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Abstract—In this paper, a new approach to multivariable Smith 

control design is proposed for the computation of all stabilizing 

by Proportional-Integra (PI) and Proportional-Integral-

derivative PID controllers for Multi-Inputs Multi-Outputs 

(MIMO) plants with multiple time delays. First, the Smith 

decoupler is used to eliminate interactions. Second the decoupled 

models are approximated by second-order plus time delay 

(SOPDT) models using the standard recursive least square 

approach. We seek finally, by using a generalization of Hermite-

Biehler theorem, the set of complete stabilizing PI and PID 

parameters. 

 

Keywords— MIMO with multiple time delays plants, SOPDT 

model, PID controller, Smith control, Hermite-Biehler theorem. 
 

I. INTRODUCTION 

 
Since the pioneering research woks of the early sixties (see 

for example HOROWITZ, SKOGESTAD and 

POLETHWAITE [1, 2]), the synthesis of controllers for 

multivariable delayed processes has received more attention in 

the industrial field and more particularly in the domain of 

chemical engineering [3]. It is still more practical to control 

multivariable processes by using a SISO (Single-Input Single-

Output) control structure (to avoid interactions between 

different loops), that is, decentralized control. 

Despite the significant developments made in advanced 

control theory, PID controllers are still the most commonly 

adopted in industries [4, 5]. The main reasons for the 

popularity of such controllers is that their simple structure 

leads to easy and rapid designs. Based on these advantages, 

PID controllers seem to be an interesting choice for MIMO 

plants (require fewer parameters to adjust) [6]. 

Effective control of multivariable system with time delays 

processes is a difficult issue in the context of process control 

[2]. Input−output loops in a multivariable plant usually have 

different time delays, and for a particular loop its output could 

be affected by all the inputs through different time delays. 

Such a plant can be represented by a multivariable transfer 

function matrix with multiple time delays around an operating 

point. The researches of control method for this kind of 

multivariable plants with multiple time delays have received 

considerable attention [7]. 

In the case of multivariable coupling system, the controller 

was designed for each sub-loop by analyzing the dominant 

pole and amplitude ratio by LUYBEN [8], JIETAE and 

THOMAD [9]. This method was used to obtain a large 

number of controller designs, but the controller regulating of 

one loop affected the performance of the system, even the 

other loops. Decoupling control is an effective method for 

multivariable system to eliminate the interactions between the 

sub-loops. By decomposing the system to independent sub-

loops using a decoupler, a decentralized PID controller is 

designed. The great advantage of this method is that it permits 

the use of single-input single-output (SISO) controller design.  

ASTROM et al and SAEED et al in [10, 11] introduced static 

decoupler and dynamic decoupler at the input port to construct 

unit feedback closed-loop decoupling control. But the above 

method can be used only in two-input two-output (TITO) 

process. 

In this paper, a control design procedure to deal with the 

Smith predictor controller design is presented for decoupling 

and stabilizing of MIMO process with multiple time delays. 

Decoupling Smith control design is adopted in this work. With 

the help of the standard recursive least square approach the 

decoupled single-loop models are reduced to SOPDT models. 

Based on these identified SOPDT models we will provide a 

complete analytical solution to the problem which is based on 

an extension of the Hermite–Biehler theorem. The advantages 

of the proposed methods are clearly presented in the numerical 

example. 

The remainder of this paper is organized as follows. In the 

next section the use of the smith control’s decoupler is 

discussed. In section 3 the standard recursive least square 
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approach was proposed to approximate the decoupled system 

by SOPDT models. We present in section 4 and 5 the 

Hermite–Biehler theorem that is useful for PI and PID 

controllers synthesis. In section 6 the proposed method is 

applied to the Wood & Berry binary distillation column plant 

[7] to show its effectiveness and applicability. Finally 

conclusion remarks are made. 

 

II. SMITH PREDICTOR FOR MIMO SYSTEMS WITH 

DELAYS  

For a SISO delayed, Smith proposed a compensation 

scheme which can eliminate the delay of the characteristic 

equation closed loop which facilitates its control and greatly 

improves its impulse response [12]. This type of control can 

be applied to MIMO systems with multiple delays. To 

eliminate the coupling between the various loops, we will then 

present the design of decoupling control Smith proposed by 

Wang et al [13]. Therefore, the resulting decoupled system 

will be reduced to a SOPDT plant which seems to be an useful 

tool for solving the problem of control of MIMO systems with 

multiple delays. 

The structure of multivariable control by Smith predictor [13] 

is illustrated in Fig. 1: 

 

 

Fig.1 Multivariable Smith predictor structure. 

 

With R, Y, C, D and G represent respectively the input, 

output, controller, decoupler, and the process which is a stable 

nonsingular matrix ( det(G(0) 0)). And   (s) is the same as 

H(s) except with no delay. 

