A formal framework for Data Fusion

Ildar Baymuratov ITMO University
Saint-Petersburg, Russia
Email: baimuratov.i@gmail.com
Nataly Zhukova ITMO University
Saint-Petersburg, Russia
Email: nazhukova@mail.ru

Abstract—In order to develop a formal framework for data fusion field main data fusion models are observed and a logical model of data fusion is suggested. It is shown that considered data fusion models are representable in the logical model. The logical model being insufficiently general to compare different methods of data fusion is reformulated on category theory language. After that a number of information theoretic measures defined on morphisms are suggested as universal criteria for evaluation of data fusion methods.

Index Terms—data fusion, predicte logic, category theory, information theory.

I. INTRODUCTION

There is a research area named ‘Data fusion’. Data fusion is integration of different types of information from different sources, directed to decision-making. Aims of a typical data fusion system are processing of continuously incoming raw data, evaluation of current situation, prediction of forthcoming events and recommendation considering corresponding actions.

Consider biometric data as an example. A system that uses the only biometric factor has high error probability. For instance, if that factor is fingerprints, then for people with extremely fat or dry or injured fingers it is problematic to get fingerprints of acceptable quality. But if we use iris recognition as well, error probability will significantly decrease. Another example of data fusion is a moving object, such as an aircraft, observed by both a pulsed radar and an infrared sensor. The radar accurately determines the aircraft’s range, but it hardly determines the angular direction of the aircraft. By contrast, the infrared sensor accurately determines the aircraft’s angular direction, but is unable to measure range. The combination of these two observations provides an improved determination of the aircraft’s location.

Data fusion process is analogous to the process during which humans and animals combine data from different senses, experience and reasoning ability to improve their survive chances. For example, when vision is limited, the sense of hearing can provide advanced warning of impending danger. Though the concept of data fusion is not new, the emergence of new sensors and processing techniques makes data fusion increasingly viable. Data fusion has advanced from collection of related techniques to a comprehensive engineering discipline with established terminology, mathematical techniques and design principles. Data fusion techniques are drawn from such disciplines as digital signal processing, statistical estimation, control theory and artificial intelligence.

By now numerous methods of data integration were developed. The data fusion processes include different estimation, feature extraction, classification and inference techniques. Some of them are more elaborated, such as image recognition or classification, and some are hardly articulated. Data fusion methods were developed apart from each other and it is difficult to put them in any common context. As result, data fusion field dissolves to set of poorly correlated subproblems. There is a lack of theoretical framework for designing data fusion systems. Existing classifications of data fusion processes, such as JDL-model, are expressed mainly in natural language rather than in formal and it is problematic to formally prove that one fusion system is more preferable than another.

The purpose of this work is to develop a formal framework of data fusion. That allows:

• represent the process of data fusion in more systematic way;
• develop universal criteria for estimating and comparing data fusion methods.
• automate designing of data fusion systems.

In other words, the purpose is to develop a formal theory of data fusion. Examples of such formalization already exist. In ‘Mathematics of Data Fusion’ by I. R. Goodman, Ronald P. S. Mahler and Hung T. Nguyen [7] fuzzy logic, random set theory and conditional event algebra are used as such mathematical foundation. In this work data fusion process is reduced, first, to logic then to category theory. Finally, a set of criteria for estimating and comparing data fusion methods is suggested and verified.

II. REVIEW OF DATA FUSION MODELS

1) JDL model: In 1986 the Joint Directos of Laboratories (JDL) Data Fusion Working Group began codifying data fusion terminology. As result, data fusion process model, named JDL-model, was created. The JDL-model with subsequent revisions is the most widespread system for categorizing data
fusion methods. The JDL-model was designed as a functional model, i.e. a set of definitions that comprises any data fusion system, therefore, the model was intended to be very general and useful across multiple application areas. It includes:

1) Object refinement: data integration for getting improved representation of individual objects.
2) Situation refinement: description of relations between objects and environment.
3) Threat refinement: projecting of current situation in future and predicting of consequences.
4) Process refinement: meta-process that monitors data-fusion processes to maintain real-time performance.

For each of these processes JDL-model associates specific functions and techniques. Besides of that processes JDL-model also considers sensor inputs, human-computer interaction, database management and source preprocessing. A corresponding terminology was developed to provide consistent definitions.

