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Abstract—In order to develop a formal framework for data
fusion field main data fusion models are observed and a logical
model of data fusion is suggested. It is shown that considered data
fusion models are representable in the logical model. The logical
model being insufficiently general to compare different methods
of data fusion is reformulated on category theory language. After
that a number of information theoretic measures defined on
morphisms are suggested as universal criteria for evaluation of
data fusion methods.
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I. INTRODUCTION

There is a research area named ’Data fusion’. Data fusion
is integration of different types of information from different
sources, directed to decision-making. Aims of a typical data
fusion system are processing of continuously incoming raw
data, evaluation of current situation, prediction of forthcom-
ing events and recommendation considering corresponding
actions.

Consider biometric data as an example. A system that
uses the only biometric factor has high error probability. For
instance, if that factor is fingerprints, then for people with
extremely fat or dry or injured fingers it is problematic to get
fingerprints of acceptable quality. But if we use iris recognition
as well, error probability will significantly decrease. Another
example of data fusion is a moving object, such as an aircraft,
observed by both a pulsed radar and an infrared sensor. The
radar accurately determines the aircraft’s range, but it hardly
determines the angular direction of the aircraft. By contrast,
the infrared sensor accurately determines the aircraft’s angular
direction, but is unable to measure range. The combination of
these two observations provides an improved determination of
the aircraft’s location.

Data fusion process is analogous to the process during
which humans and animals combine data from different
senses, experience and reasoning ability to improve their
survive chances. For example, when vision is limited, the
sense of hearing can provide advanced warning of impending
danger. Though the concept of data fusion is not new, the
emergence of new sensors and processing techniques makes
data fusion increasingly viable. Data fusion has advanced
from collection of related techniques to a comprehensive engi-
neering discipline with established terminology, mathematical
techniques and design principles. Data fusion techniques are

drawn from such disciplines as digital signal processing,
statistical estimation, control theory and artificial intelligence.
In our time, data fusion systems are used for target tracking,
automated identification, reasoning applications and so on.
The extensive research of data fusion field can be found in,
for example, Mitchell’s ’Data Fusion: Concepts and Ideas’
[14] or Hall’s and McMullen’s ’Mathematical Techniques in
Multisensor Data Fusion’ [9].

By now numerous methods of data integration were de-
veloped. The data fusion processes include different estima-
tion, feature extraction, classification and inference techniques.
Some of them are more elaborated, such as image recognition
or classification, and some are hardly articulated. Data fusion
methods were developed apart from each other and it is diffi-
cult to put them in any common context. As result, data fusion
field dissolves to set of poorly correlated subproblems. There
is a lack of theoretical framework for designing data fusion
systems. Existing classifications of data fusion processes, such
as JDL-model, are expressed mainly in natural language rather
than in formal and it is problematic to formally prove that one
fusion system is more preferable than another.

The purpose of this work is to develop a formal framework
of data fusion. That allows:
• represent the process of data fusion in more systematic

way;
• develop universal criteria for estimating and comparing

data fusion methods.
• automate designing of data fusion systems.

In other words, the purpose is to develop a formal theory of
data fusion. Examples of such formalization already exist. In
’Mathematics of Data Fusion’ by I. R. Goodman, Ronald P. S.
Mahler and Hung T. Nguen [7] fuzzy logic, random set theory
and conditional event algebra are used as such mathematical
foundation. In this work data fusion process is reduced, first,
to logic then to category theory. Finally, a set of criteria for
estimating and comparing data fusion methods is suggested
and verified.

II. REVIEW OF DATA FUSION MODELS

1) JDL model: In 1986 the Joint Directos of Laboratories
(JDL) Data Fusion Working Group began codifying data fu-
sion terminology. As result, data fusion process model, named
JDL-model, was created. The JDL-model with subsequent
revisions is the most widespread system for categorizing data
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fusion methods. The JDL-model was designed as a functional
model, i.e. a set of definitions that comprises any data fusion
system, therefore, the model was intended to be very general
and useful across multiple application areas. It includes:

1) Object refinement: data integration for getting improved
representation of individual objects.

2) Situation refinement: description of relations between
objects and environment.

3) Threat refinement: projecting of current situation in
future and predicting of consequences.

