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Abstract— In control and automation, applications of network 
community detection range from black-start recovery of power sys-
tems, truss structure manufacturing, neural motor control, water dis-
tribution, up to image segmentation for finding cracks in bridges. For 
such important technical applications, it is necessary to know the 
limits of various methods, how much they can deviate from optimum. 
Network community detection finds communities/clusters of densely 
connected nodes with few edges outside the cluster. The robustness 
of the community detection methods were already compared on a 
number of test networks, both real world and artificial. However, 
these test networks were implicitly average cases. Here we evolve 
networks, which produce a maximum error of modularity measure for 
selected methods of community detection. This worst-case test net-
works were evolved for Edge betweenness, Fast greedy, Infomap, 
Louvain, and Walktrap modularity detection. Such a comparison 
provides a tougher test of robustness than previous approaches. A bit 
surprisingly, after the Blondel’s Louvain method, the next best result 
was provided by fast greedy, while otherwise favored Infomap fared 
rather poorly. 

Keywords—community detection; networks; stochastic 
optimization; clustering; worst-case test 

I.  INTRODUCTION  
The amount of network or graph structured data increases 

exponentially with network structures found in all areas of 
human interest. Nodes represent computers, cellular phones, 
or web pages in the internet or telecommunications networks, 
people or blogs in social networks, electrical devices in power 
distribution, molecules in metabolic networks, neurons in 
neural networks, or persons in biological networks describing 
the spread of disease [1, 2]. Network analysis becomes crucial 
also in security [3-6].  

Even when nodes are not characterized by other properties 
than those coming from the network topology, it is often use-
ful to divide the nodes of networks into (in our case non-
overlapping) parts (modules, groups, clusters, communities). 
Then we can deal with these parts more effectively separately, 
whether they are customers in a social network or a virus in-
fected set of computers. These parts or communities often 
have different characteristics like node degrees, clustering 
coefficients, betweenness, etc. [2], which influence effectivity 
of the algorithm applied to them separately instead of applying 
them to the whole network. For this purpose, partitioning, 
clustering and/or community detection methods are used.  
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There is mainly a formal difference between partitioning, 
clustering and community detection. In partitioning, the num-
ber and/or sizes of clusters usually should be known in ad-
vance. In clustering, one typically strives to get a cluster with 
a high clustering coefficient, which computation is based on 
the number of triangles. This is impossible to use e.g. for a 
network of heterosexual relationships, where triangles do not 
appear. Unlike graph partitioning or some of the clustering 
methods, community detection does not require advance 
knowledge of the number of communities or their sizes, and it 
can find partitions with communities of different sizes. In 
community detection, the decision about the number and size 
of the communities is made internally by the methods and 
their intrinsic parameters [1, 2].  

Even though community detection is typically associated 
with social networks, it would be wrong to narrow our under-
standing of their applications to friendships in Facebook. 
Community detection has a wide variety of applications in 
control and automation, like black-start recovery of power 
systems [7], truss structure manufacturing [8], neural motor 
control [9], water distribution [10], up to image segmentation 
[11], used e.g. for finding cracks in bridges [12].      

A number of criteria can measure the quality of the split of 
the network. These criteria can be borrowed from cluster anal-
ysis or partitioning, but none of these measures are considered 
dominant [13]. In community detection, the measures should 
reflect a satisfaction of the requirement, that within the clus-
ters or communities the number of edges should be high, while 
edges connecting nodes from two communities are ideally 
scarce. Newman [14] developed modularity function Q, which 
is defined as the fraction of the edges inside communities mi-
nus the expected fraction if the edges were distributed at ran-
dom. Q range is [−1/2,1). This measure is widely accepted 
[15, 16], even though it can ignore very small communities 
and exhibits other limitations [17]. Therefore, we selected this 
Q measure for our worst-case test network optimization. 

The quality of various community detection methods was 
already tested many times, using various quality measures 
both for real world networks [18] as well as for artificial 
benchmark networks or their mix [19-24]. 

