
Worst-case test network optimization
for community detection methods

Iveta Dirgová Luptáková*, Marek Šimon, Jiří Pospíchal

Abstract— In control and automation, applications of network
community detection range from black-start recovery of power sys-
tems, truss structure manufacturing, neural motor control, water dis-
tribution, up to image segmentation for finding cracks in bridges. For
such important technical applications, it is necessary to know the
limits of various methods, how much they can deviate from optimum.
Network community detection finds communities/clusters of densely
connected nodes with few edges outside the cluster. The robustness
of the community detection methods were already compared on a
number of test networks, both real world and artificial. However,
these test networks were implicitly average cases. Here we evolve
networks, which produce a maximum error of modularity measure for
selected methods of community detection. This worst-case test net-
works were evolved for Edge betweenness, Fast greedy, Infomap,
Louvain, and Walktrap modularity detection. Such a comparison
provides a tougher test of robustness than previous approaches. A bit
surprisingly, after the Blondel’s Louvain method, the next best result
was provided by fast greedy, while otherwise favored Infomap fared
rather poorly.

Keywords—community detection; networks; stochastic
optimization; clustering; worst-case test

I. INTRODUCTION
The amount of network or graph structured data increases

exponentially with network structures found in all areas of
human interest. Nodes represent computers, cellular phones,
or web pages in the internet or telecommunications networks,
people or blogs in social networks, electrical devices in power
distribution, molecules in metabolic networks, neurons in
neural networks, or persons in biological networks describing
the spread of disease [1, 2]. Network analysis becomes crucial
also in security [3-6].

Even when nodes are not characterized by other properties
than those coming from the network topology, it is often use-
ful to divide the nodes of networks into (in our case non-
overlapping) parts (modules, groups, clusters, communities).
Then we can deal with these parts more effectively separately,
whether they are customers in a social network or a virus in-
fected set of computers. These parts or communities often
have different characteristics like node degrees, clustering
coefficients, betweenness, etc. [2], which influence effectivity
of the algorithm applied to them separately instead of applying
them to the whole network. For this purpose, partitioning,
clustering and/or community detection methods are used.

This research was supported by a grant SK-SRB-2016-0003 of Slovak
Research and Development Agency.

Iveta Dirgová Luptáková, Marek Šimon, Jiří Pospíchal are with the De-
partment of Applied Informatics and Mathematics, Fac. Nat. Sci.University of
SS. Cyril and Methodius, Trnava, Slovakia, (e-mail: iveta.dirgova@ucm.sk)

There is mainly a formal difference between partitioning,
clustering and community detection. In partitioning, the num-
ber and/or sizes of clusters usually should be known in ad-
vance. In clustering, one typically strives to get a cluster with
a high clustering coefficient, which computation is based on
the number of triangles. This is impossible to use e.g. for a
network of heterosexual relationships, where triangles do not
appear. Unlike graph partitioning or some of the clustering
methods, community detection does not require advance
knowledge of the number of communities or their sizes, and it
can find partitions with communities of different sizes. In
community detection, the decision about the number and size
of the communities is made internally by the methods and
their intrinsic parameters [1, 2].

Even though community detection is typically associated
with social networks, it would be wrong to narrow our under-
standing of their applications to friendships in Facebook.
Community detection has a wide variety of applications in
control and automation, like black-start recovery of power
systems [7], truss structure manufacturing [8], neural motor
control [9], water distribution [10], up to image segmentation
[11], used e.g. for finding cracks in bridges [12].

A number of criteria can measure the quality of the split of
the network. These criteria can be borrowed from cluster anal-
ysis or partitioning, but none of these measures are considered
dominant [13]. In community detection, the measures should
reflect a satisfaction of the requirement, that within the clus-
ters or communities the number of edges should be high, while
edges connecting nodes from two communities are ideally
scarce. Newman [14] developed modularity function Q, which
is defined as the fraction of the edges inside communities mi-
nus the expected fraction if the edges were distributed at ran-
dom. Q range is [−1/2,1). This measure is widely accepted
[15, 16], even though it can ignore very small communities
and exhibits other limitations [17]. Therefore, we selected this
Q measure for our worst-case test network optimization.