In 1998 the JDL-model was revisited by [18] to provide a categorization representing logically different types of problems, which are solved by different techniques, and to update terminology. The updated model is following:

1) Sub-object data assessment: signal level data association and characterization.
2) Object assessment: estimation and prediction of object states.
3) Situation assessment: estimation and prediction of relations among objects.
4) Impact assessment: estimation and prediction of participants actions.
5) Process Refinement: different processes supporting mission objectives.

According to [18], it is possible to generalize JDL-model levels. Sub-object data assessment is a special case of object assessment, where objects are signals, and impact assessment is a special case of situation assessment, where relations are relations to agents. Also the authors mention that process refinement is not data fusion, but a kind of resource management, therefore, only two levels of fusion remain: object assessment and situation assessment.

2) Dasarathy Functional Model: Dasarathy [5] categorize data fusion functions according to the types of input and output data. The types are:

- Data.
- Features.
- Objects.

And the functions:

- DAI-DAO: Signal detection.
- DAI-FEO: Feature extraction.
- FEI-FEO: Feature refinement.
- FEI-DEO: Object characterization.
- DEI-DEO: Object refinement.

In [17] Darathy’s model was augmented by other possible combinations. The resulting model is represented in the Table I.

3) Omnibus model: The Omnibus model was proposed by [1]. It is posed to be a generalization of the Boyd Control Loop [2], also known as the Observe, Orient, Decide, Act (OODA), of the U.S. intelligent services’ intelligence cycle and the commonly used waterfall model [8]. The model is a four stage cycle describing the main activities in a fusion system. The stages are following:

- Observe: sensing and signal processing.
- Orient: feature extraction and pattern processing.
- Decide: decision making and context processing.
- Act: control and resource tasking.

The cycle is represented by the following diagram:

```
Observe → Orient

Act ← Decide
```

Elements and relations of these models are quite similar and overlapping. However, due to informal definitions and different structure, JDL-model is hierarchical, augmented Dasarathy’s model is a matrix and Omnibus model is cyclical, it is not possible to compare and generalize them, which is why the following formal model is suggested. Nevertheless, overview of these models presents a list of main categories and relations that have to be expressible in the suggested model, if all of them are representable, it allows to consider the suggested model as valid.

III. LOGICAL DATA FUSION MODEL

The first assumption is that the problem of data fusion model development is identical to the old issue of defining cognitive processes and its hierarchy from psychology and cognitive science. If we agree that concept of data fusion is applicable to human cognitive processes, and human cognitive processes are, in turn, defined in different psychological and epistemological models, that theories must be at least included in the data fusion model.

One of the first examples of such epistemological model is Kant’s faculties of cognition [10]:

- Sensibility: the faculty of intuitions and sense perception.
- Understanding: the faculty of concepts and thoughts.
- Imagination: mediates between understanding and sensibility, the source of all sorts of synthesis.
- Reason: produces logical inferences and decisions, imposes coherence and consistency and implements modal concepts such as necessity or obligation.
- Self-consciousness: imposes a higher-order unity into all lower-order faculties.

Kant holds that human mind has two basic cognitive faculties: understanding and sensibility. The essential difference between concepts and intuitions is that concepts are general representations, the logical form of objects, while intuitions...
are singular, sense-related, immediate object representations. Understanding and sensibility both serve to the faculty of imagination and the faculty of reason. Finally, the faculty of apperception or rational self-consciousness plays executive role in the organisation of the mind.

As we see, Kant’s faculties of cognition look quite similar to data fusion concepts. Sensibility, being object representation, can be associated with object assessment, understanding, as extracting logical form of objects, can be associated with object assessment, understanding, as role in the organisation of the mind.

Understanding and sensibility both serve to the faculty of

Table I

<table>
<thead>
<tr>
<th>Input</th>
<th>Data</th>
<th>Features</th>
<th>Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Signal detection</td>
<td>Feature extraction</td>
<td>Gestalt-based object characterization</td>
</tr>
<tr>
<td>Features</td>
<td>Model-based feature extraction</td>
<td>Feature refinement</td>
<td>Feature-based object characterization</td>
</tr>
<tr>
<td>Objects</td>
<td>Model-based estimation</td>
<td>Model-based feature extraction</td>
<td>Object refinement</td>
</tr>
</tbody>
</table>

The third assumption is that the process of interpretation of a sentence φ corresponds to the process of data fusion, therefore, the formal definition of interpretation of a sentence φ corresponds to a formal model of data fusion. A model M, or a ‘possible world’, for the suggested language consists of a universe A, a nonempty finite set of objects. The correspondence between the language and the universe is given by an interpretation function I defined by the following inductive procedure:

1) interpretation of a term:
- \(I(f) = id : A \rightarrow A \),
- \(I(f(t_1, \ldots, t_m)) = g : A^m \rightarrow A \),

2) \(I(\phi) = 1 \Leftrightarrow M \models \phi \). If \(\phi \) is an atomic sentence:
- \(M \models P(t_1, \ldots, t_n) \Leftrightarrow R(a_1, \ldots, a_n) \in A \),

3) if \(\phi \) is a complex sentence:
- \(M \models \forall x, \phi \Leftrightarrow \) for every \(a \in A \) it is true that \(R(a) \in A \),
- \(M \models \exists x, \phi \Leftrightarrow \) exists \(a \in A \), such that \(R(a) \in A \),
- \(M \models P \Leftrightarrow M \models P(t_1, \ldots, t_n) \),
- \(M \models \neg \phi \Leftrightarrow M \not\models \phi \),
- \(M \models \phi \land \psi \Leftrightarrow M \models \phi \) and \(M \models \psi \),
- \(M \models \phi \lor \psi \Leftrightarrow M \models \phi \) or \(M \models \psi \),
- \(M \models \phi \rightarrow \psi \Leftrightarrow M \models \phi \) or \(M \models \psi \),

otherwise \(I(\phi) = 0 \). A model \(M \) is a pair \(< A, I > \). Besides the interpretation function there is a valuation function V that corresponds each variable \(x \) to an object \(a \in A \).

The principal difference between these three types of interpretation is the types of domain and codomain. Analyzing the definition of interpretation, two types are extracted:
- Objects (O), the elements of the universe \(A \).
- Truth-values (TV): \{ 0, 1 \}.

Therefore, three types of interpretation can be represented as follows:

- Terms (T): \(A^m \rightarrow A \).
- Atomic sentences (AS): \(A^n \rightarrow \{ 0, 1 \} \).
- Complex sentences (CS): \{ 0, 1 \} \rightarrow \{ 0, 1 \}.

and the logical model of data fusion can be represented by the following diagram:
Let us compare the suggested logical models with considered existing data fusion models. To do this, we are going to translate terms of the existing data fusion models to the logical language.

JDL-model considers signals, objects, features, situations, decisions and control. From the logical point of view, signals, objects and features are objects of the universe, situations are relations between objects and decisions are relations between truth-values, therefore, sub-object data assessment and object assessment correspond to terms, situation assessment corresponds to atomic sentences, impact assessment corresponds to terms, situation assessment corresponds to relations between objects and features are objects of the universe, situations are objects and decisions and control. From the logical point of view, signals, language.

Summing up, the existing data fusion models are mostly represented in the table II. The augmented Dasarathy’s Model is not included in the resulting table due to its matrix structure.

Summing up, the existing data fusion models are mostly representable in the suggested logical model. The only issue is control. But according to some authors, control is not a part of data fusion, it may be considered as a part of executing expert system instead.

However, at current stage it is still problematic to define universal criteria applicable to terms, atomic and complex sentences, thus, in the next section the presented logical model is reformulated on the language of more abstract mathematical theory.

IV. CATEGORY THEORETIC DATA FUSION MODEL

As such more abstract mathematical theory category theory is used. There are examples of data fusion representation in category theory terms. Kokar, Tomasik and Weyman in ‘Formalizing Classes of Information Fusion Systems’ [12] consider two classes of data fusion systems: data fusion and decision fusion, formalize them in terms of category theory and show that decision fusion is a subclass of data fusion.

The presented category theoretic model is derived from logical one. It is shown, for instance, in R. Goldblatt’s ‘Topoi, the Categorial Analysis of Logic’ [6] that logic can be described in terms of category theory.

Let us specify some basic elements of category theory. A category is a mathematical structure that consists of objects and morphisms and the following expressions are satisfied:

- each morphism \(f \) is associated with objects \(\text{dom}(f) \) and \(\text{cod}(f) \). If \(\text{dom}(f) = a \) and \(\text{cod}(f) = b \), it is denoted as \(f : a \rightarrow b \);
- each pair of morphisms \(< f, g > \) is associated with a composition \(g \circ f \), such that \(g \circ f : \text{dom}(f) \rightarrow \text{cod}(g) \);
- associativity: if there are morphisms \(f : a \rightarrow b, g : b \rightarrow c \) and \(h : c \rightarrow d \), then \((f \circ g) \circ h = f \circ (g \circ h) \);
- identity: for every object \(x \), there is an identity morphism \(1 : x \rightarrow x \).