4) Process refinement: meta-process that monitors data-
fusion processes to maintain real-time performance.

For each of these processes JDL-model associates specific
functions and techniques. Besides of that processes JDL-
model also considers sensor inputs, human-computer interac-
tion, database management and source preprocessing. A cor-
responding terminology was developed to provide consistent
definitions.

In 1998 the JDL-model was revisited by [18] to provide a
categorization representing logically different types of prob-
lems, which are solved by different techniques, and to update
terminology. The updated model is following:

1) Sub-object data assessment: signal level data association
and characterization.

2) Object assessment: estimation and prediction of object
states.

3) Situation assessment: estimation and prediction of rela-
tions among objects.

4) Impact assessment: estimation and prediction of partic-
ipants actions.

5) Process Refinement: different processes supporting mis-
sion objectives.

According to [18], it is possible to generalize JDL-model
levels. Sub-object data assessment is a special case of object
assessment, where objects are signals, and impact assessment
is a special case of situation assessment, where relations are
relations to agents. Also the authors mention that process
refinement is not data fusion, but a kind of resource man-
agement, therefore, only two levels of fusion remain: object
assessment and situation assessment.

2) Dasarathy Functional Model: Dasarathy [5] categorize
data fusion functions according to the types of input and output
data. The types are:

• Data.
• Features.
• Objects.

And the functions:

• DAI-DAO: Signal detection.
• DAI-FEO: Feature extraction.
• FEI-FEO: Feature refinement.
• FEI-DEO: Object characterization.
• DEI-DEO: Object refinement.

In [17] Darathy’s model was augmented by other possible
combinations. The resulting model is represented in the Table
I.

3) Omnibus model: The Omnibus model was proposed by
[1]. It is posed to be a generalization of the Boyd Control
Loop [2], also known as the Observe, Orient, Decide, Act
(OODA), of the U.S. intelligent services’ intelligence cycle
and the commonly used waterfall model [8]. The model is
a four stage cycle describing the main activities in a fusion
system. The stages are following:
• Observe: sensing and signal processing.
• Orient: feature extraction and pattern processing.
• Decide: decision making and context processing.
• Act: control and resource tasking.

The cycle is represented by the following diagram:

Observe Orient

Act Decide

Elements and relations of these models are quite similar and
overlapping. However, due to informal definitions and different
structure, JDL-model is hierarchical, augmented Dasarathy’s
model is a matrix and Omnibus model is cyclical, it is not
possible to compare and generalize them, which is why the
following formal model is suggested. Nevertheless, overview
of these models presents a list of main categories and relations
that have to be expressible in the suggested model, if all of
them are representable, it allows to consider the suggested
model as valid.

III. LOGICAL DATA FUSION MODEL

The first assumption is that the problem of data fusion
model development is identical to the old issue of defining
cognitive processes and its hierarchy from psychology and
cognitive science. If we agree that concept of data fusion is
applicable to human cognitive processes, and human cognitive
processes are, in turn, defined in different psychological and
epistemological models, that theories must be at least included
in the data fusion model.

One of the first examples of such epistemological model is
Kant’s faculties of cognition [10]:
• Sensibility: the faculty of intuitions and sense perception.
• Understanding: the faculty of concepts and thoughts.
• Imagination: mediates between understanding and sensi-

bility, the source of all sorts of synthesis.
• Reason: produces logical inferences and decisions, im-

poses coherence and consistency and implements modal
concepts such as necessity or obligation.

• Self-consciousness: imposes a higher-order unity into all
lower-order faculties.

Kant holds that human mind has two basic cognitive facul-
ties: understanding and sensibility. The essential difference
between concepts and intuitions is that concepts are general
representations, the logical form of objects, while intuitions
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TABLE I

Output

Data Features Objects

In
pu

t Data Signal detection Feature extraction Gestalt-based object characterization

Features Model-based feature extraction Feature refinement Feature-based object characterization

Objects Model-based estimation Model-based feature extraction Object refinement

are singular, sense-related, immediate object representations.
Understanding and sensibility both serve to the faculty of
imagination and the faculty of reason. Finally, the faculty
of apperception or rational self-consciousness plays executive
role in the organisation of the mind.