II. COMMUNITY DETECTION METHODS 
The community detection methods are based on a wide va-

riety of principles. For our comparison, we planned to apply 
the most popular and widely used methods. Their time com-
plexity is further expressed for the sparse networks 
with N nodes and E edges. They are already implemented in a 
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number of standard packages. A bit surprisingly, the packages 
often substantially differ in their speed, a good comparison 
can be found in [25]. Based on this comparison, we selected 
the igraph package [26]. 

The methods considered for comparison were following: 

A. Edge betweenness 
The algorithm was designed by Girvan and Newman [27], 

who adapted Freeman’s betweenness centrality [28] to edge 
betweenness defined as the number of the shortest paths that 
go through an edge. The edges connecting communities are 
presumed to have a high edge betweenness, and these edges 
are removed to separate the communities. The algorithm’s 
complexity is O(E2N).  

B. Fast greedy 
The algorithm was invented by Clauset et al. [29]. It starts 

with nodes as separate communities and repeatedly merges the 
pairs of communities, which give maximum improvement of 
modularity, until no improvement is possible. The algorithm’s 
complexity is O(N log2 (N)).  

C. Infomap 
The algorithm was proposed by Rosvall et al. [30, 31]. It is 

based on the map equation and uses the duality between find-
ing community structure in networks and minimizing the de-
scription length of a random walker’s movements on a net-
work. The algorithm’s complexity is O(E) [32].  

D. Label propagation 
The algorithm was developed by Raghavan et al. [33]. It 

starts with nodes as separate communities (labels), in a ran-
dom order goes through the nodes and assigns them the label 
of the majority of its neighbors, until each node has the same 
label as the majority of its neighbors. The algorithm’s com-
plexity is O(E). 

E. Leading eigenvector 
The algorithm was designed by Newman [34], using lead-

ing eigenvector of the modularity matrix to split the graph in 
two parts, so that modularity is maximized.  The algorithm’s 
complexity is O(N2).  

F. Louvain 
Otherwise called Multilevel was introduced by Blondel et 

al. [35]. It starts with nodes as separate communities and 
nodes (in further repetition communities) are moved to the 
community of its neighbor, which provides a maximum in-
crease of modularity, until no improvement is possible. The 
algorithm’s complexity is O(N log(N)).  

G. Optimal 
Brandes et al. [36] maximize modularity measure using In-

teger Linear Programming. The algorithm has exponential 
time complexity, in practice good for networks with up to 50 
nodes.  

H.  Spinglass 
Reichardt and Bornholdt [37] based their search for com-

munities on simulated annealing, which aims to keep nodes of 
the same community connected and nodes of different com-
munities disconnected.  The algorithm’s complexity is O(N3.2).  

I. Walktrap 
Pons and Latapy [38] started their algorithm from the 

nodes as separate communities, and connects the communities 
based on the fact, that random walker tends to be trapped in 
dense part of a network.  The algorithm’s complexity is 
O(N2log(N)) [39]. 

III. NETWORK OPTIMIZATION 
In order to find out a worst-case test network for each 

tested community detection method, we have used a stochastic 
hillclimbing, starting with 5x5-lattice network. Surely, we 
could find even worse test network cases using initial net-
works with different number of nodes and/or edges, but our 
main goal was to compare the robustness of community me-
thods and for these purposes, such a simple initial network 
was satisfactory. Results of Brandes Optimal method [36] was 
considered as the true Q measure modularity value (result of 
function OptimalModularity(currentNet)) and all tested 
algorithms were pitted against it. In the following pseudocode 
the results of modularity tested community detection method 
and currentNet network is depicted by TestedComDet-
Mod(currentNet). The current network is stochastically mu-
tated or perturbed by sequentially going through all edges and 
with a probability 2/|E| deleting the edge and creating it be-
tween other two unconnected vertices in the function 
NEIGHBOR(currentNet).  
Stochastic Hill Climbing Worst Network Optimization 
   currentNet = 5x5 lattice network; 
   currentEval = OptimalModularity(currentNet) 
                 -TestedComDetMod(currentNet); 
   for iter = 1 to 1000 
      nextNet = NEIGHBOR(currentNet); 
      nextEval = OptimalModularity(nextNet) 
                 -TestedComDetMod(nextNet); 
      if (nextEval >= currentEval) 
              currentNet = nextNet; 
              currentEval = nextEval; 
   return currentNode, currentEval; 