For instance, in the category \(\text{Set} \) the objects are sets and morphisms are functions between sets.

Analyzing the structure of the logical model in category theoretic terms, there are two categories:

- Objects: a universe \(A = \{X_1, ..., X_n\} \).
- Truth-values: \(TV = \{0, 1\} \).

And three morphisms:

- Terms: \(T : A^n \rightarrow A \).
- Atomic statements: \(AS : A^n \rightarrow TV \).
- Complex statements: \(CS : TV^m \rightarrow TV \).

According to category theory, an identity morphism exists for each category, thus, two identity morphisms are defined:

- for category \(A \) identity morphism \(id : A \rightarrow A \) forms a set of constants;
- for category \(TV \) identity morphism \(id : TV \rightarrow TV \) forms a set of propositions.

Therefore, each logical function and, in turn, data fusion process can be represented as a morphism. From this point, it becomes possible to formulate universal criteria for data fusion algorithms. But first we are going to show using the developed framework that there is a gain of knowledge during the data fusion process.

A. Morphisms quantitative characteristics

Given a morphism \(f : X \rightarrow Y \), there is a set \(F : X \rightarrow Y \) of alternative morphisms for the domain \(X \) and codomain \(Y \). The cardinality \(|F| \) of the set \(F \) is defined as quantitative characteristic of the morphism \(f \). In this section characteristics for each morphism of the present model will be given.

1) Terms: Given a morphism \(f : X \rightarrow Y \), how many other possible morphisms from \(X \) to \(Y \) there are? First, there are \(|Y| \) different valuations of \(f(x) \) for some \(x \). Then, there are \(|Y|^{|X|} \) different values for each \(x \in X \), thus, for a set of morphisms \(F : X \rightarrow Y \):

\[
|F : X \rightarrow Y| = |Y|^{|X|}.
\]

This result can be generalized in two ways: first, morphism \(f \) can have \(n \) arguments, i.e. \(f \) is \(f : X^n \rightarrow Y \). Then

\[
|f : X^n \rightarrow Y| = |Y|^{|X_1| \times ... \times |X_n|}.
\]

Second, some \(f'(X) \) can have a different codomain, thus, \(F(X) = \{F(X) = Y_1\} \cup ... \cup \{F(X) = Y_n\} \) and

\[
|F(X)| = |Y_1|^{|X|} + ... + |Y_n|^{|X|}.
\]

Therefore,

\[
|T : X^n \rightarrow Y| = \sum_i |Y_i|^{|X_i|},
\]

for each \(Y_i \subseteq Y \), such that \(T_i : X_1 \times ... \times X_j \rightarrow Y_i \).

ISSN: 2074-1278

Volume 11, 2017

59
2) Atomic sentences: According to the definitions, an atomic sentence is a morphism \(AS : A^n \rightarrow TV \) and \(TV = \{0, 1\} \), therefore,
\[
AS : A^n \rightarrow \{0, 1\}.
\]
and
\[
|AS : A \rightarrow TV| = 2^{\prod |A_i|}.
\]

3) Complex sentences: As complex sentence is a morphism \(CS : TV^m \rightarrow TV \) and \(TV = \{0, 1\} \),
\[
CS : \{0, 1\} \times \ldots \times \{0, 1\} \rightarrow \{0, 1\},
\]
therefore,
\[
|CS : TV^m \rightarrow TV| = 2.
\]
Summing up, with each level of data fusion degrees of freedom decrease, that correlates with data integrity being increased during the data fusion process.

B. Morphism criteria

In this section the set of universal morphism criteria considering its effectiveness as data fusion algorithms is defined.

For each morphism \(f : X \rightarrow Y \) it is possible to characterize:
- some value \(y \in Y \) of morphism \(f \);
- morphism \(f \) itself;
- morphism \(f \) in relation with the whole set of morphisms \(F : X \rightarrow Y \).

Therefore, a measure will be defined for each of this items. Considered measures origins from information theoretical ones. An extensive elaboration of information theoretic measures can be found, for example, in 'Elements of Information Theory' [4] by Cover and Thomas.

1) Information: Given a morphism \(f : X \rightarrow Y \), a measure for some value \(y \in Y \) of that morphism is defined.