As we see, Kant’s faculties of cognition look quite similar to
data fusion concepts. Sensibility, being object representation,
can be associated with object assessment, understanding, as
extracting logical form of objects, can be associated with
situation assessment, reason — with impact assessment and,
finally, self-consciousness — with process refinement.

Numerous other categorizations of cognition process have
been made after Kant, but still it does not solve the problem, as
these categorizations are not formal. The second assumption
is that the formal representation of cognition and thinking in
general is the subject matter of logic, which is why the first
suggested model is logical.

In the following, a logical model of data fusion process
is presented. First of all, define what logic is meant. This
logical model is based on first order predicate logic, extensive
elaboration of which and its semantics can be found, for
example, in Chang’s and Keisler’s ’Model Theory’ [3], but
has the following differences:

• for shortness, individual constants are considered as re-
flexive individual functions and propositions are consid-
ered as reflexive propositional operator.

• due to discreteness of the data the universe for this logic
is finite.

The language of suggested logical model consists of:

• individual variables: x1, x2, ...;
• individual functions: f1, f2, ...;
• predicate functions: P1, P2, ...;
• quantifiers: ∀,∃;
• propositional operators: ¬,∧,∨,→.

Each predicate P is assumed to be an n-placed function, if
n = 0, predicate P is a proposition. Similarly, each function
f is an m-placed function, if m = 0, f is a constant.

Certain strings of symbols from the above list are called
terms. Definition of a term:

• a variable x is a term,
• if f is an m-placed function and t1, ..., tm are terms, then
f(t1, ..., tm) is a term,

• a string of symbols is a term only if it is a term due to
a finite number of applications of previous rules.

Definition of a sentence:

• if φ is an n-placed predicate P and t1, ..., tn are terms
then P (t1, ..., tn) is a sentence,

• if x is a variable and φ is a formula containing x then
∀xφ and ∃xφ are sentences,

• if φ is a sentence then ¬φ is a sentence,
• if φ and ψ are sentences, then φ ∧ ψ, φ ∨ ψ, φ → ψ are

sentences.
• a finite sequence of symbols is a sentence only if it

is a sentence due to a finite number of applications of
previous rules.

The third assumption is that the process of interpretation
of a sentence φ corresponds to the process of data fusion,
therefore, the formal definition of interpretation of a sentence
φ corresponds to a formal model of data fusion. A model M,
or a ’possible world’, for the suggested language consists of
a universe A, a nonempty finite set of objects. The correspon-
dence between the language and the universe is given by an
interpretation function I defined by the following inductive
procedure:

1) interpretation of a term:
• I(f) = id : A→ A,
• I(f(t1, ..., tm)) = g : Am → A,

2) I(φ) = 1⇔M |= φ. If φ is an atomic sentence:
• M |= P (t1, ..., tn)⇔ R(a1, ..., an) ∈ A,

3) if φ is a complex sentence:
• M |= ∀xiφ⇔ for every a ∈ A it is true that R(a) ∈
A,

• M |= ∃xiφ⇔ exists a ∈ A, such that R(a) ∈ A,
• M |= P ⇔M |= P (t1, ..., tn),
• M |= ¬φ⇔M 6|= φ
• M |= φ ∧ ψ ⇔M |= φ and M |= ψ,
• M |= φ ∨ ψ ⇔M |= φ or M |= ψ,
• M |= φ→ ψ ⇔M 6|= φ or M |= ψ,

otherwise I(φ) = 0. A model M is a pair < A, I >. Besides
the interpretation function there is a valuation function V that
corresponds each variable x to an object a ∈ A.

The principal difference between these three types of inter-
pretation is the types of domain and codomain. Analyzing the
definition of interpretation, two types are extracted:

• Objects (O), the elements of the universe A.
• Truth-values (TV ): {0, 1}.

Therefore, three types of interpretation can be represented as
follows:

• Terms (T ): Am → A.
• Atomic sentences (AS): An → {0, 1}.
• Complex sentences (CS): {0, 1} → {0, 1}.

and the logical model of data fusion can be represented by the
following diagram:
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O TVT
AS

CS

Let us compare the suggested logical models with consid-
ered existing data fusion models. To do this, we are going to
translate terms of the existing data fusion models to the logical
language.

