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 Abstract— Column generation has proven to be efficient in 

solving the linear programming relaxation of large scale 

instances of the construction of Rotations with resource 

constraints. However difficulties arise when the instances are 

highly degenerate. Recent research has been devoted to 

accelerate column generation while remaining within the linear 

programming framework. This paper presents an efficient 

approach to solve the linear relaxation of the construction of 

Rotations with resource constraints. It combines column 

generation, preprocessing variable fixing, and stabilization. The 

outcome shows the great potential of such an approach for 

degenerate instances. 

Keywords- column generation, crew pairing problem, linear 

programming 

 

I. INTRODUCTION  

    In the airline industry, optimization and automation of the 

construction crew rotations is a major financial and 

organizational challenge. The problem is to cover cost of all 

flights of the company, programmed over a given time, with 

crews trained staff cockpit (pilot, co-pilots) and flight 

attendants (stewardesses, stewards) . At intervals of several 

days (of the order of the week), each crew from the base to 

which he is assigned, connects a number of flights and 

returned to base. This sequence of flights back to the base is 

called rotation. The construction of rotations of an airline is 

extremely restricted by international regulations, national and 

domestic labor, and the limited availability of resources. 

  

   These constraints make the problem particularly difficult to 

solve. The use of models and optimization software for this 

problem enables large companies to make substantial 

financial gains. It is not uncommon that a reduction of one 

percent on the total cost of rotations translates into tens of 

millions of dollars of savings for large companies [1], where 

research, basic and applied abundant on the subject. The 

general problem of construction of Rotations with resource 

constraints (RC-PCR) can be formulated as a feasible flow 

problem minimum cost in a multiple network, with additional 

variables and constraints of resources.  

    Finally, note that resource constraints make the problem 

(PCR-CR) NP-hard. The terms of network construction 

rotations eligible for calculating the cost of rotations and the 

associated mathematical program are presented in Section 2, 

Section 3 provides an overview of classical techniques of 

resolution, including the method of column generation, 

whose associated sub problem is treated in Section 4, in 

addition to our contribution. Section 5 presents some 

numerical results. To Section 6 concludes the paper. 

 

II. PRESENTATION OF THE PROBLEM 

 

    All flights covered by the crews is denoted V = (1, ...., N). 

The flight schedule and schedules are established partners on 

an almost-certain about the period of the order of the month 

or week depending on company size. The term flight 

Associate each element i ∈ Vest in some cases unfair, since i 

can actually represent a sequence of flights aggregate and 

indivisible, i.e., can not be covered by a single crew in its 

entirety. Often too, the task to cover a crew is not the only 

flight but a flight service may start before and end after the 

flight itself, in order to include the time of preparing the 

aircraft and the accompanying time passengers, for example. 

However, we maintain this terminology theft, for readability. 

We know for each flight i ∈ V: 

(i) the departure time 𝑡↗(𝑖), 
(ii) the time of arrival 𝑡↘(𝑖), 
(iii) the airport of departure  𝑎↗(𝑖), 
(iv) the airport of arrival  𝑎↘(𝑖). 
 

    A rotation should begin and end at one of the bases of the 

company. The set B of bases is usually composed of large 

platforms called interconnection hubs. The problem building 

rotations in the air has often resource constraints on rotations. 

To address these constraints, valid for each rotation 

individually, a classical model associates with each crew 

subnet constructed as follows. 
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    The Problem of Construction of Rotation Constraint 

Resources (PCR-CR) can be modeled, if the cost function is 

linear, the Linear Programming in mixed variables. We have 

a feasible flow problem minimum cost on all subnets with 

varying binary variables and continuous flow of resources:  

≡

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 min   ∑ ∑ 𝑐𝑖𝑗

𝑘𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘

𝐾

𝑘=1

                                                                                (1)

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗:(𝑖,𝑗)∈𝐴𝑘

𝐾

𝑘=1

≥ 1  𝑓𝑜𝑟  𝑖 ∈ 𝑉 = {1, … . . , 𝑛}                                    (2)