The quality of various community detection methods was
already tested many times, using various quality measures
both for real world networks [18] as well as for artificial
benchmark networks or their mix [19-24].

II. COMMUNITY DETECTION METHODS
The community detection methods are based on a wide va-

riety of principles. For our comparison, we planned to apply
the most popular and widely used methods. Their time com-
plexity is further expressed for the sparse networks
with N nodes and E edges. They are already implemented in a

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 11, 2017

ISSN: 2074-1278 44

number of standard packages. A bit surprisingly, the packages
often substantially differ in their speed, a good comparison
can be found in [25]. Based on this comparison, we selected
the igraph package [26].

The methods considered for comparison were following:

A. Edge betweenness
The algorithm was designed by Girvan and Newman [27],

who adapted Freeman’s betweenness centrality [28] to edge
betweenness defined as the number of the shortest paths that
go through an edge. The edges connecting communities are
presumed to have a high edge betweenness, and these edges
are removed to separate the communities. The algorithm’s
complexity is O(E2N).

B. Fast greedy
The algorithm was invented by Clauset et al. [29]. It starts

with nodes as separate communities and repeatedly merges the
pairs of communities, which give maximum improvement of
modularity, until no improvement is possible. The algorithm’s
complexity is O(N log2 (N)).

C. Infomap
The algorithm was proposed by Rosvall et al. [30, 31]. It is

based on the map equation and uses the duality between find-
ing community structure in networks and minimizing the de-
scription length of a random walker’s movements on a net-
work. The algorithm’s complexity is O(E) [32].

D. Label propagation
The algorithm was developed by Raghavan et al. [33]. It

starts with nodes as separate communities (labels), in a ran-
dom order goes through the nodes and assigns them the label
of the majority of its neighbors, until each node has the same
label as the majority of its neighbors. The algorithm’s com-
plexity is O(E).

E. Leading eigenvector
The algorithm was designed by Newman [34], using lead-

ing eigenvector of the modularity matrix to split the graph in
two parts, so that modularity is maximized. The algorithm’s
complexity is O(N2).

F. Louvain
Otherwise called Multilevel was introduced by Blondel et

al. [35]. It starts with nodes as separate communities and
nodes (in further repetition communities) are moved to the
community of its neighbor, which provides a maximum in-
crease of modularity, until no improvement is possible. The
algorithm’s complexity is O(N log(N)).

G. Optimal
Brandes et al. [36] maximize modularity measure using In-

teger Linear Programming. The algorithm has exponential
time complexity, in practice good for networks with up to 50
nodes.

H. Spinglass
Reichardt and Bornholdt [37] based their search for com-

munities on simulated annealing, which aims to keep nodes of
the same community connected and nodes of different com-
munities disconnected. The algorithm’s complexity is O(N3.2).

I. Walktrap
Pons and Latapy [38] started their algorithm from the

nodes as separate communities, and connects the communities
based on the fact, that random walker tends to be trapped in
dense part of a network. The algorithm’s complexity is
O(N2log(N)) [39].