As such measure Shannon’s [16] information measure is used. For each \(x_j \in X \) and \(y_i \in Y \) it is possible to count frequency \(m_{ij} \) of \(f(x_j) = y_i \) being satisfied. Then for each \(y_i \in Y \) it is possible to count information \(I(y_i) \):
\[
I(y_i) = -\log_{|X|} \frac{m_{ij}}{|X|},
\]
in other words,
\[
I(y_i) = 1 - \log_{|X|} m_{ij}.
\]
This formula differs from Shannon’s one in that cardinality \(|X|\) of the set \(X \) is used as logarithm base. Due to this fact,
\[
0 \leq I(y_i) \leq 1,
\]
and \(I(y_i) = 1 \) means that after the transformation from \(f^{-1}(y_i) \) to \(y_i \) all information is reserved. Vice versa, if \(I(y_i) = 0 \), it means that after the transformation \(f : X \rightarrow Y \), all information presented in \(X \) is lost.

2) Knowledge: Another assumption is that considering the data fusion process, information loss has positive aspects. Relieving from extra details reveals common tendencies. In respect to human thinking this process is named abstraction. Abstraction results in knowledge, thus, the measure \(K(y_i) \) of knowledge amount contained in some value \(y_i \in Y \) of morphism \(f : X \rightarrow Y \), as opposite to information measure, is introduced:
\[
K(y_i) = \log_{|X|} m_{ij}.
\]
The measure \(K(y_i) \) also satisfies
\[
0 \leq K(y_i) \leq 1,
\]
but if \(K(y_i) = 1 \), it means that after the transformation \(f : X \rightarrow Y \) all information, contained in \(X \), is generalized. Vice versa, if \(K(y_i) = 0 \), it means that transformation \(f : X \rightarrow Y \) yields no knowledge.

Given some value \(y \), it can be shown that
\[
K(y) = 1 - I(y).
\]
As \(I(y) = 1 - \log_{|X|} m \),
\[
1 - I(y) = 1 - (1 - \log_{|X|} m),
\]
that is
\[
1 - I(y) = \log_{|X|} m,
\]
but \(\log_{|X|} m = K(y) \).

Therefore, each value \(y \in Y \) of some morphism \(f : X \rightarrow Y \) can be characterized considering data fusion process in two ways. If we are interested in details and exceptional cases, they could be found by calculating information amount \(I(y) \), or if we are more interested in common tendencies and typical cases, they could be found by calculating knowledge amount \(K(y) \) contained in value \(y \).

3) Entropy and negentropy: Values of \(I(y_i) \) and \(K(y_i) \) can be considered as random variables, thus, statistical methods are applicable to them. In this work only expected value is considered.

For some morphism \(f : X \rightarrow Y \) expected value of information is entropy \(H(f) \). According to present modifications, entropy \(H(f) \) of morphism \(f : X \rightarrow Y \) can be calculated as follows:
\[
H(f) = -\sum_i \frac{m_i}{|X|} \log_{|X|} \frac{m_i}{|X|},
\]
If some y_i satisfies $I(y_i) \geq H(f)$, y_i can be considered as informative and if $I(y_i) < H(f)$, y_i is uninformative.

If $H(f) = 0$, it means that in every case the morphism $f : X \rightarrow Y$ has one and the same value y_i, and, vice versa, if $H(f) = 1$, for each x_j morphism $f(x_j)$ has some different value y_i, thus, entropy $H(f)$ can be considered as uncertainty measure for morphism $f : X \rightarrow Y$.

For expected value of knowledge, denoted as $N(f)$, the term ‘negentropy’ is used. It was introduced by E. Schrodinger [15] as opposite to entropy. The measure called ‘negentropy’ mathematically coincides with relative entropy, or Kullback-Leibler divergence [13], however, in the present model this measure has its own interpretation.

Negentropy is calculated as follows:

$$N(f) = \sum_i \frac{m_i}{|X|} \log_{|X|} m_i,$$

If some y_i satisfies $K(y_i) \geq N(f)$, y_i can be considered as meaningful, and, vice versa, if $K(y_i) < N(f)$, y_i is meaningless. If $N(f) = 0$, it means that for each x_j the morphism $f(x_j)$ has different value, and, vice versa, if $N(f) = 1$, the morphism $f : X \rightarrow Y$ in every case has the only value y_i, therefore, negentropy, as opposition to entropy, can be considered as certainty measure for morphism $f : X \rightarrow Y$.

