) is the sum of the weights of the edges on this cycle,
i.e., c(TY ) = w(i1, i2) +w(i2, i3) + . . .+w(il, 1). VRP aims
to find the partition of nodes from set V \{vd} into k subsets
V1, . . . , Vk with the minimal possible total cost; that is, with
the minimal

∑
i=1,2,...,k c(Vi).

VRP is a generalization of a well-known Traveling Sales-
man’s Problem (TSP): VRP with k = 1 becomes TSP.
Multiple TSP, a generalization of TSP with k-tours, k-TSP,
is a VRP with k vehicles.

We deal with geometric two-dimensional version of the
problem when edge weights represent Euclidean distances
between the nodes, considering the nodes themselves as points
(cities or customers) in the two-dimensional Euclidean space.
The corresponding problem with already 1 vehicle, i.e., the
corresponding 1-TSP is already NP-hard Papadimitriou [10].
Therefore, we do not pretend to solve our VRP optimally but
rather suggest an efficient heuristic for its solution.

Giving a practical interpretation to VRP, we assume we
have k identical distinct resources or vehicles (one for each
of the subsets Vi) that can travel in between the cities. The
weight w(i, j) is the distance between nodes i and j. We aim
to minimize the total travel distance (time) of all the vehicles.
There are a number of extensions of VRP, the most common
of which is the capacitated version in which every vehicle has
a given capacity that cannot be exceeded during its tour.

The vehicle routing problems have been extensively stud-
ied, the most of the solutions methods in the literature being
heuristic (see, for example, Laporte and Semet [7], Gendreau
et al. [4] and Mester and Braysy [9]). There are a few
enumerative algorithms as well that work on small instances
relatively good (see, for example Lysgaard et al. [8] and
Fukasawa et al. [3]). Here we do not pretend to cover all the
enormous related work, we rather refer the interested reader
to the book edited by Toth and Vigo [11], a newer overview
book edited by Golden et al. [5], review papers by Christofides
et al. [1], Laporte [6] and Cordeau et al. [2].

In this paper, we propose a two-phase construction heuristic
for the the classical Euclidean (uncapacitated) version of
the problem. At the first phase we construct a polygon in
the 2-dimensional Euclidean space that girds all the given
points (customer locations and the depot). The second phase
combines the clustering and the routing stages which are
performed in an alternate fashion. The initial clustering is
formed based on the most “dance” k vectors that bring us
from the depot to a vertex of the polygon. This vector defines
a tour in which all the points close-by this vector are included.
If all the formed k tours cover all the nodes, then our heuristic
halts with the created solution. Otherwise, it updates the
formed k tours by including in each of them some more
points. Iteratively, if the current clustering doesn’t bring us
to k distinct tours covering all the given n nodes, then it is
modified and a new roting attempt is made until k distinct
tours including all the n nodes are formed.

To the best of our knowledge, no similar approach has been
earlier proposed for the solution of VRP. The computational
experiments are still at an early development stage, the heuris-
tic has not been yet tested for large benchmark instances. This
is an ongoing work and we hope to have some results in a
close future.
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II. PHASE 1: THE CONSTRUCTION OF THE GIRDING
POLYGON

Without loss of generality and for the commodity, we
assume that the given n points from set V have non-negative
coordinates (otherwise, we can shift them uniformly without
changing the distances between them).

Our task at phase 1 is to determine a special kind of a
(closed) convex polygon that contains all the nodes from set
V girding in this way the whole tour area. No node from set V
may be left outside the area of such a polygon, and, of course,
there are many such polygons. Though, we are interested in
the minimal such convex polygon with its edges containing
the maximal possible number of nodes from set V . We shall
refer to this particular polygon as the girding polygon for set
V and denote it by P = P (V ).

It follows that all vertices of polygon P (V ) are nodes from
set V . Besides these vertices, polygon P may contain nodes
from set V as the interior points of its edges, whereas the
rest of the nodes from set V are within the internal area of
the polygon. In Fig. 1 we illustrate polygon P for a problem
instance of VRP with 30 customers and one depot.

Fig. 1. Polygon with 12 vertices and 19 nodes from its internal area

Before we describe our procedure for the construction of
polygon P (V ), we define special types of nodes from set
V that pertain to polygon P (V ). These are the uppermost,
lowermost, leftmost and rightmost points from V . Formally,
we call a point in set V with the maximum (minimum, respec-
tively) y-coordinate an uppermost (a lowermost, respectively)
node. Likewise, we call a point in set V with the maximum
(minimum, respectively) x-coordinate a rightmost (a leftmost,
respectively) node.