III. NETWORK OPTIMIZATION
In order to find out a worst-case test network for each

tested community detection method, we have used a stochastic
hillclimbing, starting with 5x5-lattice network. Surely, we
could find even worse test network cases using initial net-
works with different number of nodes and/or edges, but our
main goal was to compare the robustness of community me-
thods and for these purposes, such a simple initial network
was satisfactory. Results of Brandes Optimal method [36] was
considered as the true Q measure modularity value (result of
function OptimalModularity(currentNet)) and all tested
algorithms were pitted against it. In the following pseudocode
the results of modularity tested community detection method
and currentNet network is depicted by TestedComDet-
Mod(currentNet). The current network is stochastically mu-
tated or perturbed by sequentially going through all edges and
with a probability 2/|E| deleting the edge and creating it be-
tween other two unconnected vertices in the function
NEIGHBOR(currentNet).
Stochastic Hill Climbing Worst Network Optimization
 currentNet = 5x5 lattice network;
 currentEval = OptimalModularity(currentNet)
 -TestedComDetMod(currentNet);
 for iter = 1 to 1000
 nextNet = NEIGHBOR(currentNet);
 nextEval = OptimalModularity(nextNet)
 -TestedComDetMod(nextNet);
 if (nextEval >= currentEval)
 currentNet = nextNet;
 currentEval = nextEval;
 return currentNode, currentEval;

Each method was tested ten times with different random

seed. Unfortunately, it was not feasible to test thoroughly all
the considered community detection methods. Label propaga-
tion and Leading eigenvector methods with standard settings
achieved a huge error from the start, bundling the whole graph
into one big community. This result remained through the
whole optimization, so the test network evolved against Op-
timal method, which failed the purpose of optimization. The
Spinglass method run into numerical difficulties within the
thousands iteration. Therefore, these methods were excluded
from further comparison.

The result of the Optimum community detection method
on the initial 5x5-lattice network is shown in Fig. 1, with Q
value 0.4740625. All the further tested methods, i.e. Edge

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 11, 2017

ISSN: 2074-1278 45

betweenness, Fast greedy, Infomap, Louvain, and Walktrap
achieved similarly good results on this network.

Fig. 1. Result of Optimum method for the initial 5x5 lattice network with Q
value 0.4740625.

In Figs. 2-6 you can see the most extreme worst case test
network optimization results from 10 runs of the optimization
method, each with 1000 iterations. The methods are Louvain,
Fast greedy, Edge betweenness, Walktrap, and Infomap, in
sequence of the quality of their average error from 10 runs,
with result of optimum modularity detection algorithm on the
left and the tested modularity detection algorithm on the right
hand side. Tab. 1 shows the statistical results of the maximiza-
tion of error from 10 runs, providing means, standard devia-
tion, minimum and maximum of errors of Q measure from the
results after 1000 iterations.

TABLE I. ERROR MAXIMIZATION STATISTICS

Community
detection
method

Mean of
modularity
error

Standard
deviation
of error

Min. of
error

Max. of
error

Louvain 0.1124 0.0102 0.1000 0.1266

Fast greedy 0.1206 0.0155 0.1016 0.1547
Edge between-
ness 0.1780 0.0396 0.0978 0.2503

Walktrap 0.1887 0.0192 0.1619 0.2225

Infomap 0.4088 0.0060 0.3997 0.4216

Fig. 2. Result of optimization for maximum Q error for Louvain method.
Optimum method’s modularity result is on the left with Q value 0.4534375.
Louvain result is on the right hand side with Q value 0.326875.

Fig. 3. Result of optimization for maximum Q error for Fast greedy method.
Optimum method’s modularity result is on the left with Q value 0.481875.
Louvain result is on the right hand side with Q value 0.327188.

Fig. 4. Result of optimization for maximum Q error for Edge betweenness
method. Optimum method’s modularity result is on the left with Q value
0.3621188. Edge betweenness result is on the right hand side with Q value
0.111875.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 11, 2017

ISSN: 2074-1278 46

Fig. 5. Result of optimization for maximum Q error for Walktrap method.
Optimum method’s modularity result is on the left with Q value 0.354063.
Walktrap result is on the right hand side with Q value 0.131563.

Fig. 6. Result of optimization for maximum Q error for Infomap method.
Optimum method’s modularity result is on the left with Q value 0.41563.
Walktrap result is on the right hand side with Q value 0.