JDL-model considers signals, objects, features, situations,
decisions and control. From the logical point of view, signals,
objects and features are objects of the universe, situations are
relations between objects and decisions are relations between
truth-values, therefore, sub-object data assessment and object
assessment correspond to terms, situation assessment corre-
sponds to atomic sentences, impact assessment corresponds
to complex sentencesn. Process refinement has no correspon-
dence in the logical model, but as authors of [18] mentioned,
process refinement may not be considered as part of the data
fusion process.

In the augmented Dasarathy’s Functional model three cat-
egories are considered: data, features and objects. As was
previously said, these three categories are objects of the uni-
verse, therefore, different relations described in the augmented
Dasarathy’s model are different kinds of terms.

As JDL-model, Omnibus model considers signals, features,
decisions and control as well, therefore, ’Observe’ and ’Orient’
correspond to terms and ’Decide’ corresponds to complex
sentences. ’Act’ has no correspondence.

The result of comparing is represented in the table II. The
augmented Dasarathy’s Model is not included in the resulting
table due to its matrix structure.

Summing up, the existing data fusion models are mostly
representable in the suggested logical model. The only issue
is control. But according to some authors, control is not a part
of data fusion, it may be considered as a part of executing
expert system instead.

However, at current stage it is still problematic to define
universal criteria applicable to terms, atomic and complex
sentences, thus, in the next section the presented logical model
is reformulated on the language of more abstract mathematical
theory.

IV. CATEGORY THEORETIC DATA FUSION MODEL

As such more abstract mathematical theory category theory
is used. There are examples of data fusion representation
in category theory terms. Kokar, Tomasik and Weyman in
’Formalizing Classes of Information Fusion Systems’ [12]
consider two classes of data fusion systems: data fusion and
decision fusion, formalize them in terms of category theory
and show that decision fusion is a subclass of data fusion.

The presented category theoretic model is derived from log-
ical one. It is shown, for instance, in R. Goldblatt’s ’Topoi, the
Categorial Analysis of Logic’ [6] that logic can be described
in terms of category theory.

Let us specify some basic elements of category theory. A
category is a mathematical structure that consists of objects
and morphisms and the following expressions are satisfied:
• each morphism f is associated with objects dom(f) and
cod(f). If dom(f) = a and cod(f) = b, it is denoted as

f : a→ b;
• each pair of morphisms < f, g > is associated with a

composition g ◦ f , such that
g ◦ f : dom(f)→ cod(g);

• associativity: if there are morphisms f : a→ b, g : b→ c
and h : c→ d, then

(f ◦ g) ◦ h = f ◦ (g ◦ h);
• identity: for every object x, there is an identity morphism

1 : x→ x.
For instance, in the category Set the objects are sets and
morphisms are functions between sets.

Analyzing the structure of the logical model in category
theoretic terms, there are two categories:
• Objects: a universe A = {X1, ..., Xn}.
• Truth-values: TV = {0, 1}.

And three morphisms:
• Terms: T : An → A.
• Atomic statements: AS : An → TV .
• Complex statements: CS : TV m → TV .
According to category theory, an identity morphism exists

for each category, thus, two identity morphisms are defined:
• for category A identity morphism id : A → A forms a

set of constants;
• for category TV identity morphism id : TV → TV

forms a set of propositions.
Therefore, each logical function and, in turn, data fusion

process can be represented as a morphism. From this point, it
becomes possible to formulate universal criteria for data fusion
algorithms. But first we are going to show using the developed
framework that there is a gain of knowledge during the data
fusion process.

A. Morphisms quantitative characteristics
Given a morphism f : X → Y , there is a set F : X → Y

of alternative morphisms for the domain X and codomain Y .
The cardinality |F| of the set F is defined as quantitative
characteristic of the morphism f . In this section characteristics
for each morphism of the present model will be given.

1) Terms: Given a morphism f : X → Y , how many other
possible morphisms from X to Y there are? First, there are |Y |
different valuations of f(x) for some x. Then, there are |Y |
different values for each x ∈ X , thus, for a set of morphisms
F : X → Y :

|F : X → Y | = |Y ||X|.
This result can be generalized in two ways: first, morphism

f can have n arguments, i.e. f is f : Xn → Y . Then

|f : Xn → Y | = |Y ||X1|...|Xn|.

