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Abstract—Extremal optimisation in its canonical form is 

based on the manipulation of a single solution.  This solution 

is changed iteratively by gradually replacing poor components 

of it so that over time it improves.  Many successful 

evolutionary optimisers are population based, so it appears a 

reasonable exercise to extend extremal optimisation in this 

way.  Scaling it up to an entire population presents many 

challenges, and only a few works have examined possible 

models.  In this paper, a recent approach is expanded upon 

which extends the approach from assignment type problems 

(such as the generalised assignment problem) to permutation 

oriented ones.  Using the asymmetric travelling salesman 

problem as a test case, it is found that improvements over a 

canonical extremal optimisation algorithm were realised. 
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I. INTRODUCTION 

opulation mechanics are a powerful means to enhance the 

effectiveness of search in large spaces.  The vast majority 

of evolutionary based algorithms, such as genetic algorithms 

[1], particle swarm optimisation [2], ant colony optimisation 

[3] and differential evolution [4] rely on populations of 

solutions to find either near optimal solutions or good 

attainment surfaces (in the case of multi-objective 

optimisation).  One relatively recent algorithm, extremal 

optimisation (EO) [5-7], is an exception to this. It uses a single 

solution only in its canonical form, and has had relatively 

modest success compared to the afore mentioned techniques.  

There have been some recent attempts at developing 

population structures for the standard algorithm, notably Chen 

et al. [8-9] and Randall et al. [10-11].  The latter work has 

demonstrated that suitable algorithmic enhancements could 

produce improved solutions to assignment type problems 

(particularly the generalised assignment problem (GAP)) over 

and above the standard single solution version.  In this paper, 

these ideas are extended to permutation problems, to see if that 

still holds.  

In regard to EO and permutation problems, Randall [12] 

stated that a number of modifications are necessary in order to 

produce an EO solver that can effectively explore the different 
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operator state spaces.  Additionally, it was noted that there 

were a number of ways that the solution perturbation could be 

carried out with local search operators, and these in 

combination with one another as well. The search power, in 

fact, was delivered through certain combinations of operators.  

Therefore, this paper also builds off this work and uses a 

subset of its test problems for comparative purposes.  The 

technical details such as component ranking strategies and 

transition endpoint generation are discussed later in this paper. 

The remainder of the paper is organised as follows. Section 

II briefly describes the mechanics of EO and also a recent EO 

population approach that was successful for solving 

assignment type problems (like the GAP).  Section III 

develops the concepts of that approach further so that 

permutation problems can be solved.  To test these ideas, 

Section IV examines the use of a solver based on this design 

for instances of the asymmetric travelling salesman problem 

(ATSP).  Finally conclusions are presented in Section V. 

II. A BRIEF DESCRIPTION OF EO AND A POPULATION 

APPROACH 

Boettcher and Percus [5-7] describe the general tenets of 

EO. In many ways, it operates counter to other evolutionary 

optimisation algorithms.  Instead of actively seeking good 

solutions, bad solutions are actively discouraged.  The main 

advantage of this is that EO will not prematurely converge on 

a locally optimal solution.  At each iteration of the algorithm, 

a poor solution component value (as defined by some 

incremental cost measure) has its value simply changed to a 

random value (which, of course, is different from the initial 

value).  In the original version of EO, this chosen solution 

component was always the worst.  However, the performance 

of EO in this form was not favourable and could not compete 

with other techniques.  To improve this, the component was 

allowed to be chosen probabilistically by considering the 

inverse contribution it makes to the quality of the solution.  

All components are ranked from worst (rank 1) to best (rank 

n).  The set of probabilities are calculated from the ranks.  The 

weighting of these values is dependent on a parameter 

(conventionally referred to as τ), that allows the search to vary 

from a random search to a greedy one.  The pseudo-code for 

standard EO is given in Algorithm 1. 

 

Extending Population Oriented Extremal 

Optimisation to Permutation Problems 

Marcus Randall 

P 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 11, 2017

ISSN: 2074-1278 38



 

 

 

 

The important thing to remember is that the above only 

operates at the single solution level.  As mentioned previously, 

to extend it beyond that, interesting modifications need to be 

made.  Randall and Lewis [13] observed that a population is 

more than just a collection of individuals, but a set of 

mechanics which define how the individual solutions interact 

so as to produce generally better solutions over time. To that 

end, they developed two possible population models and 

tested these on an assignment type problem, the GAP.  The 

first was a collective memory scheme in which a social record, 

across the members of the population, of the performance of 

solution components is kept and used as part the EO’s rules to 

select the next solution component to change. Its performance 

on their test problems was unfortunately limited. 