Since $I(y)$ for some value y is calculated as $1 - \log_{|X|} m$, entropy $H(f)$ can also be calculated as

$$H(f) = \sum_i \frac{m_i}{|X|} (1 - \log_{|X|} m_i),$$

Since $\sum_i \frac{m_i}{|X|} = 1$,

$$H(f) = 1 - \sum_i \frac{m_i}{|X|} \log_{|X|} m_i,$$

and since $N(f) = \sum_i \frac{m_i}{|X|} \log_{|X|} m_i$, entropy can be calculated as

$$H(f) = 1 - N(f).$$

Therefore, entropy $H(f)$ and negentropy $N(f)$ characterize some morphism $f : X \rightarrow Y$ as data fusion algorithm. The more negentropy $N(f)$ is, the more data morphism f integrates.

4) Partition information/knowledge amount: Given a set of morphisms $F : X \rightarrow Y$, each morphism $f_i \in F$ yields some partition $Part_i(Y)$ of Y. If each morphism f in some subset $F_i \subseteq F$ yields one and the same partition $Part_i(Y)$, then for each F_i it is possible to count frequency m_j, thus, it is possible to calculate information $I(Part_i(Y))$ and knowledge $K(Part_i(Y))$ for each partition $Part_i(Y)$ of the set Y:

$$I(Part_i(Y)) = 1 - \log_{|F_i|} m_j$$

and

$$K(Part_i(Y)) = \log_{|F_i|} m_j.$$ As result, there are two new random variables and it is possible to calculate entropy and negentropy for them. Entropy $H(F)$ of the set of morphisms F:

$$H(F) = 1 - \sum_j \frac{m_j}{|F|} \log_{|F|} m_j$$

and negentropy $N(F)$:

$$N(F) = \sum_j \frac{m_j}{|F|} \log_{|F|} m_j.$$ If some partition $Part_i(Y)$ satisfies $I(Part_i(Y)) \geq H(F)$, it means that $Part_i(Y)$ is informative, analogously, if $K(Part_i(Y)) \geq N(F)$, partition $Part_i(Y)$ is meaningful.

5) Expected entropy/negentropy: Given some set of morphisms $F : X \rightarrow Y$, it is possible to characterize some morphism $f \in F$ in respect to the whole set F. Thereby, expected entropy and negentropy of the set F are defined. Let some subset $F_i \subseteq F$ yields partition $Part_i(Y)$ that has frequency m_i, then expected entropy $\bar{H}(F)$ of the set F is calculated as follows:

$$\bar{H}(F) = \sum_{i,j} \frac{m_i}{|F_j|} H(f_j)$$

for each $f_j \in F_i$. Expected negentropy $\bar{N}(F)$ is calculated as follows:

$$\bar{N}(F) = \sum_{i,j} \frac{m_i}{|F|} N(f_j).$$

If some $f_i : X \rightarrow Y$ satisfies $H(f_i) \geq \bar{H}(F)$, the morphism f_i is considered as informative with respect to the set of morphisms F, analogously, if $N(f_i) \geq \bar{N}(F)$ is satisfied, the morphism f_i is considered as meaningful with respect to the set F.

6) Internal and external morphism criteria: Given some set of morphisms $F : X \rightarrow Y$ and some subset $F_i \subseteq F$ that yields partition $Part_i(Y)$, for some morphism $f_j \in F_i$ it is possible to calculate, on the one hand, information $I(f_j)$ or knowledge $K(f_j)$ with respect to the whole set F, on the other hand, it is possible to calculate entropy $H(f_j)$ and negentropy $N(f_j)$ of the morphism f_j itself. As result, one pair of measures characterize morphism f_j with respect to other morphisms, thus, these measures are considered as external criteria, while other pair of measures characterize the morphism f_j with respect to the way it divides the set Y, thus, these measures are considered as internal criteria. Therefore, products

$$I(f_j)H(f_j)$$

and

$$K(f_j)N(f_j)$$

characterize morphism f_j both from inner and outer sides. If we are interested in comprehensive estimation of a morphism, it is products $I(f_j)H(f_j)$ and $K(f_j)N(f_j)$ to be considered.

C. Application of the criteria to the model

In this section the set of developed criteria is applied to morphism classes of the presented model. Given some identity morphism $id : X \rightarrow X$, as any identity morphism is bijection, it satisfies

$$H(id) = 1$$

and

$$N(id) = 0.$$
Since there are identity morphisms for objects and truth-values categories that constitute constants and propositions, constants and propositions are the most informative and the least meaningful.