Consider the multivariable system with the transfer matrix: 

 

 ( )  

[
 
 
 
 
    ( )     ( )

   

   ( )     ( )]
 
 
 
 

                      ( ) 

Where    ( )      ( )   
       

The transfer function of the closed loop system is given by: 

 

 ( )  
 ( ) ( )

    ( ) ( )
                        ( )          

 

In the case of multivariable control by Smith     Predictor, the 

decoupler D (s) is determined in a way that the matrix of the 

transfer function H(s) is diagonal and is expressed as follows: 

 

 ( )  
  ( )  ( )

   ( ( ))
                             ( ) 

Where 

      ( )                     
  ( )       (   (    ))                

And      is the smallest time delay in each column of   . The 

decoupled process can be then written as follows: 

 ( )   ( ) ( )      (            )     ( ) 

III. MODEL REDUCTION 

After decoupling a MIMO system interactions are 

eliminated but the resulting decoupled process given by 

equation (4) is complex. In order to simplify the system and 

ensure an efficient control, the model is approximated by a 

SOPDT plant in this work.  

In order to find an approximation by a SOPDT model for 

  ( ), these unknown parameters, namely   ,     ,    and     

(i=1, 2, …, n) should be determined. The standard recursive 

least square approach [14] is adopted here. The resulting L (s) 

then obtained can be written as follows: 

 

 ( )        (          ) 

 ( )      (
     

     

            

 
     

     

            

   
     

     

            

)   

( ) 

IV. PRELIMINARY RESULTS FOR ANALYZING TIME 

DELAY SYSTEM 

Several problems in process control engineering are related 

to the presence of delays. These delays intervene in dynamic 

models whose characteristic equations are of the following 

form [5, 25]: 

 

δ(s)=d(s)+        (s)+        (s)+…+          (s)   (6) 

 

Where: d(s) and   (s) are polynomials with real 

coefficients and    represent time delays. These characteristic 

equations are recognized as quasi-polynomials. Under the 

following assumptions: 

 

(  ) Deg (d(s))= n and deg (  (s)) <  n for i=1,2,…,m 

(  )                                                                   (7)    

 

One can consider the quasi-polynomials     ( )  described 

by: 

    ( )=       δ(s) 

   ( )          ( )     (     )   ( ) 

     (     )   ( )       ( )     ( ) 

 

The zeros of δ(s) are identical to those of     ( ) 

since       does not have any finite zeros in the complex plan. 

However, the quasi-polynomial     ( ) has a principal term 

since the coefficient of the term containing the highest powers 

of s and       is nonzero. If     ( )  does not have a principal 

term, then it has an infinity roots with positive real parts [5]. 
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The stability of the system with characteristic equation (6) is 

equivalent to the condition that all the zeros of     ( ) must be 

in the open left half of the complex plan. We said that     ( ) 

is Hurwitz or is stable. The following theorem gives a 

necessary and sufficient condition for the stability of   ( ). 

 

Theorem 1 (Hermite–Biehler) [5] 

Let     ( )  be given by (8), and write: 

    (  )  =    (ω) + j   (ω)                      (9) 

where  

   (ω) and    (ω) represent respectively the real and imaginary 

parts of     (  ). Under conditions (  ) and (  ),    ( ) is 

stable if and only if: 

1:    (ω) and    (ω) have only simple, real roots and these 

interlace, 

2:   
 
(  )   (  ) −   (  )   

 
(  )> 0 for some    in 

[−∞,+∞]. 

Where   
 ( ) and   

 
(ω) denote the first derivative with 

respect to ω of   (ω) and   (ω), respectively. 

A crucial stage in the application of the precedent theorem is 

to verify that and have only real roots. Such a property can be 

checked while using the following theorem. 

 

Theorem 2 [5] 

Let M and N designate the highest powers of s and     which 

appear in   ( ). Let η be an appropriate constant such that the 

coefficient of terms of highest degree in   (ω) and   (ω) do 

not vanish at ω = η. Then a necessary and sufficient condition 

that   (ω) and   (ω) have only real roots is that in each of the 

intervals −2lπ+η < ω < 2lπ+η, l =  ,    +1,    +2... 

  (ω) or    (ω) have exactly 4lN + M real roots for a 

sufficiently large    . 

 

V. PI CONTROL FOR SECOND ORDER DELAY SYSTEM 

 

A second order system with delay can be mathematically 

expressed by a transfer function having the following form: 

 

 ( )  
 

         
                  (10) 

Where K is the static gain of the plant, L is the time delay and 

   and    are the plant parameters. The parameters are always 

positive. 