 
Each method was tested ten times with different random 

seed. Unfortunately, it was not feasible to test thoroughly all 
the considered community detection methods. Label propaga-
tion and Leading eigenvector methods with standard settings 
achieved a huge error from the start, bundling the whole graph 
into one big community. This result remained through the 
whole optimization, so the test network evolved against Op-
timal method, which failed the purpose of optimization. The 
Spinglass method run into numerical difficulties within the 
thousands iteration. Therefore, these methods were excluded 
from further comparison. 

The result of the Optimum community detection method 
on the initial 5x5-lattice network is shown in Fig. 1, with Q 
value 0.4740625. All the further tested methods, i.e. Edge 
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betweenness, Fast greedy, Infomap, Louvain, and Walktrap 
achieved similarly good results on this network. 

 

 

Fig. 1.  Result of Optimum method for the initial 5x5 lattice network with Q 
value 0.4740625. 

 

In Figs. 2-6 you can see the most extreme worst case test 
network optimization results from 10 runs of the optimization 
method, each with 1000 iterations. The methods are Louvain, 
Fast greedy, Edge betweenness, Walktrap, and Infomap, in 
sequence of the quality of their average error from 10 runs, 
with result of optimum modularity detection algorithm on the 
left and the tested modularity detection algorithm on the right 
hand side. Tab. 1 shows the statistical results of the maximiza-
tion of error from 10 runs, providing means, standard devia-
tion, minimum and maximum of errors of Q measure from the 
results after 1000 iterations. 

TABLE I.  ERROR MAXIMIZATION STATISTICS 

Community 
detection 
method 

Mean of 
modularity 
error 

Standard 
deviation 
of error 

Min. of 
error 

Max. of 
error 

Louvain 0.1124 0.0102 0.1000 0.1266 

Fast greedy 0.1206 0.0155 0.1016 0.1547 
Edge between-
ness 0.1780 0.0396 0.0978 0.2503 

Walktrap 0.1887 0.0192 0.1619 0.2225 

Infomap 0.4088 0.0060 0.3997 0.4216 
 

 

 
 

Fig. 2. Result of optimization for maximum Q error for Louvain method. 
Optimum method’s modularity result is on the left with Q value 0.4534375.  
Louvain result is on the right hand side with Q value 0.326875. 

 

 
 

Fig. 3. Result of optimization for maximum Q error for Fast greedy method. 
Optimum method’s modularity result is on the left with Q value 0.481875.  
Louvain result is on the right hand side with Q value 0.327188. 

 

 

 
 

Fig. 4. Result of optimization for maximum Q error for Edge betweenness 
method. Optimum method’s modularity result is on the left with Q value 
0.3621188.  Edge betweenness result is on the right hand side with Q value 
0.111875. 
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Fig. 5. Result of optimization for maximum Q error for Walktrap method. 
Optimum method’s modularity result is on the left with Q value 0.354063.  
Walktrap result is on the right hand side with Q value 0.131563. 

 
Fig. 6. Result of optimization for maximum Q error for Infomap method. 
Optimum method’s modularity result is on the left with Q value 0.41563.  
Walktrap result is on the right hand side with Q value 0. 

Further Figs. 7-11 show evolution of the maximum 
achieved error for Louvain, Fast greedy, Edge betweenness, 
Walktrap and Infomap methods during 1000 iterations. Mean, 
max and min differences from 10 runs show the evolved val-
ues of Q modularity differences between currently evaluated 
method and the Optimum methods. The upper green lines 
show mean values of Q from Optimum method, magenta lines 
show mean values of Q from currently evaluated method. 
While the Q values of Optimum method vacillates or goes 
slightly lower, the  Q values of the compared method decreas-
es more substantially. This corresponds to the red lines ex-
pressing these differences, which go up substantially. 