The second approach was quite a bit different to this.  It 

relied on a combination of interventions and interactions 

across the population members instead.  At various intervals 

(either fixed or calculated on a measure of search progress) the 

process of EO would temporarily stop and the population 

members would exchange information with one another.  The 

decision of when to temporarily stop was referred to as an 

intervention and the nature of the way the solutions exchanged 

information at the temporary stop was referred to as an 

interaction.  Interaction was achieved through either the 

elimination of poor solutions (based on dominance criteria) 

and replacing these with random ones, or the use of a genetic 

algorithm (GA).  In the case of the latter, the GA was run 

using the members of the archive (as they were dealing with a 

multi-objective version of the GAP) and its solutions were 

used to replace poorly performing members in the original 

population.  After either of these interventions, the normal EO 

process would resume.  Interventions would occur several 

times within an individual deployment of the solver.  The 

overall results revealed that a combination of the GA 

replacement option and a probabilistic intervention trigger, 

proved highly effective.  In fact, this combination frequently 

outperformed NSGA-II [14] on many of the larger GAP 

problem instances. 

III. MODIFICATIONS AND INCLUSIONS FOR PERMUTATION 

PROBLEMS 

Given the success of the intervention/interaction population 

approach of Randall and Lewis [13] as described in Section II, 

this is adopted as the model used herein. However, a number 

of adaptations have needed to be made as a result of the 

permutation structure of the solution vectors and also the fact 

that there is only one objective to this problem.  The work of 

Randall and Lewis [13] was heavily predicated on the use of 

multi-objective optimisation artifacts, such as archives and 

dominance criteria.  Both of these adaptations are discussed 

below. 

In the previous work, in order to detect whether an 

intervention was necessary, they used a measure derived using 

the number of solutions entering the archive.  This was an 

inverse relationship – the fewer solutions entering the archive 

(inferring search stagnation), the more likely it would be that 

an intervention would occur.  In the case of a single solution, 

this no longer applies. While the moderating factor k is 

retained, a more appropriate relationship may be based on the 

last time a new best solution is found instead.  This is 

expressed in Equation 1. 

 

𝑃 =
𝐼−𝐵

𝐵
× 𝑘            (1) 

 

Where: 

P is the probability that the interaction will be triggered, 

I is the current iteration number, 

B is the interaction number that the current best solution 

was found and 

k is the scaling factor introduced by Randall and Lewis [13]. 

 

The form of the interaction amongst the population 

members becomes an interesting issue.  As previously 

mentioned, in the original paper, it was determined that the 

replacement option using a genetic algorithm performed best 

overall.  For that particular study the generalised assignment 

problem was used, for which GAs worked particularly well.  

Given that there are complexities in implementing GAs for 

permutation problems, and that the aim of this preliminary 

study is to determine the suitability of population enabled EO 

to permutation problems, it was determined to simply adapt 

the solution replacement method proposed by Randall and 

Lewis [13] instead.  This stated that if this type of interaction 

was undertaken, then the worst solutions would be replaced by 

randomly generated ones.  This had the added benefit that it 

induced some diversity into the search as well.  To allow this 

to work for single objective problems, a threshold is 

established – below which solutions are replaced.  This is 
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calculated according to Equation 2.  

 

     T = W – (W – C) × R         (2) 

Where: 

T is the threshold, 

W is the objective value of the worst solution in the current  

population, 

C is the objective value of the best solution in the current  

population and 

R is the proportion of the solutions in the population that  

should be changed – a parameter of the process. 

 

The pseudo-code to perform this update is given in 

Algorithm 2. 

 

 
 

The main questions become which parameter settings (such 

as population size and intervention particulars) are appropriate 

and does the technique perform better than canonical EO on 

permutation problems?  These are addressed in Section IV. 

 

A. Permutation Perturbation 

The standard EO transition operator as described in Section 

II is not capable of preserving feasible solutions where a 

permutation is the solution form.  Therefore, Randall [12] 

modified this mechanism by using the following measures: 

 

 Allowing a variety of standard permutation 

operators to be applied that work with 

permutations. These were 1-opt, 2-opt, swap and 

3-opt.  