Second, some f ′(X) can have a different codomain, thus,
F(X) = {F(X) = Y1} ∪ ... ∪ {F(X) = Yn} and

|F(X)| = |Y1||X| + ...|Yn||X|.

Therefore,

|T : Xn → Y | =
∑
i

|Yi|
∏

j
|Xj |,

for each Yi ⊆ Y , such that Ti : X1 × ...×Xj → Yi.
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TABLE II

Input type Output type JDL Omnibus Model Logical Model

Signals Objects Sub-object data assessment Observe Terms
Objects Features Object assessment Orient

Features Situations Situation assessment Atomic sentences

Situations Decisions Impact assessment Decide Complex sentences

Control Process refinement Act

2) Atomic sentences: According to the definitions, an
atomic sentence is a morphism AS : An → TV and
TV = {0, 1}, therefore,

AS : An → {0, 1}.

and
|AS : A→ TV | = 2

∏
i
|Ai|.

3) Complex sentences: As complex sentence is a morphism
CS : TV m → TV and TV = {0, 1},

CS : {0, 1} × ...× {0, 1} → {0, 1},

therefore,
|CS : TV m → TV | = 2.

Summing up, with each level of data fusion degrees of
freedom decrease, that correlates with data integrity being
increased during the data fusion process.

B. Morphism criteria

In this section the set of universal morphism criteria con-
sidering its effectiveness as data fusion algorithms is defined.

For each morphism f : X → Y it is possible to characterize:
• some value y ∈ Y of morphism f ;
• morphism f itself;
• morphism f in relation with the whole set of morphisms
F : X → Y .

Therefore, a measure will be defined for each of this items.
Considered measures origins from information theoretical
ones. An extensive elaboration of information theoretic mea-
sures can be found, for example, in ’Elements of Information
Theory’ [4] by Cover and Thomas.

1) Information: Given a morphism f : X → Y , a measure
for some value y ∈ Y of that morphism is defined.

As such measure Shannon’s [16] information measure is
used. For each xj ∈ X and yi ∈ Y it is possible to count
frequency mi of f(xj) = yi being satisfied. Then for each
yi ∈ Y it is possible to count information I(yi):

I(yi) = − log|X|
mi

|X|
,

in other words,

I(yi) = 1− log|X|mi.

This formula differs from Shannon’s one in that cardinality
|X| of the set X is used as logarithm base. Due to this fact,

0 ≤ I(yi) ≤ 1,

and I(yi) = 1 means that after the transformation from
f−1(yi) to yi all information is reserved. Vice versa, if
I(yi) = 0, it means that after the transformation f : X → Y ,
all information presented in X is lost.

2) Knowledge: Another assumption is that considering the
data fusion process, information loss has positive aspects.
Relieving from extra details reveals common tendencies. In
respect to human thinking this process is named abstraction.
Abstraction results in knowledge, thus, the measure K(yi)
of knowledge amount contained in some value yi ∈ Y of
morphism f : X → Y , as opposite to information measure, is
introduced:

K(yi) = log|X|mi.

The measure K(yi) also satisfies

0 ≤ K(yi) ≤ 1,

but if K(yi) = 1, it means that after the transformation f :
X → Y all information, contained in X , is generalized. Vice
versa, if K(yi) = 0, it means that transformation f : X → Y
yields no knowledge.

Given some value y, it can be shown that

K(y) = 1− I(y).

As I(y) = 1− log|X|m,

1− I(y) = 1− (1− log|X|m),

that is
1− I(y) = log|X|m,

but log|X|m = K(y).
Therefore, each value y ∈ Y of some morphism f : X → Y

can be characterized considering data fusion process in two
ways. If we are interested in details and exceptional cases,
they could be found by calculating information amount I(y),
or if we are more interested in common tendencies and typical
cases, they could be found by calculating knowledge amount
K(y) contained in value y.

3) Entropy and negentropy: Values of I(yi) and K(yi) can
be considered as random variables, thus, statistical methods
are applicable to them. In this work only expected value is
considered.