In this section, the stabilization of the plant is assured by the 

PI controller designed as follow: 

 ( )       
  

   
                    (11) 

 

 

Fig.2  The closed-loop system with controller 

 

The proposed method leads to an efficient calculation of the 

proportional and integral gains    and    achieving stability.  

The characteristic equation of the closed-loop system is given 

by: 

δ (s) =K(     s)     + (         )s     (12) 

We deduce the quasi-polynomial: 

   ( )     δ(s)=K(     s) +s(         )    (13) 

by replacing s by jω , we get: 

    (  )  =    (ω) + j   (ω) 

With: 

{
  ( )       (      )    (  )     

     (  )

   ( )   ,     (     )    (  )        (  )-
           (  ) 

 

Clearly, the parameter    only affects the real part of     (  ) 

whereas the parameter    affects the imaginary part.  

Let’s put z = L , we get: 

{
 
 

 
   ( )          ( ) (

  

  
   

 

 
)    

  

  
   ( )

   ( )  
 

 
,        ( ) (   

  

  
)    

 

 
   ( )-

         (  ) 

From the previous expressions, the real part   ( ) depends on 

the controller parameter    whereas the imaginary part    ( ) 

depends on   . In order to determine the range of   , Silva et 

al. (2005) and Farkh et al. (2009a) use the following theorem 

[17, 18]: 

 

 
  

 
    

 

 
(  

 

 
   ( )     ( ) (   

  

  
))         (  ) 

 

Where   is the solution of the equation tan( )=
 (     )

(           )
 in 

the interval [0,π]. 

For    values outside this range, there are no stabilizing PID 

controllers.  

All of the values of the parameter    given in (16) verify the 

first condition of Hermite–Biehler theorem, which  required 

that the roots of    (z) and    (z) are simple and interlaced. 

Applying the condition,   
 
( )  ( )−   ( )  

 
( ) > 0, we can 

compute the set of parameter controller    gains that verifies 

the interlace property of the roots. 

Thus we can rewrite   ( )as follows: 

  ( )          ( ) (
  

  
   

 

 
)    

  

  
   ( )  

             ,     ( )-                                         (17) 

Where 

  ( )  
 

  
,   ( ) .   

  

  /    
 

 
   ( )-       (18) 

 

Let’s put   , j = 1, 2, 3... the roots of   ( ) and a(  )    . 

Interlacing the roots of   ( ) and   ( ) is equivalent to 

  (  )    (since   > 0),   (  )   ,   (  )   ... We can 
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use the interlacing property and the fact that and   ( ) has 

only real roots to establish that   ( ) possess real roots too. 

From the previous equations we get the following inequalities: 

{
 
 

 
 

  (  )   

  (  )   

  (  )    

  (  )   

  (  )   
 

               

{
 
 

 
 

    
     

      
     

     

 

  ;                  (19) 

From these inequalities, it is clear that the    odd bounds must 

be strictly positive; however the    even bounds are negative 

in order to find a feasible range of   . From which we have: 

        
           

*  +                        (20) 

Algorithm for determining PI parameters [17] 

 
1) Choose    in the interval suggested in (16) and initialize j = 

1, 

2) find the roots    of   ( ), 

3) Compute the parameter    associated with the    previously 

founded, 

4) Determine the lower and the upper bounds for     as 

follows:  
        

           
*  + 

5) Go to step 1. 

 

VI. PID CONTROL FOR SECOND ORDER DELAY 

SYSTEM 

 

Considering the same system expressed by equation (10) 

shown in Fig.2, we attempt to achieve stabilization with PID 

controller presented by: 

 

 ( )       
  

   
                            (21) 

 
The characteristic equation of the closed-loop system is given 

by: 

δ(s)=K(     s+   
 )     + (         )s (22) 

we deduce the quasi-polynomial: 

   ( )  K(     s+   
 )+s(         )    (23) 

by replacing s by jω , we get: 

    (  )  =    (ω) + j   (ω) 

Where 

{
  ( )            (      )    (  )     

     (  )

   ( )   [     (     )    (  )        (  )]
  (  )

And by putting z = L , we get: 

{
 
 

 
   ( )           

  

      ( ) (
  

     

 

 
)    

  

     ( )

   ( )  
 

 
,        ( ) (   

  

  )    

 

 
   ( )-

     (  ) 

 

We notice that    ( ) have the same expression as in (15) then 

to determine the range of    we will use the same theorem. 

All of the values of the parameter    given in (16) verify the 

first condition of Hermite–Biehler theorem, which required 

that the roots of    (z) and   (z) are simple and interlaced. 

Applying the condition,   
 
( )   ( ) −   ( )   

 
( )> 0, we can 

compute the set of     and     gains that verifies the interlace 

property of the roots. 