∑ 𝑥
𝑜𝑘𝑖
𝑘

𝑖:(𝑜𝑘,𝑖)∈𝐴𝑘

= 1  𝑓𝑜𝑟  𝑘 ∈ 𝒦                                                              (3)

∑ 𝑥
𝑖𝑑𝑘
𝑘

𝑖:(𝑖,𝑑𝑘)∈𝐴𝑘

= 1  𝑓𝑜𝑟  𝑘 ∈ 𝒦                                                              (4)

∑ 𝑥𝑖𝑗
𝑘

𝑖:(𝑖,𝑗)∈𝐴𝑘

= ∑ 𝑥𝑗𝑙
𝑘

𝑙:(𝑗,𝑙)∈𝐴𝑘

  𝑓𝑜𝑟  𝑗 ∈ 𝑉𝑘                                                 (5)

𝑇𝑖
𝑘,𝑞
+ 𝑡𝑖

𝑘,𝑞
− 𝑇𝑗

𝑘,𝑞
≤ 𝑀(1 − 𝑥𝑖𝑗

𝑘 )  𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐴𝑘 , 𝑘 ∈ 𝒦 , 𝑞 ∈ 𝒬  (6)

𝑎𝑖
𝑘,𝑞

≤ 𝑇𝑖
𝑘,𝑞

≤ 𝑏𝑖
𝑘,𝑞
  𝑓𝑜𝑟  𝑖 ∈ 𝑉𝑘 , 𝑘 ∈ 𝒦 , 𝑞 ∈ 𝒬                                 (7)

𝑥𝑖𝑗
𝑘 ∈ {0,1} , 𝑇𝑖

𝑘,𝑞
≥ 0  𝑓𝑜𝑟 (𝑖, 𝑗) ∈ 𝐴𝑘 , 𝑘 ∈ 𝒦 , 𝑞 ∈ 𝒬                       (8)

 

 

   The objective (1) minimizes the total cost of rotations. 

Constraints (2) express the coverage of each flight by at least 

one crew if only one crew is allowed per flight is forced to 

equal. Constraints (3-5) define a path structure in the subnet 

𝐺𝑘 : transition from a flow unit (3 or 4) and flux conservation 

at the vertices (5). Constraints (6-7) are the constraints 

associated with each rotation. Constraint (1.6), where M> 0 

is a parameter very large, can also be found under the 

following nonlinear form: 
𝑥𝑖𝑗
𝑘 (𝑇𝑖

𝑘,𝑞
+ 𝑡𝑖

𝑘,𝑞
− 𝑇𝑗

𝑘,𝑞
) ≤ 0   (𝑖, 𝑗) ∈ 𝐴𝑘 , 𝑘 ∈ 𝒦 , 𝑞 ∈ 𝒬       (9) 

 

The inequality in (6) or (9) states that the waiting is allowed 

for the crew, otherwise the constraint is written to equality. 

This constraint yields accumulated consumption of resource 

q at node j, since we have: 

𝑇𝑗
𝑘,𝑞
= max (𝑎𝑖

𝑘,𝑞
, 𝑇𝑖

𝑘,𝑞
+ 𝑡𝑖

𝑘,𝑞
) 

Constraints (7) are constraint bounds at the nodes of the 

network (time windows for example). Note that the 

constraints (3-7) are local constraints valid for one subnet 𝐺𝑘. 

    Only coverage constraints (2) are global constraints linking 

the K sub-networks. The relaxation of these binding 

constraints and the decomposition of the original problem by 

sub-network will be an interesting option for resolution. 

     Finally, note that resource constraints (6-7) make the 

problem (PCR-CR) NP-hard. Even the feasibility problem 

associated is NP-complete. 

 

 

III. SOLVING APPROACHES  

 

A. Principles of decomposition 

    There  are   two  types of constraints in   the  system   (2) 

- (7): 

 (i) the   coverage  constraints (2), said    bonding or global, 

binding all crews 𝑘 = 1,… . , 𝐾, 

 (ii) the constraints (3) - (7) of each crew 𝑘 ∈ {1, … . , 𝐾} and 

defining a legal road. 