For some morphism f : X → Y expected value of infor-
mation is entropy H(f). According to present modifications,
entropy H(f) of morphism f : X → Y can be calculated as
follows:

H(f) = −
∑
i

mi

|X|
log|X|

mi

|X|
,
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If some yi satisfies I(yi) ≥ H(f), yi can be considered as
informative and if I(yi) < H(f), yi is uninformative.

If H(f) = 0, it means that in every case the morphism
f : X → Y has one and the same value y, and, vice versa,
if H(f) = 1, for each xj morphism f(xj) has some different
value yi, thus, entropy H(f) can be considered as uncertainty
measure for morphism f : X → Y .

For expected value of knowledge, denoted as N(f), the
term ’negentropy’ is used. It was introduced by E. Schrdinger
[15] as opposite to entropy. The measure called ’negentropy’
mathematically coincides with relative entropy, or Kullback-
Leibler divergence [13], however, in the present model this
measure has its own interpretation.

Negentropy is calculated as follows:

N(f) =
∑
i

mi

|X|
log|X|mi.

If some yi satisfies K(yi) ≥ N(f), yi can be considered as
meaningful, and, vice versa, if K(yi) < N(f), yi is mean-
ingless. If N(f) = 0, it means that for each xj the morphism
f(xj) has different value, and, vice versa, if N(f) = 1, the
morphism f : X → Y in every case has the only value
y, therefore, negentropy, as opposition to entropy, can be
considered as certainty measure for morphism f : X → Y .

Since I(y) for some value y is calculated as 1− log|X|m,
entropy H(f) can also be calculated as

H(f) =
∑
i

mi

|X|
(1− log|X|mi).

Since
∑

i
mi

|X|1 = 1,

H(f) = 1−
∑
i

mi

|X|
log|X|mi,

and since N(f) =
∑

i
mi

|X| log|X|mi, entropy can be calcu-
lated as

H(f) = 1−N(f).

Therefore, entropy H(f) and negentropy N(f) characterize
some morphism f : X → Y as data fusion algorithm.
The more negentropy N(f) is, the more data morphism f
integrates.

4) Partition information/knowledge amount: Given mor-
phisms set F : X → Y , each morphism fi ∈ F yields some
partition Partj(Y ) of Y . If each morphism f in some subset
Fi ⊆ F yields one and the same partition Parti(Y ), then
for each Fi it is possible to count frequency mj , thus, it is
possible to calculate information I(Parti(Y )) and knowledge
K(Parti(Y )) for each partition Parti(Y ) of the set Y :

I(Parti(Y )) = 1− log|F|mj

and
K(Parti(Y )) = log|F|mj .

As result, there are two new random variables and it is possible
to calculate entropy and negentropy for them. Entropy H(F)
of the set of morphisms F :

H(F) = 1−
∑
j

mj

|F|
log|F|mj

and negentropy N(F):

N(F) =
∑
j

mj

|F|
log|F|mj .

If some partition Parti(Y ) satisfies I(Parti(Y )) ≥ H(F),
it means that Parti(Y ) is informative, analogously, if
K(Parti(Y )) ≥ N(F), partition Parti(Y ) is meaningful.

5) Expected entropy/negentropy: Given some set of mor-
phisms F : X → Y , it is possible to characterize some
morphism f ∈ F in respect to the whole set F . Thereby,
expected entropy and negentropy of the set F are defined.
Let some subset Fi ⊆ F yields partition Parti(Y ) that has
frequency mi, then expected entropy H̄(F) of the set F is
calculated as follows:

H̄(F) =
∑
ij

mi

|F|
H(fj)

for each fj ∈ Fi. Expected negentropy N̄(F) is calculated as
follows:

N̄(F) =
∑
ij

mi

|F|
N(fj).

If some fi : X → Y satisfies H(fi) ≥ H̄(F), the morphism
fi is considered as informative with respect to the set of
morphisms F , analogously, if N(fi) ≥ N̄(F) is satisfied,
the morphism fi is considered as meaningful with respect to
the set F .