Further Figs. 7-11 show evolution of the maximum
achieved error for Louvain, Fast greedy, Edge betweenness,
Walktrap and Infomap methods during 1000 iterations. Mean,
max and min differences from 10 runs show the evolved val-
ues of Q modularity differences between currently evaluated
method and the Optimum methods. The upper green lines
show mean values of Q from Optimum method, magenta lines
show mean values of Q from currently evaluated method.
While the Q values of Optimum method vacillates or goes
slightly lower, the Q values of the compared method decreas-
es more substantially. This corresponds to the red lines ex-
pressing these differences, which go up substantially.

Fig. 7. Evolution of maximization of error for Louvain modularity method.

Fig. 8. Evolution of maximization of error for Fast greedy modularity
method.

Fig. 9. Evolution of maximization of error for Edge betweenness modularity
method.

Fig. 10. Evolution of maximization of error for Walktrap modularity method.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 11, 2017

ISSN: 2074-1278 47

Fig. 11. Evolution of maximization of error for Infomap modularity method.

Fig. 12. Violin plots for results of 10 runs of maximization of error for the
studied community detection methods. Even though Edge betweenness had a
lower average of the modularity error than Walktrap, it had a higher
maximum value.

We were also interested, whether the methods correlate in
the evolved worst-case test networks. Therefore, we have
measured Q values for the evolved worst-case test graphs
shown in Figs. 3-6 also for modules found by all the other
methods. The results are shown in Tab. 2. Except for the
Walktrap worst-case test network, which also produced high Q
error for the Infomap method, on average the worst test cases
for single methods proved to be easy for the remaining me-
thods, producing very low errors. Comparison of community
detection methods for the worst cases

Worst case test graphs for method in the column (with maximum mod-
ularity error, shown in Figs. 3-6)

method Louvain Fast
greedy

Edge
betw. Walktrap Infomap

Louvain 0.1266 0.0391 0.0000 0.0013 0.0147
Fast gree-
dy 0.0291 0.1547 0.0000 0.0013 0.0147

Edge
betw. 0.0100 0.0122 0.2503 0.1050 0.0269

Walktrap 0.0000 0.0300 0.0244 0.2225 0.0428
Infomap 0.0000 0.0000 0.0000 0.2238 0.4216

It would seem, that evolution of worst-case test network
for Infomap provided regularly a network, for which Infomap
produced a high value of error. However, during the tests we

realized that unlike the other tested methods, Infomap quite
heavily depends on a random seed and its results differ widely
for the same network. Therefore, we took the network evolved
as worst- case test for Infomap and run it through Infomap
modularity detection one hundred times and calculated the Q
values. The result can be seen in the violin plot in Fig. 13. The
maximum Q value = 0.421563, mean Q value = 0.4024028,
standard deviation of Q value =0.0477751 and the minimum =
0. This result shows that Infomap mostly results in a low Q
error, but occasionally it quite fails. Our evolution of modular-
ity error in Fig. 11 actually shows only these failures, when
the Infomap produced a low error, it was considered as a test
case not “bad enough” for saving, so it does not show on the
graph. The evolved worst-case test network for Infomap
shown in Fig. 6 is not actually bad; Infomap fails on it only
occasionally.

Fig. 13. Violin plot for Q values results of 100 runs of Infomap community
detection method on the same evolved worst case test network. Infomap
mostly finds a good Q value, it fails only seldom.

Nevertheless, the above analysis does not really excuses
the Infomap method. If Infomap is used in some application
just once, the result shows that it can occasionally fail and
cannot be considered reliable for applications with high-
consequence risks.

IV. CONCLUSIONS
We have evolved worst-case test case networks with a high

Q error for a selection of most popular community detection
methods. Rather surprisingly, otherwise favored Infomap me-
thod proved to be unreliable and should not therefore be used
in applications with high-consequence risks. The best results
were achieved by Louvain method, followed by Fast greedy.
Optimization failed to find a network, for which these me-
thods would fail; the methods produced Q value close to opti-
mum. If the worst-case test networks optimized for one me-
thod were evaluated by the remaining methods, on average,
near optimal Q values were found. Therefore, if reliable re-
sults are required, best result of a set of the methods should be
used.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 11, 2017

ISSN: 2074-1278 48

References

[1] M. Newman, Networks: An Introduction. Oxford University Press,
2010.