 

    The matrix associated with constraints (3) - (7) is block 

diagonal, and the objective (1) is separable (for linear), 

solving the continuous relaxation of this model may be based 

on the decomposition of Dantzig-Wolfe . In this type of 

decomposition, the constraints (3) - (7) define K independent 

sub-problems and global constraints (2) are stored in the 

master problem. In a schema type column generation, it is 

alternately solving the master problem and the K sub-

problems. For a complete solution, this scheme can be 

applied at each node of the search tree. The major difficulty 

lies in solving sub-problems whose state space can grow 

exponentially with the number of resources Q, making 

essential use of heuristics. On the other hand, the 

convergence of the scheme of column generation is sensitive 

to the quality of solutions provided by the resolution of these 

sub-problems; the effective resolution of instances from real 

industry needs to find a good compromise between Quality 

solutions and time resolution of sub-problems. In what 

follows, we detail the general principle of column generation 

for the problem (PCRCR). 

 

B. Column Generation, master problem and sub problem 

   The methods of column generation [3] have been 

successfully applied to problems of construction of rotations 

[2], [5]. In this approach, the master problem is reformulated 

by a coverage problem (PC) (Set Covering and Set 

Partitioning under the constraint of flight coverage is unequal 

or equal): 

 

(𝑃𝐶) ≡

{
 
 

 
 min∑𝑐𝑟𝑥𝑟                                      (10)

𝑟∈ℛ

∑𝑎𝑖𝑟𝑥𝑟 ≥ 1   𝑖 ∈ 𝑉 = {1,… . . , 𝑛}    (11)     

𝑟∈ℛ

𝑥𝑟 ∈ {0,1}         𝑟 ∈ ℛ                         (12)

 

 

Or ℛ designate all eligible rotations satisfying the resource 

constraints and sequence between flights, 𝑐𝑟 represents the 

cost of the rotation  𝑟 ∈ ℛ, 𝑎𝑖𝑟 = 1 if and only if the rotation 

r covers flight i, and the variable 𝑥𝑟  indicates binary choice 

whether or not the rotation r in the solution. 

 

    We note (𝑃𝐶̅̅ ̅̅ ) continuous relaxation of problem (𝑃𝐶) 
where the integrity constraints (12) are replaced by 𝑥𝑟 ≥ 0 

for 𝑟 ∈ ℛ. The total number of allowable rotations |ℛ| is 

generally an exponential function of the number 𝑛 =
|𝑉| flights to cover the complete list of ℛ is to be avoided. 

However, it is possible to quickly find a reasonable solution 

to optimal (𝑃𝐶̅̅ ̅̅ ) without generating a small subset of rotations 
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(i.e., columns of the matrix of constraints). The principle is as 

follows. ℛ0 is a feasible solution for (𝑃𝐶), comprising a 

small number of rotations of ℛ , and generated by any 

heuristic. We can solve the Linear Programming (e.g., the 

Simplex algorithm) it (𝑃𝐶̅̅ ̅̅ 0), which is the restriction of (𝑃𝐶̅̅ ̅̅ ) 
the subset of rotations ℛ0. This resolution also provides a 

vector of multipliers or dual variables (𝛿1
0, …… , 𝛿𝑛

0) 
associated with no flights to be covered. The optimality 

criterion that all rotations are positive reduced cost at the 

optimum led to investigate the rotation of lower cost reduces 

negative, let 

 

𝑟0 = 𝑎𝑟𝑔min
𝑟∈ℛ

(𝑐𝑟 −∑𝛿1
0𝑎𝑖𝑟

𝑛

𝑖=1

)          (13) 

 

   If we can find in reasonable time the rotation 𝑟0 , then we 

can revive the resolution of the hedging program (𝑃𝐶̅̅ ̅̅ ) on all 

ℛ1 = ℛ0 ∪ {𝑟0}, adding column 𝑎𝑟0  to the matrix of 

constraints. Overall, we solve at each iteration t the restricted 

master problem (𝑃𝐶̅̅ ̅̅ 𝑡  ) :  
 