 Having two ways for selecting the permutation 

perturbation endpoint. Each of the operators listed 

above needs at least another endpoint in the 

solution to work with.  This then ensures a valid 

permutation is produced.  The first option is simply 

to produce a random endpoint.  This second was a 

neighbourhood approach that examined all 

possible endpoints and chose the best one.  These 

operators were then distinguished using the prefix 

n.  For example, n1-opt means that the primary 

endpoint (the initial city chosen to be moved) is 

moved to the location that minimises the cost of 

the transition to the objective.  An illustration of 

this is given in Figure 1. 

 

 
 

In addition, producing a ranked list of the “worst” cities is 

not intuitive.  To do this, Boettcher and Percus’ [5-6] 

“frustration measure” was used.  Each city is ranked on the 

basis of how far it is removed its ideal preceding and 

proceeding cities.  That is, a highly ranked candidate city to 

change will be well removed from both of these and 

subsequently have a high probability of being selected 

according to the mechanics of Algorithm 1. 

 

B. Local Search 

Like other evolutionary algorithms, EO needs the use of a 

subordinate refinement algorithm to move its solution to local 

optimality. Consistent with other works around the travelling 

salesman problem (such as Iorache [15], Merz and Freisleben 

[16] and Stützle, Grün, Linke and Rüttger [17]), a greedy 

neighbourhood 3-opt local search strategy is used.  The 

procedure is run at each iteration of EO, and terminated once a 

local optimum has been found.  Initial experimentation 

showed the efficiency of 3-opt with EO over other operators 

(such as 2-opt).  This form of local search was also used by 

Randall [12]. 

 

IV. COMPUTATIONAL EXPERIMENTS 

As previously discussed, one of the aims of this paper is to 

determine the suitability of the population approach on a wider 

range of problem types, in this case, permutation problems.  

To that end, the difficult asymmetric travelling salesman 

problem (ATSP) is used.  Its mathematical model is given in 

Equations 3–4. 

 

Minimise ∑ 𝑑(𝑥𝑖 , 𝑥𝑖+1) + 𝑑(𝑥𝑛 , 𝑥1)
𝑛
𝑖=1       (3) 

 

s.t., 

 

 xi ≠ xj, ∀i, j  1 ≤ i, j ≤ n  i ≠ j        (4) 

 

Where: 

n is the number of cities, 

d(i,j) is the distance between city i and city j – note that  

d(i,j) ≠ d(j,i) and 

xi is the i
th

 city to be visited on the tour. 
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The aim of the experiments overall is to determine if adding 

a population strategy to EO, with appropriate modifications, 

will produce better results (given the same amount of 

computational resources) than canonical EO for permutation 

problems.  While simply stated, a large number of experiments 

will be required.  To this end, this paper uses are subset of the 

test problems presented in Randall [12]. These are given in 

Table 1 and will allow for comparison with that paper.  Note 

that all experiments are run across ten random seeds for 

statistical validity.  Each run of the solver is allowed up 

50,000 EO solution evaluations.  This is terminated if the best 

known cost is reached.  Additionally, after initial 

experimentation a value for R was chosen as 0.1 (see Equation 

2). 

 

 
 

There are two forms of exploration necessary in a study like 

this, and one may equate these to coarse and fine grain 

components.  These will be referred to as Phase 1 and Phase 2 

respectively. The experimental setup, and subsequent 

computational results, for each of these is described below. 

 

A. Phase 1 

The fundamental point of this phase is to determine whether 

using a grouping of solutions in an EO framework is effective 

for permutation problems.  Note the use of the term 

“grouping” rather than population.  At this stage, no 

population mechanics will be used hence the term grouping is 

preferred.  Specifically, no interventions take place in this 

phase.  The aims will be to see both the effects of different 

grouping sizes and the types of local search transition 

operators that work with these. The grouping sizes were 

chosen as {200, 100, 50, 20, 10, 5} which are consistent with 

those used by Randall [13].  Naturally, in order to ensure a 

consistent number of overall solutions are evaluated, the 

number of EO iterations is calculated accordingly.  For 

example, given that 50,000 solutions overall will be evaluated, 

a grouping size of 200 would mean 250 EO iterations. 