We shall refer to these four types of nodes as extreme points
in set V . From all the extreme points of the same type (if
there are two or more such nodes), we call exterior nodes the
two nodes with the maximum and minimum co-coordinate,
and the rest of the nodes the interior nodes of that type. The
latter two nodes are the endpoints of the corresponding edge
on polygon P . In general, we may have more than two nodes

from set V lying on the same edge of polygon P , two exterior
ones of which are endpoints of that edge.

The next observation is straightforward.
Observation 1: All extreme points belong to polygon P ,

whereas all extreme points of the same type belong to the
same edge of that polygon. In particular, the two edges
containing all the uppermost and all the lowermost nodes are
parallel to the x-axes, and the two edges containing all the
rightmost and all the leftmost nodes are parallel to the y-axes.

We use the following notation for the four distinguished
extreme points. (1) v1 is the right exterior uppermost node
(i.e., among all the uppermost nodes v1 has the maximum
x-coordinate); (2) vl is the lowest exterior leftmost node
(i.e., among all the leftmost nodes vl has the minimum y-
coordinate); (3) vo the right exterior lowermost node (i.e.,
among all the lowermost nodes, vo has the minimum x-
coordinate); (4) vr is the lowest exterior rightmost node
(i.e., among all the rightmost nodes vr has the minimum y-
coordinate).

The procedure POLYGON that forms the polygon P , first
determines all the extreme points verifying the corresponding
coordinates in the straightforward way. It declares node v1
as the first vertex of polygon P . Starting from vertex v1, the
construction of polygon P goes on the following four stages
(which, in principal, are independent and can be carried our
in parallel).

At stage 1 the construction proceeds in the “right-to-left”
downward fashion that moves from vertex v1 towards vertex
vl completing the upper left border of polygon P . At stage
2 the construction proceeds also in the “right-to-left” but
upward fashion that moves from vertex vo towards vertex vl
completing the lower left border of polygon P . At stage 3
the construction proceeds in the “left-to-right” upward fashion
that moves from vertex vo towards vertex vr completing the
lower right border of polygon P . At stage 4 the construction
moves also in the “left-to-right” but downward fashion that
moves from vertex v1 towards vertex vr completing the upper
right border of polygon P . Below we describe these stages
in more details.

At stage 1 (“right-to-left” downward) we add points to the
left of the latest added so far point to polygon P , initially, to
the left of vertex v1. We first determine the next to v1 vertex
v2 to the left of vertex v1 (i.e., x2 < x1) on the projected
border of polygon P . v2 is the uppermost closest to v1 vertex
on its left hand side. In other words, among all nodes in set
V with no-larger than y1 y-coordinate and no-larger than x1
x-coordinate, v2 has the maximum y-coordinate (note that
by the definition of the initial node v1, no other node in set
V may have a larger than y1 y-coordinate). If it turns out
that y2 = y1, the corresponding edge of polygon P (one
containing nodes v1 and v2) is parallel to x-axes. The next
point v3 on the border of polygon is similarly defined, where
we restart now from node v2 (replacing of node v1), which is
now the next node in set V with the maximum y-coordinate. If
y3 = y2 then all three nodes v1, v2, v3 lie on the same edge
of polygon P and node v2 turns out to be an intermediate
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point on that edge, i.e., it is not a vertex of polygon P , but it
belongs to its border. Observe that v1 is a vertex of polygon P ,
whereas whether v3 is a vertex of polygon P or not, depends
on whether for the next point v4, y4 is equal to or is less than
y3 (it cannot be more).

The “right-to-left” downwards pass of stage 1 ends by
adding the leftmost vertex (verices) (ones with the minimum
x-coordinate) to polygon P ; if there are several such nodes
in set V , polygon P possesses an edge parallel to the y-
axes containing all these nodes (Observation 1), which is
the leftmost edge of the polygon. All of these nodes are
successively added and stage 1 ends by adding the lowermost
such node (one with the smallest y-coordinate), which we
denoted by vl.

Stage 4 works as stage 1 with the only difference that
the construction here moves in the “left-to-right” (instead
of “right-to-left”) downward fashion from vertex v1 now to
vertex vr. In the description of stage 1 above, we merely
replace “left” with “right” and vertex vl with vertex vr.

At stage 2 (“right-to-left” upward) we add points to the left
of the latest added so far point to polygon P , starting from
vertex vo. We determine the next to vo vertex vω to the left
of vertex vo on the projected border of polygon P . vω is now
the lowermost closest to v1 vertex on its left hand side. In
other words, among all nodes in set V with no-smaller than
yo y-coordinate and no-larger than xo x-coordinate, vω has
the minimum y-coordinate. As at stage 1, it may again turn
out that yω = yo, in which case we have an edge in polygon
P parallel to x-axes. The next point on the projected border
of polygon P is similarly defined, where we restart now from
node vω (replacing of node vo), which is now the next node
in set V with the minimum y-coordinate. Proceeding in this
way, the construction at stage 2 ends by matching the latest
added vertex with vertex vl (by the construction, this event
will clearly take the place).