(𝑃𝐶̅̅ ̅̅ 𝑡) ≡

{
 
 

 
 min ∑ 𝑐𝑟𝑥𝑟                                       (14)

𝑟∈ℛ𝑡

∑ 𝑎𝑖𝑟𝑥𝑟 ≥ 1   𝑖 ∈ 𝑉 = {1,… . . , 𝑛}    (15)     

𝑟∈ℛ𝑡

𝑥𝑟 ≥ 0         𝑟 ∈ ℛ 𝑡                             (16)

 

 

such that   ℛ𝑡 = ℛ𝑡−1 ∪ {𝑟𝑡−1}   
or, if 𝛿𝑡−1 denotes the vector of multipliers associated with 

no flights in the resolution(𝑃𝐶̅̅ ̅̅ 𝑡−1), l the rotation 𝑟𝑡−1 lower 

cost of reduced negative is defined by 

 

𝑟𝑡−1 = 𝑎𝑟𝑔min
𝑟∈ℛ

(𝑐𝑟 −∑𝛿𝑖
𝑡−1𝑎𝑖𝑟

𝑛

𝑖=1

)          (17) 

 

The term generation of columns from the addition of column  

𝑎𝑟𝑡 to the matrix of constraints of the master problem at each 

iteration t. This iterative process of solving the master 

problem (14-16) and the sub-problem (17) is stopped when 

all rotations are positive reduced cost in solving the problem 

by - a sign that the continuous optimum is reached -- either 

iteration s as:  

 

min
𝑟∈ℛ

(𝑐𝑟 −∑𝛿𝑖
𝑠𝑎𝑖𝑟

𝑛

𝑖=1

)  ≥ 0 

 
A variant of this method to accelerate the process in practice 

[6], is to add at each iteration a subset of rotations additional 

cost reduces negative instead of the single best rotation of 

sub-problem (17). The desired maximum size of this subset 

of incoming columns can be set so as to evolve during the 

algorithm. The overall complexity of the method is highly 

dependent on the complexity of the sub-problem that resource 

constraints make it NP-hard. It is however often possible to 

resolve in a reasonable time by an implicit enumeration ℛ by 

exploiting the graph structure of the sub-problem and using 

variants of algorithms shortest path. 

 

 

C. Resolution of sub-problem for column generation 

    Noting that in the case of several sub-networks = 1,… . . , 𝐾 

, under the resolution of problem (1.21) is decomposed by 

sub-networks, we omit the index k and the graph of the 

problem will be denoted as 𝐺 = ({𝑜} ∪ 𝑉 ∪ {𝑑}, 𝐴) . 

    The problem of shortest path with resource constraints 

(RC-CCP), is Formula as follows: 

(𝑃𝐶𝐶𝐶𝑅)

{
 
 
 
 
 
 

 
 
 
 
 
 min ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴

                                                               (18)

∑ 𝑥𝑜𝑖
𝑖:(𝑜,𝑖)∈ 𝐴

= 1                                                                 (19)

∑ 𝑥𝑖𝑑
𝑖:(𝑖,𝑑)∈ 𝐴

= 1                                                                 (20)

∑ 𝑥𝑖𝑗  = ∑ 𝑥𝑗𝑖    

𝑖:(𝑖,𝑗)∈𝐴

        𝑗 ∈ 𝑉 = {1,… . . , 𝑛}   (21)

𝑖:(𝑖,𝑗)∈𝐴

𝑥𝑖𝑗(𝑇𝑖
𝑞
+ 𝑡𝑖

𝑞
− 𝑇𝑗

𝑞
) ≤ 0       (𝑖, 𝑗) ∈ 𝐴 , 𝑞 ∈ 𝒬              (22)

𝑎𝑖
𝑞
≤ 𝑇𝑖

𝑞
≤ 𝑏𝑖

𝑞
    𝑖 ∈ 𝑉, 𝑞 ∈ 𝒬                                         (23)

𝑥𝑖𝑗 ∈ {0,1} , 𝑇𝑖
𝑞
≥ 0  (𝑖, 𝑗) ∈ 𝐴 , 𝑞 ∈ 𝒬                          (24)

 

To resolve this problem, Desrochers and Soumis [9] offer a 

dynamic programming algorithm type pulling. 