The other aspect is the selection of the transition operator 

probability set. Initial experimentation with the population 

sizes previously mentioned confirmed that the best setting was 

the same as found in Randall [12]. Namely the probability set 

of (0.34, 0.33, 0.33) for the transition operators 1-opt, n1-opt 

and n2-opt.  This was statistically significantly better 

regardless of the grouping size.  

Table II shows the minimum, median and maximum results 

for all the identified grouping sizes and the six problem 

instances.  It also gives the canonical EO results.  It is clearly 

evident that the small grouping sizes tend to work better than 

the larger ones. These results were compared to the original 

results of Randall [12] using the Kruskal-Wallis test.  A 

statistically significant difference was recorded.  A grouping 

size of 5 received a lower Kruskal-Wallis rank than the 

original version. This indicates, though does not prove 

(because of the intervention and interaction mechanisms), that 

for the next phase, lower population values need further 

evaluation coupled with the population mechanics.  

 

 
 

B. Phase 2 

As indicated previously, this phase will explore the use of 

various intervention strategies.  Again these will be compared 

against the original results of Randall [12] to answer the 

question as to whether population mechanics if added to EO 

will yield a performance difference. Coupled with that are the 

questions of under what conditions this is possible and why. 

Recall that there are two main ways that an intervention 

could occur.  This could either be done regularly (in a pre-

defined number of iterations) or probabilistically according to 

the last time a best solution was received.  The values for these 

are iterations = {5000, 10000, 20000} and s = {0.2, 0.5, 0.8}.  

This is consistent with those used by Randall [12]. Note that in 

a population context, iterations refers to the number of 
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solutions that have been evaluated by EO.  For example, given 

that 50,000 solutions are evaluated in total and a population 

size of 5 is used with an intervention time of 5,000 solutions, 

at every 1,000
th

 generation of EO an interaction occurs. 

It was evident, from Phase 1, that for ATSP and EO, 

smaller population sizes were the most effective. Hence, for 

this phase results will be collected for population sizes of 5 

and 10, across all of intervention parameters mentioned in the 

previous paragraph and all the problem instances. These are 

given in Tables III and IV respectively. 

 

 
 

 
 

Visual inspection of Tables III and IV confirms that the 

smaller population size of five members, on the whole, 

outperforms EO using ten members for this particular problem 

at least. In terms of the best combinations for each of the 

population sizes, somewhat surprisingly, these are different 

values.  Examining the Kruskal-Wallis ranks revealed that for 

the population size of five, “F,10000” came out as being the 

best, whereas it was “P,0.5” for size ten. This will require 

further investigation, but it is suspected that more consistent 

results may be gained when using a more sophisticated 

interaction strategy.  Beyond this, in comparison to the 

original results (as reported in Table II), a further test showed 

that a population of five members, with the above parameters, 

outperformed the canonical EO. While the differences may 

appear modest, this then becomes a platform from which to 

build future versions of population EO. 

 

V.  CONCLUSIONS 

Populations of solutions within optimisation algorithms are 

key to providing the search power necessary to solve large and 

complex problems.  Indeed, the more successful evolutionary 

based algorithms (such as genetic algorithms and particle 

swarm optimisation) are built around the notion of interacting 

particles.  Extremal optimisation, however, is lot less well 

known and has only been used across a relatively limited 

range of problems with more moderate success.  Therefore, 

attempts to improve it by adding population frameworks and 

mechanics is a desirable thing.  This paper has adopted one 

such framework based on a collection of successful 

intervention and interaction strategies and adopted these for 

the use of permutation problems, in particular the ATSP. This 

is part of a wider effort to extend the reach and utility of this 

algorithm.   

It is evident from all the experimental work in this paper, 

that having interventions, even with a very simple interaction 

mechanism, that improvement across performance measures is 

realisable.  This seems particularly evident in the larger 

problem instances and smaller population sizes (5 members in 

this case).  Interestingly, the problems studied were solved 

better given a high number of regular interventions.  While 

overall these improvements are currently modest, it is a good 

indicator that further exploration of these ideas may yield 

larger improvements. 

For the continued development of this framework, it is 

worthwhile applying it to different types of problems to 

determine how generally applicable it is.  This paper most 

concentrated on intervention strategies, rather than the 

different types of interaction that could occur.  It is believed, 

that like the original work, performance would be greatly 

improved by the diversity that a method like genetic 

algorithms offers. Therefore, future work will concentrate on 

determining the most suitable interactions for a range of 

problem, and importantly if there are commonalities amongst 

these. 
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