6) Internal and external morphism criteria: Given some set
of morphisms F : X → Y and some subset Fi ⊆ F that yields
partition Parti(Y ), for some morphism fj ∈ Fi it is possible
to calculate, on the one hand, information I(fj) or knowledge
K(fj) with respect to the whole set F , on the other hand, it
is possible to calculate entropy H(fj) and negentropy N(fj)
of the morphism fj itself. As result, one pair of measures
characterize morphism fj with respect to other morphisms,
thus, these measures are considered as external criteria, while
other pair of measures characterize the morphism fj with
respect to the way it divides the set Y , thus, these measures
are considered as internal criteria. Therefore, products

I(fj)H(fj)

and
K(fj)N(fj)

characterize morphism fj both from inner and outer sides. If
we are interested in comprehensive estimation of a morphism,
it is products I(fj)H(fj) and K(fj)N(fj) to be considered.

C. Application of the criteria to the model

In this section the set of developed criteria is applied to
morphism classes of the presented model. Given some identity
morphism id : X → X , as any identity morphism is bijection,
it satisfies

H(id) = 1

and
N(id) = 0.
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TABLE III

ID x1, ..., xn M1 M2

1 ... A C

2 ... A C

3 ... B D

4 ... B E

TABLE IV

A B C D E

P 0, 5 0, 5 0, 5 0, 25 0, 25

I 0, 5 0, 5 0, 5 1 1

K 0, 5 0, 5 0, 5 0 0

Since there are identity morphisms for objects and truth-
values categories that constitute constants and propositions,
constants and propositions are the most informative and the
least meaningful.

As constants are presented in every data set, the morphism
T , terms, has lower bound:

min(N(T )) = 0.

Given some atomic statement as : A → TV , on the one
hand, it is possible that |A| = |TV |, on the other hand, it is
possible that |TV | = 1. Therefore, the morphism AS satisfies

0 ≤ N(AS) ≤ 1.

As every cs ∈ CS has the only value tv ∈ TV , each cs
satisfies

H(cs) = 0

and
N(cs) = 1.

In other words, complex statements are the least informative
and the most meaningful.

To sum up, it is seen that data fusion processes could be
ordered as follows:

N(T ) ≤ N(AS) ≤ N(CS)

and data fusion process presents conversion of information to
knowledge.

1) Application of the criteria to terms: According to the
suggested logical model, different methods of signal, object
refinement, feature extraction and pattern recognition can be
represented as individual functions, i.e. terms. Let us consider
an application of the suggested criteria to an abstract instance
of such methods.

Suppose that we have a data set consisting of parameters
x1, ..., xn and four records and two different methods, M1 and
M2, that associate each record with some class. The partitions
are presented in the Table III.

Due to the developed criteria it is possible to compare these
two methods. First, calculate frequency P , information I and
knowledge K for each of the classes, see Table IV. Then

TABLE V

M1 M2

H 0, 5 0, 75

N 0, 5 0, 25

calculate for each method entropy H and negentropy N , see
Table V.

Let us see if they produce enough knowledge or information
in general. To do this, we shall consider every possible
partitions of the four elements set and calculate frequency,
information, knowledge, entropy and negentropy for each
partition, see Table VI.

The expected entropy and negentropy are:

H̄ ≈ 0, 66, N̄ ≈ 0, 33.

It means that M2 is informative and M1 produce enough
knowledge. Finally, calculate products I(Mi)H(Mi) and
K(Mi)N(Mi) for M1 and M2, see Table VII. According to
this results, method M1 produces more information and more
knowledge than M2.

2) Application of the criteria to atomic sentences: The
suggested criteria allow us to compare different relations
between objects. Suppose we are questioning which of two
relations, R1(x, y) or R2(x, z), to consider in the situation,
described on the Table VIII, where 1 means that a relation
holds and 0 means that it does not.

Calculating criteria for each of the cases see on the Table
IX. Calculating criteria for partitions see on the Table X. The
expected entropy and negentropy:

H̄ ≈ 0, 27, N̄ ≈ 0, 72.

It means that both of the relations are informative and none
of them is meaningful. Calculating products I(Ri)H(Ri) and
K(Ri)N(Ri) for R1 and R2 on the Table XI. It means
that relation R2 produces more information and relation R1

produces more knowledge.
3) Application of the criteria to complex sentences: Sup-

pose we have two facts, A1 and A2, which conclusion will be
more informative or meaningful: A1 ∨A2 or A1 6≡ A2?