Stage 3 works as stage 2 with the only difference that
the construction here moves in the “left-to-right” (instead of
“right-to-left”) upward fashion from vertex vo now to vertex
vr. In the description of stage 2 above, we merely replace
“left” with “right” and vertex vl with vertex vr.

This completes the description of procedure POLYGON.
It straightforwardly follows from the construction that the
obtained polygon is convex and contains all the nodes from
set V either on its border or within it, and among all such
polygons it is minimal. Hence, it is the girding polygon P (V ).

The brutal sequential time complexity of procedure POLY-
GON is O(n2). Indeed, initially, the selection of each of the
extreme nodes v1, vl, vo, vr takes time O(n). At all stages,
the determination of every next added vertex takes also time
O(n), and since there are no more than n added points to the
constructed polygon, we get a brutal sequential overall time
of O(n2).

Thus we have proved the following result.
Theorem 1: Procedure POLYGON creates the girding poly-

gon P (V ) in brutal sequential time O(n2).

III. PHASE 2: THE PARTITION AND ROUTING

In this section we aim to form the k vehicle tours using
the girding polygon P (V ) constructed at phase 1. For the
convenience, assume for now that the depot vd is within the
internal area of polygon P (it normally shares the central area
in between the rest of the nodes).

Let m be the number of the border nodes, i.e., ones on
the border of polygon P . We tie every such border node
v with the depot vd associating with it an auxiliary edge
(vd, v) incident with these two nodes. As a result, we cerate m
auxiliary edges of this type. They partition the interior area of
polygon into the m corresponding triangle areas (see Fig. 2);
every triangle is uniquely defined by two neighboring border
nodes (not necessarily the endpoint of the corresponding edge
of P ) and the depot vd (which share all the triangles). We
associate with every edge the corresponding vector in the 2-
dimensional Euclidean space and will refer to both, an edge
and the corresponding vector interchangeably.

We define the weight of every auxiliary edge (vd, v) as the
length of the corresponding vector in the 2-dimensional plane.

Fig. 2. Polygon of Fig 1 with auxiliary edges

Lemma 1: Twice the minimal auxiliary edge weight plus
the length of the border of polygon P (V ) is a lower bound
L(V ) on the optimal solution.
Proof. Immediately follows from an easily seen observation
that the above magnitude is the optimal tour length for the
case k = 1 and for the subset of V containing only the nodes
of polygon P and the depot.

It is not difficult to see that the total length of a tour
including a border node v is at least 2w(vd, v). Our algorithm
employs an intuitively clear consideration that it is reasonable
to include in such a tour also the nodes from the interior
of polygon P which lie “across” edge (vd, v), ones “close
by” trajectory of this “local tour” (i.e., the edge (vd, v)) and
perhaps the border node(s) of polygon P which are also
“close-by” node v (if in total i neighboring border nodes are
included, nodes from the corresponding i triangle areas might
be joined together forming one of the destiny k subsets of set
V ). Part of the nodes can be visited on the way from depot
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to node v, whereas the rest of them might be visited on the
way back to the depot. In this way, the straight-line tour from
the depot to a border node and back from a border node to
the depot is substituted by a zigzag-like tour that includes the
neighboring nodes on the way. We describe this construction
in more details below.

First, we note that the notion of the closeness of two nodes
is relative and is dependent on several factors. One such a
factor is the number k: the more is k, the freer we are to
separate different triangle areas, whereas for “small” k-s, we
will be obliged to join together more triangle areas. Other
relevant parameters that we may take into account are the
length of edge (vd, v), w(vd, v), its “relative length” which
we let to be the ratio of the average auxiliary edge length
(i.e., the sum of weights of all the m edges divided by m) and
w(vd, v), and the lower bound L(V ) from Lemma 1 which
is a magnitude, slightly more than the perimeter of polygon
P .

Let the magnitude b be our closeness measure that, in one
way or the other, takes into account the above parameters
(in practice, we try different kinds of combinations of these
parameters for calculating magnitude b).

For a given auxiliary edge e, the b-close set of nodes is
formed by all the nodes from set V which are within the
distance b from vector e. We denote the b-close set for an
edge e by B(e).

Next, we define the density factor of an auxiliary edge e,
δ(e) as the number of nodes in set B(e) divided by the length
of the corresponding vector. We tend to direct our tours across
the auxiliary edges with higher density factors.