Thus we can rewrite   ( ) as follows: 

  ( )    
  

  
,     ( )     ( )-          (26) 

Where 

{
 
 

 
  ( )  

  

  

 ( )  
 

  
,    

 

 
   ( )     ( ) (

  

  
    )-

   (  ) 

Let’s put   , j = 1, 2, 3... the roots of   ( ), m(  )     and 

b(  )    .  

By using the interlacing property and the fact that and   ( ) 

has only real roots to establish that   ( ) possess real roots too 

we get the following inequalities: 

{
 
 

 
 

  (  )   

  (  )   

  (  )    

  (  )   

  (  )   
 

               

{
 
 

 
 

    
          

           
          

          

 

             (  ) 

 In order to determine the cross-section of the stabilizing 

region in the (     ) space for each value of the parameter    

given in (16), the theorem of Farkh et al. [19] is used. It is 

defined as: 

1) A trapezoid T if    >   , 

2) A triangle   if     >    [19]. 

 

Algorithm for determining PID parameters [19] 
1) Choose    in the interval suggested in (16) and initialize j = 

1, 

2) Find the roots    of   ( ) , 

3) Compute the parameter   ,    associated with the    for j = 

1, 2, 3 founded, 

4) Determine the stability region in the plane (     ) using 

Farkh et al. Theorem [19]. 

5) Go to step 1. 

VII. SIMULATION RESULTS  
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To show the effectiveness of the proposed design 

methods, we consider the following binary distillation column: 

 ( )  

[
 
 
 

       

       

         

     
       

       

        

       ]
 
 
 

       

  

The decoupler is designed using Eq. (3): 

 ( )  

[
 
 
 

     

       

          

     
         

       

      

       ]
 
 
 

 

The resulting diagonal decoupled system is: 

 ( )      (  ( )   ( ))  

{
 
 

 
   ( )  

       

(       )(       )
 

        

(     )(       )
     

  ( )   
        

(     )(       )
 

        

(       )(       )

 

 

In order to determine PI and PID controllers,   ( ) and   ( ) 

should be expressed as SOPDT processes. Using the standard 

recursive least square, SOPDT models for   ( ) and   ( ) are 

determined as follow: 

 

{
 

   ( )  
                  

               

  ( )  
              

                

 

 
In order to determine     values stabilizing   ( ) and   ( ) , 

we look for α in interval [0, π] satisfying Eq. (16).we find 

respectively the following results:  

   (  )   
        

  
        

     = 1.562    range is given by: −

0.97<     < 3.776. 

   (  )   
      

  
      

    = 1.89    range is given by: −1< 

  <1.919. 

The systems stability regions, obtained in (  ,   ) plane are  

presented in Fig.3 and Fig.4.  

 

 

Fig.3 PI controller stability region for    

 

 

Fig.4 PI controller stability region for    

 

By sweeping over   , a stability region is defined in 

the (     ) plane. A three dimensional curve is then obtained 

as shown in Fig.5 and Fig.6. 

 

Fig.5 PID controller stability domain for    
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Fig.6 PID controller stability domain for    

 

By using Fig. 3 and Fig. 4, we start with the following PI 

controllers: 

   ( )  [
      

        

   
 

     
    

   

] 

 

 

Fig.7 First output Step responses with PI Controller (    = 0.40814 and   = 

0.020581). 

 

Fig.8 Second output Step responses with PI Controller (    = 1.5 and   = 

0.03). 

 

Output responses to unit step function in the first input   and 

the second input    are shown in Fig. 7 and Fig. 8 for the 

simulation, an unit step disturbance has been applied to the 

process input at t=850 s. It is clearly seen that perturbations of 

the process static gains do not affect decoupling regulation of 

the output responses. 

 

By using Fig. 5 and Fig. 6, we choose with the following PID 

controllers: 

 

    ( )  [
        

        

   
          

      
        

   

] 

 

 

Fig.9  First output Step responses with PID Controller (    = 0. 80822 ;   = 

0.022993 and   =-5.8542). 

 

Fig.10 Second output Step responses with PID Controller (   = 0.12;   = 

0.010856 and   =0). 

 

A unit step disturbance has been applied to the process input at 

t=850s.  The simulation results shown in Fig. 9 and Fig. 10 

reveal that the proposed control strategy gives robust system 

performance. 

The obtained results show the effectiveness of the proposed 

approach. 

VIII. CONCLUSION 

           This paper proposed a simple method to tune 

decentralized PID controllers for MIMO plants with multiple 

delays. The MIMO was first decoupled using the design of 

decoupling Smith control. A model reduction was proposed to 

find a suitable (SOPDT) model for each element of the 

resulting diagonal process. An extension of Hermit-Biehler 

theorem is used to  find stabilizing PI and PID sets for the 

reduced system This approach is finally investigated through 
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its application to the Wood & Berry binary distillation column 

plant. 
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