Definition 1 A path from each origin o to node j, we associate 

a label  (Cj, Tj) = (Cj, Tj
1, … . , Tj

Q
) representing the state of its 

resources and cost. 

 

Definition 2 Let (Cj, Tj) and (C′j, T′j) two labels associated 

with two feasible paths 𝑃 and 𝑃′from 𝑜 to 𝑗. We say 

that(Cj, Tj)  dominates (C′j, T′j) (or alternatively that 𝑃 

dominates 𝑃′ and there (Cj, Tj) ≤ (C′j, T′j)  (or as 𝑃 ≤ 𝑃′ ) if 

and only if Cj ≤ C′j et 𝑇𝑗
𝑞
 ≤ 𝑇′𝑗

𝑞
, ∀𝑞 ∈ 𝒬. 

 

Definition 3 A label associated with a feasible path from o to 

d, is called effective if it is minimal in the sense of the order 

relation ≤. A path is said to be efficient if it is associated to a 

label effective. 

  

   The dynamic programming algorithm (DPA) proceeds in 

three stages. In each node j ∈ V, it does the following: 

1. Extension of roads (generation of labels) 

2. Filtering (test for feasibility) 

3. Dominance  (removing labels inefficient). 

 

  For a given node j, labels are created by extending those 

present at the nodes i such that (𝑖, 𝑗) ∈ 𝐴. Thus, a new label 

(Cj, Tj) is given by 

C𝑗 = C𝑖 + 𝑐𝑖𝑗  
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𝑇𝑗
𝑞
= max{𝑎𝑗

𝑞
, 𝑇𝑖

𝑞
+ 𝑡𝑖𝑗

𝑞
} , 𝑞 ∈ 𝒬 

Considering that all the predecessors of node j ∈ V have 

already milked the dominant node j can be interpreted as 

determining the Pareto optimal problem of a multicriteria 

|𝒬| + 1 functions: 

 

{
min

𝑖;(𝑖,𝑗)∈𝐴
(𝐶𝑖 + 𝑐𝑖𝑗  ; max{𝑎𝑗

𝑞
, (𝑇𝑖

𝑞
+ 𝑡𝑖𝑗

𝑞
)} , 𝑞 ∈ 𝒬)

𝑇𝑖
𝑞
+ 𝑡𝑖𝑗

𝑞
≤ 𝑏𝑗

𝑞
   , 𝑞 ∈ 𝒬

 

Let 𝑣∗ its optimal value. 

 

In a recent work Nagih and Soumis [4] propose a method of 

aggregation of resources for PCC-CR by projection, in each 

node simultaneously using an algorithm of dynamic 

programming and Lagrangean relaxation.  

 

 

D. Algorithm   

 

     Step0   initialization𝑃𝑀𝑅0 

     Step1    (Solve 𝑃𝑀𝑅𝑘) by the simplex method 

                    → (𝑧𝑃𝑀
𝑘 , 𝑥𝑘 , 𝛿𝑘) 

     Step2    (Solve 𝑆𝑃𝑘) 

                - meter update costs: 𝑐𝑖𝑗 = 𝑐𝑖𝑗 − 𝛿𝑗    . 

                - calculate the Lagrange multipliers𝑢𝑖𝑗
𝑘  . 

                - calculate the solution 𝑚𝑎𝑥𝐿(𝑢𝑖𝑗
𝑘 ), uses APD-L 

          - calculate feasible solutions Φ(𝑢𝑖𝑗
𝑘 ) , uses APD-LND 

                - test, if minΦ(𝑢𝑖𝑗
𝑘 ) ≥ 0 then stop, go to Step 5. 

                             otherwise go to Step 3. 

     Step3     generated the best solution and a negative cost 

subset of complementary solutions that can be calculated by 

two techniques (selection, or resolution)     → 𝑋𝑘. 

     Step4      put  𝑃𝑀𝑅𝑘 = 𝑃𝑀𝑅𝑘 ∪ {𝑋𝑘}. 
                     Returned to Step 1. 