[2] A.-L. Barabási, M. Pósfai, Network Science. Cambridge University
Press, 2016, see also http://barabasi.com/networksciencebook, last visit
7.4.2017

[3] P.A. Duijn, P.P. Klerks, “Social network analysis applied to criminal
networks: Recent developments in Dutch law enforcement”, in
Networks and network analysis for defence and security, A.J. Masys, ed.
Springer International Publishing, 2014, pp. 121-159.

[4] M. Korytar and D. Gabriska, “Integrated security levels and analysis of
their implications to the maintenance,” J. of Applied Mathematics,
Statistics and Informatics, vol. 10(2), pp. 33-42, 2014.

[5] M. Šimon, L. Huraj, M. Čerňanský, “Performance Evaluations of
IPTables Firewall Solutions under DDoS attacks,” J. of Applied
Mathematics, Statistics and Informatics, vol. 11(2), pp. 35-45, 2015.

[6] L. Huraj and V. Siládi, “Authorization through trust chains in ad hoc
grids.,” in Proceedings of the 2009 Euro American Conference on
Telematics and Information Systems: New Opportunities to increase
Digital Citizenship, p. 13. ACM, 2009.

[7] Y. Liu, T. Liu , Q. Li , and X. Hu, “Chapter 33. Power system black-
start recovery subsystems partition based on improved CNM community
detection algorithm,” in Proceedings of the 2015 International
Conference on Electric, Electronic and Control Engineering (ICEECE
2015), F. Shao, W. Shu, and T. Tian, Eds. CRC Press, 2015, pp. 183-
189.

[8] H. Cao, R. Mo, N. Wan, F. Shang, C. Li, and D. Zhang, “A
subassembly identification method for truss structures manufacturing
based on community detection,” Assembly Automation, vol. 35(3), pp.
249-258, 2015.

[9] A. Büschges and A. Borgmann, “Network modularity: back to the future
in motor control,” Current Biology, vol. 23(20), pp. R936-R938, 2013.

[10] O. Giustolisi and L. Ridolfi, “A novel infrastructure modularity index
for the segmentation of water distribution networks,” Water Resources
Research, vol. 50(10), pp. 7648-7661, 2014.

[11] H. Hu, Y. van Gennip, B. Hunter, A.L. Bertozzi, and M.A. Porter,
“Multislice modularity optimization in community detection and image
segmentation,” in Data Mining Workshops (ICDMW), 2012 IEEE 12th
International Conference on Data Mining, pp. 934-936, IEEE, December
2012.

[12] C.M. Yeum and S.J. Dyke, “Vision‐Based Automated Crack Detection
for Bridge Inspection,” Computer‐Aided Civil and Infrastructure
Engineering, vol. 30(10), pp. 759-770, 2015.

[13] S.E. Schaeffer, “Graph clustering,” Computer science review, vol. 1(1),
pp. 27-64, 2007.

[14] M. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E vol. 69, p. 026113, 2004.

[15] M. Chen, K. Kuzmin, B. K. Szymanski, “Community detection via
maximization of modularity and its variants,” IEEE Transactions on
Computational Social Systems, vol. 1(1), pp. 46-65, 2014.

[16] N.P. Nguyen, T.N. Dinh, Y. Shen, and M.T. Thai, “Dynamic social
community detection and its applications,” PloS one, vol. 9(4), p.
e91431, 2014.

[17] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Comparing
community structure identification,” J. of Statistical Mechanics: Theory
and Experiment, vol. 2005(09), p. P09008, 2005.