Our algorithm determines the auxiliary edges with the 2k
(or less) greatest density factors, and then partitions the nodes
according to these auxiliary edges. Two neighboring auxiliary
edges straightforwardly determine one or more triangle areas:
if there are i intermediate auxiliary edges in between these
two selected auxiliary edges then i + 1 triangle areas, are
determined by the above pair of auxiliary edges. In this
way, the selected 2k auxiliary edges with the highest density
factors partition the interior area of polygon P into 2k triangle
areas. Next comes the clustering step which is set up while
constructing the k tours determined by the selected k auxiliary
edges.

Let e1, e2, . . . , e2k be an enumeration of the selected auxil-
iary edges in the non-increasing order of their density factors,
δ(e1) ≥ δ(e2) ≥ . . . ≥ δ(e2k). Our heuristic generates the k
tours for the above 2k edges in this order. We describe now
how this works for an edge e = (vd, v) from this enumeration.
For the commodity in this presentation, we assume that vector
e is on the y-axes of the coordinate system and node vd
coincides with the origin (0, 0) (note that the rotating the
whole polygon area by the necessary angle and shifting it
will not change any problem data).

We need to create a tour that includes nodes vd and v and
all the rest of the (intermediate) nodes from set B(e). This
tour, as earlier noted, has a zigzag type trajectory and consists
of a number of “slices”. Every slice defines a local tour on

the left or right side of vector e and is restricted by a fixed
magnitude β called the thickness factor, we let β = αb, for
some real α > 0 (we normally let α < 1). Roughly, the
thickness factor determines the amplitude within which the
nodes will be included in the generated local tour. We define
below such local tours.

Let y1 be the furthest point from node vd in set B(e) whose
y-coordinate is at most β more than that of node vd. If there
is no such a point, i.e., the minimum y-coordinate of a job
from set B(s) \ {vd} is more than β more than that of node
vd, we (repeatedly) replace point vd with the point (0, iβ) on
the y-axes, for the minimum integer i, as long as that point
remains within the area of polygon P (i.e., it is on vector e)
until point y1 is determined (or point (0, iβ) turns out to be
outside of the the area of polygon P ). Denote the determined
in this way point by v′. Without loss of generality and for the
purpose of this description, assume node y1 has a positive
x-coordinate, i.e., it is on the right-hand side of vector e.

The vector (v′, y1) forms the skeleton of the local tour
from point v′ to node y1, i.e., it is across that vector. Let
β(v′, y1) denote the set of nodes from B(e) which are within
the distance β from vector (v′, y1) on the same side of vector
e. In a local partial tour defined by the former vector, all
the nodes from set β(v′, y1) are visited in the order of the
closeness from node v′. In other words, if we let i1, i2, . . . , il,
il = y1, be an enumeration of nodes in set β(v′, y1) in the
non-decreasing order of their distances from node v′, then the
node i1 is visited from node vd, then node i2 is visited from
node i1, and so on, node y1 = il is visited from node il−1.
Note that the latest visited node in this local tour is y1 and
that it included all the nodes in set B(e) located below vector
(v′, y1).

Now we replace point v′ with the next point v′′ of the same
form (0, iβ) and defined similarly as point v′, and carry out
a similar construction. I.e., we determine the next furthest
point y2 now from point v′′ with the y-coordinate no more
than iβ (for the newly determined value of i), form vector
((0, iβ), y2) and the next local tour (on the right or the left
hand side of vector e, depending on the potion of point y2).

Consider the stage in the above tour when the border node
v is reached, and let z be the next to v border node, the
border endpoint of the next to e neighboring auxiliary edge
with the next largest density factor. Similarly to the local tour
from node vd to node v, we create another local tour from
node v to node z including in it all the “close-by” nodes from
the corresponding edge(s) of polygon P (edge v, z if there is
no intermediate edge node, otherwise all the corresponding
intermediate edges between nodes v and z). Once we reach
node z, we form similarly the last portion of the tour that
goes from node z to the depot.

The above generated tour covers the triangle area defined
by the auxiliary edges (vd, v) and (vd, z) and part of the two
neighboring triangle areas, one adjacent to edge (vd, v) and
the other adjacent to edge (vd, z).

Once all the 2k auxiliary edges are processed as above
described, if all the nodes from set V are included in one
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of the k generated tours then our heuristic completes with
the created solution. Otherwise, some of the formed tours are
completed with the remained nodes at the successive iterations
with modified values for parameters b and β. Due to the page
limitation, some housekeeping details and figures are omitted
in this description (will be included in the extended version
of the paper).

IV. CONCLUDING REMARKS

We have presented a novel heuristic algorithm for the
classical uncapacitated version of the vehicle routing problem.
Our heuristic has some degree of flexibility due to the possi-
bility of defining the parameters of the algorithm differently.
These parameters can be calculated in different ways adapting
to the nature of the input problem instances. As to the
future work, we plan to carry out extensive computational
experiments testing the behavior of the heuristic, and also to
extend the heuristic for the capacitated version of the problem.
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