     Step5             → (𝑧𝑃𝑀
𝑘 , 𝑥𝑘) Optimal solution. 

 

IV. NUMERICAL RESULTS  

    This section presents the preliminary evaluation of our 

approach to the problem of construction of vehicle routing 

with a single resource. 

    Solomon's 100-customer Euclidean (VRPTW) instances 

are used to test our algorithm. In these instances, the travel 

time and the Euclidean distance between two customer 

locations are the same and this value is truncated to two 

decimal places. There are six different classes of instances 

depending on the geographic location of the customers (R : 

random; C : clustered ;RC : mixed) and width of the 

scheduling horizon (1 : short horizon ; 2 : long horizon). In 

this work, instances of type 1 are discarded due to the short 

horizon that does not allow a significant number of routes to 

be sequenced to form a workday. Results are thus reported 

for R2 , C2 and RC2 . Due to the limitations of our exact 

approach, the computational study focuses on instances 

obtained by taking only the first 25 customers from each 

original instance. 

    Solomon's (VRPTW) test instances are modified to fit our 

problem. In particular, a value tmax to limit route duration is 

needed. This value was first set to 100 in the case of R2 and 

RC2, and 200 in the case of C2. The value is larger for C2 

because the service or dwell time at each customer is 90, as 

opposed to 10 for R2 and RC2. Finally, a gain of 1 is 

associated with each customer and weighted by an arbitrarily 

large constant to maximize first the number of served 

customers, and then minimize the total distance. 

    The results for the instances with reduced time windows 

are shown in Table1. In the table1, a particular instance is 

identified by its class and its index followed by a dot and the 

number of customers considered. For example RC202.25 is 

the second instance of class RC2, where only the first 25 

customers are considered. In these table, column Problem is 

the identifier of the problem instance, ItrGC is the total 

number of iteration of (PM) solved by Simplex,Col is the 

total number of columns generated during the branch-and-

price algorithm, T(ssp) is the computation time in seconds 

and Obj. is the total distance. 

TABLE I.   

Problems  ItrGC Col T(ssp) Obj 

RC201.25  123 609 0.9 967.9 

RC202.25  110 1132 221.0 961.6 

RC203.25  713 2589 2566.2 751.3 

RC205.25  218 944 5.4 974.9 

RC206.25  444 1703 4.6 977.1 

RC207.25  3119 13989 418.4 819.6 

R201.25  218 577 1.0 772.8 

R202.25  108 1030 127.0 694.0 

R205.25  1326 4930 60.1 761.2 

R210.25  71 918 121.4 704.6 

R211.25  57 1150 42.9 623.7 

C201.25  329 3448 5.1 679.5 

C202.25  4023 13860 782.8 677.3 
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V. METHOD OF SEPARATION  

   The method of column generation is used to solve the 

relaxed problem at node U. The hybrid of simplex algorithm 

(method exists in the library ILOG) with a method called 

Pricing. If the solution is fractional then a separation method 

is applied to the problem Pu. It is to subdivide the whole set 

of solutions Su into two disjoint sets, this has the effect of 

eliminating the achievability of the fractional solution for 

both new issues that are the son of Pu. 

 

VI. CONCLUSION  

   In this section devoted to solving the problem of 

construction of Rotations with resource constraints (PCR-

CR), we have mainly developed approaches to column 

generation and decomposition master problem and sub-

problem. The difficulty of solving sub-problem is directly 

related to the number of resources, we particularly studied the 

techniques of reduction of space resources, and the concept 

of reduction is a key element of the effectiveness of the 

overall resolution of issue. Indeed, if in a strategic planning 

perspective the computation time may be less critical than the 

overall cost of rotations, however in an operational setting the 

gain on the time resolution of sub-problem becomes a major 

issue. The prospects of research on this problem are 

numerous. Among these are the problems of rebuilding a 

robust solution after disruption by any hazard, planning 

initially constructed. These re-optimization problem of 

growing interest among engineers in charge of planning in the 

large transport companies and open up avenues of research 

particularly interesting and promising. 
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