[18] S. Harenberg, G. Bello, L. Gjeltema, S. Ranshous, J. Harlalka, R. Seay,
K. Padmanabhan, and N. Samatova, “Community detection in
large‐scale networks: a survey and empirical evaluation,” Wiley

Interdisciplinary Reviews: Computational Statistics, vol. 6(6), pp. 426-
439, 2014.

[19] J. Leskovec, K.J. Lang, and M. Mahoney, “Empirical comparison of
algorithms for network community detection,” in Proceedings of the
19th international conference on World wide web, pp. 631-640. ACM,
April 2010.

[20] A. Lancichinetti, S. Fortunato, and F. Radicchi, “Benchmark graphs for
testing community detection algorithms,” Physical review E, vol. 78(4),
p. 046110, 2008.

[21] A. Lancichinetti, “Evaluating the performance of clustering algorithms
in networks,” in Dynamics On and Of Complex Networks, vol. 2.
Springer: New York, 2013, pp. 143-158.

[22] G.K. Orman and V. Labatut, “A comparison of community detection
algorithms on artificial networks,” in International Conference on
Discovery Science. Springer: Berlin Heidelberg, 2009, pp. 242-256.

[23] G. Orman, V. Labatut, and H. Cherifi, “Qualitative comparison of
community detection algorithms,” arXiv preprint arXiv:1207.3603,
2012.

[24] Y. Zhao, R. Algesheimer, and C.J. Tessone, “A Comparative Analysis of
Community Detection Algorithms on Artificial Networks,” Scientific
Reports, vol. 6, 2016.

[25] S. Wandelt and X. Sun, “Complex network analysis: The need for
speed.,” in Control Conference (CCC), 35th Chinese, pp. 1213-1218.
IEEE, July 2016.

[26] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, Complex Systems 1695,
URL http://igraph.org (2006).

[27] M. Girvan and M.E. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences,
vol. 99, pp. 7821–7826, 2002.

[28] L.C. Freeman, “Centrality in social networks conceptual
clarification,” Social Networks, vol. 1, pp. 215–239, 1979.

[29] A. Clauset, M.E. Newman, and C. Moore, “Finding community structure
in very large networks,” Physical Review E, vol. 70, p. 066111, 2004.

[30] M. Rosvall and C.T. Bergstrom, “An information-theoretic framework
for resolving community structure in complex networks,” Proceedings of
the National Academy of Sciences, vol. 104, pp. 7327–7331, 2007.

[31] M. Rosvall, D. Axelsson, and C. T. Bergstrom, “The map equation,” The
European Physical Journal Special Topics, vol. 178, pp. 13–23, 2010.

[32] A. Mukherjee, M. Choudhury, F. Peruani, N. Ganguly, and B. Mitra,
“Dynamics On and Of Complex Networks, Volume 2: Applications to
Time-Varying Dynamical Systems,” Springer Science & Business
Media, 2013.

[33] U.N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Physical
Review E, vol. 76, p. 036106, 2007.

[34] M.E. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Physical Review E, vol. 74, p. 036104, 2006.

[35] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks”, Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, p. P10008, 2008.

[36] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski,
and D. Wagner, “On modularity clustering,” IEEE transactions on
knowledge and data engineering, vol. 20(2), pp. 172-188, 2008.

[37] J. Reichardt and S. Bornholdt, “Statistical mechanics of community
detection,” Physical Review E, vol. 74, p. 016110, 2006.

[38] P. Pons and M. Latapy, “Computing communities in large networks
using random walks,” in Computer and Information Sciences-ISCIS
2005, pp. 284–293 Springer, 2005.

[39] J. Xie and B.K. Szymanski, “Community detection using a
neighborhood strength driven label propagation algorithm,” in Network
Science Workshop, pp. 188–195. IEEE, 2011.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 11, 2017

ISSN: 2074-1278 49

http://barabasi.com/networksciencebook
http://igraph.org/