Calculation of the criteria for each case on the Table XII.
Calculation of the criteria for partitions on the Table XIII.
Expected entropy H̄ and expected negentropy N̄ are:
• H̄ = 0, 3875,
• N̄ = 0, 6125.

It means that both conclusions are informative but none of
them is meaningful.

Calculation products I ∗ H and K ∗ N for each operator
is presented on the Table XIV. According to the results,
conclusion A1 6≡ A2 provides more information but the
conclusion A1 ∨A2 provides more knowledge.

V. CONCLUSION

Summing up, two general models of data fusion are pre-
sented. The first model is logical. It provides the structure of
data fusion process and the list of categories and morphisms
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TABLE VI

Part1 Part2 Part3 Part4 Part5

Partition {1}, {1}, {1}, {1} {2}, {1}, {1} {2}, {2} {3}, {1}, {4},
P 0, 09375 0, 5625 0, 140625 0, 1875 0, 015625

I ≈ 0, 43 ≈ 0, 1 ≈ 0, 35 ≈ 0, 3 0, 75

K ≈ 0, 57 ≈ 0, 9 ≈ 0, 65 ≈ 0, 7 0, 25

H 1 0, 75 0, 5 ≈ 0, 4 0

N 0 0, 25 0, 5 ≈ 0, 6 1

TABLE VII

M1 M2

I(Mi)H(Mi) 0, 175 0, 075

K(Mi)N(Mi) 0, 325 0, 225

TABLE VIII

X Y R1(x, y) X Z R2(x, z)

x1 y1 1 x1 z1 1

x1 y2 0 x1 z2 1

x1 y3 0 x1 z3 1

x2 y1 1 x2 z1 0

x2 y2 0 x2 z2 0

x2 y3 0 x2 z3 0

TABLE IX

R1(x, y) R2(x, z)

P(0) ≈ 0, 67 0, 5

P(1) ≈ 0, 33 0, 5

I(0) ≈ 0, 23 ≈ 0, 39

I(1) ≈ 0, 61 ≈ 0, 39

K(0) ≈ 0, 77 ≈ 0, 61

K(1) ≈ 0, 39 ≈ 0, 61

H ≈ 0, 35 ≈ 0, 39

N ≈ 0, 64 ≈ 0, 61

TABLE X

Part1 Part2 Part3 Part4

Partition {3}, {3} {4}, {2} {5}, {1} {6}
P 0, 3125 0, 46875 0, 1875 0, 03125

I ≈ 0, 28 ≈ 0, 18 ≈ 0, 4 ≈ 0, 83

K ≈ 0, 72 ≈ 0, 82 ≈ 0, 6 ≈ 0, 17

H ≈ 0, 39 ≈ 0, 35 ≈ 0, 25 0

N ≈ 0, 61 ≈ 0, 64 ≈ 0, 75 1

that constitute the process. There are two categories: objects
and truth-values, and three morphisms: terms, atomic state-
ments and complex statements.

The second model is category theoretic and it provides the
set of universal criteria for each possible morphism. According
to this criteria it is possible for each morphism to define, first,

TABLE XI

R1 R2

I(Ri)H(Ri) ≈ 0, 065 ≈ 0, 1

K(Ri)N(Ri) ≈ 0, 53 ≈ 0, 44

TABLE XII

A1 ∨A2 A1 6≡ A2

P (0) 0,25 0,5

P (1) 0,75 0,5

I(0) 1 0,5

I(1) 0,2 0,5

K(0) 0 0,5

K(1) 0,8 0,5

H 0,4 0,5

N 0,6 0,5

TABLE XIII

Part1 Part2 Part3

Partition {4} {3}, {1} {2}, {2}
P 0, 125 0, 5 0, 375

I 0, 75 0, 25 0, 35

K 0, 25 0, 75 0, 65

H 0 0, 4 0, 5

N 1 0, 6 0, 5

TABLE XIV

A1 ∨A2 A1 6≡ A2

I ∗H 0, 1 0, 175

K ∗N 0, 45 0, 325

is some value of the morphism meaningful or informative,
second, is the morphism meaningful or informative by itself,
third, is the morphism meaningful or informative in respect to
alternative morphisms.
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