As constants are presented in every data set, the morphism T, terms, has lower bound:

$$\min(N(T)) = 0.$$

Given some atomic statement $as : A \rightarrow TV$, on the one hand, it is possible that $|A| = |TV|$, on the other hand, it is possible that $|TV| = 1$. Therefore, the morphism AS satisfies

$$0 \leq N(AS) \leq 1.$$

As every $cs \in CS$ has the only value $tv \in TV$, each cs satisfies

$$H(cs) = 0$$

and

$$N(cs) = 1.$$

In other words, complex statements are the least informative and the most meaningful.

To sum up, it is seen that data fusion processes could be ordered as follows:

$$N(T) \leq N(AS) \leq N(CS)$$

and data fusion process presents conversion of information to knowledge.

1) Application of the criteria to terms: According to the suggested logical model, different methods of signal, object refinement, feature extraction and pattern recognition can be represented as individual functions, i.e. terms. Let us consider an application of the suggested criteria to an abstract instance of such methods.

Suppose that we have a data set consisting of parameters $x_1, ..., x_n$ and four records and two different methods, M_1 and M_2, that associate each record with some class. The partitions are presented in the Table III.

<table>
<thead>
<tr>
<th>ID</th>
<th>$x_1, ..., x_n$</th>
<th>M_1</th>
<th>M_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$...$</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>$...$</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>$...$</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>$...$</td>
<td>B</td>
<td>E</td>
</tr>
</tbody>
</table>

Table III

2) Application of the criteria to atomic sentences: The suggested criteria allow us to compare different relations between objects. Suppose we are questioning which of two relations, $R_1(x, y)$ or $R_2(x, z)$, to consider in the situation, described on the Table VIII, where 1 means that a relation holds and 0 means that it does not.

Calculating criteria for each of the cases see on the Table IX. Calculating criteria for each of the cases see on the Table X. The expected entropy and negentropy:

$$\bar{H} \approx 0,66, \bar{N} \approx 0,33.$$

It means that both of the relations are informative and none of them is meaningful. Calculating products $I(M_i)H(M_i)$ and $K(M_i)N(M_i)$ for M_1 and M_2, see Table VII. According to this results, method M_1 produces more information and more knowledge than M_2.

3) Application of the criteria to complex sentences: Suppose we have two facts, A_1 and A_2, which conclusion will be more informative or meaningful: $A_1 \lor A_2$ or $A_1 \neq A_2$?

Calculation of the criteria for each case on the Table XII. Calculation of the criteria for partitions on the Table XIII. Expected entropy \bar{H} and expected negentropy \bar{N} are:

- $\bar{H} = 0,3875$,
- $\bar{N} = 0,6125$.

It means that both conclusions are informative but none of them is meaningful.

Calculation products $I \ast H$ and $K \ast N$ for each operator is presented on the Table XIV. According to the results, conclusion $A_1 \neq A_2$ provides more information but the conclusion $A_1 \lor A_2$ provides more knowledge.

V. Conclusion

Summing up, two general models of data fusion are presented. The first model is logical. It provides the structure of data fusion process and the list of categories and morphisms calculate for each method entropy H and negentropy N, see Table V.

Let us see if they produce enough knowledge or information in general. To do this, we shall consider every possible partitions of the four elements set and calculate frequency, information, knowledge, entropy and negentropy for each partition, see Table VI.

The expected entropy and negentropy are:

$$\bar{H} \approx 0,27, \bar{N} \approx 0,72.$$

It means that both of the relations are informative and none of them is meaningful. Calculating products $I(M_i)H(M_i)$ and $K(M_i)N(M_i)$ for M_1 and M_2, see Table VII. According to this results, method M_1 produces more information and more knowledge than M_2.

V. Conclusion

Summing up, two general models of data fusion are presented. The first model is logical. It provides the structure of data fusion process and the list of categories and morphisms
that constitute the process. There are two categories: objects and truth-values, and three morphisms: terms, atomic statements and complex statements.

The second model is category theoretic and it provides the set of universal criteria for each possible morphism. According to this criteria it is possible for each morphism to define, first, is some value of the morphism meaningful or informative, second, is the morphism meaningful or informative by itself, third, is the morphism meaningful or informative in respect to alternative morphisms.

REFERENCES