 
Fig. 7. Evolution of maximization of error for Louvain modularity method. 
 

 
Fig. 8. Evolution of maximization of error for Fast greedy modularity 
method. 
 
 
 
 
 
 

 
Fig. 9. Evolution of maximization of error for Edge betweenness modularity 
method. 
 
 
 
 

 
Fig. 10. Evolution of maximization of error for Walktrap modularity method. 
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Fig. 11. Evolution of maximization of error for Infomap modularity method. 

 
Fig. 12. Violin plots for results of 10 runs of maximization of error for the 
studied community detection methods. Even though Edge betweenness had a 
lower average of the modularity error than Walktrap, it had a higher 
maximum value.  

We were also interested, whether the methods correlate in 
the evolved worst-case test networks. Therefore, we have 
measured Q values for the evolved worst-case test graphs 
shown in Figs. 3-6 also for modules found by all the other 
methods. The results are shown in Tab. 2. Except for the 
Walktrap worst-case test network, which also produced high Q 
error for the Infomap method, on average the worst test cases 
for single methods proved to be easy for the remaining me-
thods, producing very low errors. Comparison of community 
detection methods for the worst cases 

Worst case test graphs for method in the column (with maximum mod-
ularity error, shown in Figs. 3-6) 

method Louvain Fast 
greedy 

Edge 
betw. Walktrap Infomap 

Louvain 0.1266 0.0391 0.0000 0.0013 0.0147 
Fast gree-
dy 0.0291 0.1547 0.0000 0.0013 0.0147 

Edge  
betw. 0.0100 0.0122 0.2503 0.1050 0.0269 

Walktrap 0.0000 0.0300 0.0244 0.2225 0.0428 
Infomap 0.0000 0.0000 0.0000 0.2238 0.4216 

It would seem, that evolution of worst-case test network 
for Infomap provided regularly a network, for which Infomap 
produced a high value of error. However, during the tests we 

realized that unlike the other tested methods, Infomap quite 
heavily depends on a random seed and its results differ widely 
for the same network. Therefore, we took the network evolved 
as worst- case test for Infomap and run it through Infomap 
modularity detection one hundred times and calculated the Q 
values. The result can be seen in the violin plot in Fig. 13. The 
maximum Q value = 0.421563, mean Q value = 0.4024028, 
standard deviation of Q value =0.0477751 and the minimum = 
0. This result shows that Infomap mostly results in a low Q 
error, but occasionally it quite fails. Our evolution of modular-
ity error in Fig. 11 actually shows only these failures, when 
the Infomap produced a low error, it was considered as a test 
case not “bad enough” for saving, so it does not show on the 
graph. The evolved worst-case test network for Infomap 
shown in Fig. 6 is not actually bad; Infomap fails on it only 
occasionally. 

 
Fig. 13. Violin plot for Q values results of 100 runs of Infomap community 
detection method on the same evolved worst case test network. Infomap 
mostly finds a good Q value, it fails only seldom.  

Nevertheless, the above analysis does not really excuses 
the Infomap method. If Infomap is used in some application 
just once, the result shows that it can occasionally fail and 
cannot be considered reliable for applications with high-
consequence risks. 

IV. CONCLUSIONS 
We have evolved worst-case test case networks with a high 

Q error for a selection of most popular community detection 
methods. Rather surprisingly, otherwise favored Infomap me-
thod proved to be unreliable and should not therefore be used 
in applications with high-consequence risks. The best results 
were achieved by Louvain method, followed by Fast greedy. 
Optimization failed to find a network, for which these me-
thods would fail; the methods produced Q value close to opti-
mum. If  the worst-case test networks optimized for one me-
thod were evaluated by the remaining methods, on average, 
near optimal Q values were found. Therefore, if reliable re-
sults are required, best result of a set of the methods should be 
used. 
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