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Abstract—We consider systems of ordinary differential equa-
tions that appear in gene regulation networks. Interrelation
between nodes of a network is described by the regulatory matrix
W. We provide description of attracting sets for various choices
of regulatory matrix W or, equivalently, for various types of
interrelation in a network. The related examples are considered.

I. I NTRODUCTION

The problem of self-regulation in large systems is by no
means actual. For instance, in telecommunication systems,
where changes are rapid and unpredictable, one can con-
struct an optimal virtual network topology (VNT) [2], [3]
by establishing a set of lightpaths between nodes. To treat
changing in time (fluctuating) traffic on a VNT, adaptive VNT
control methods should be invented, which reconfigure VNTs
according to traffic conditions on VNTs. To develope such
methods, one way is to observe attractor selection in biological
systems that adapt to unknown changes in their surrounding
environments and recover their conditions. We consider an
attractor selection that models the behavior of gene regulatory
and metabolic reaction networks in a cell.

The relations between elements of a network is used to
model by the so called regulatory matrixW. In order to
deal with possibly simple objects it is proposed that entries
of regulatory matrixW can be of only three kinds:−1, 0
and+1 that corresponds respectively to inhibition, no relation
and activation. Properties of a dynamical system modelling
the network strongly depend on the structure of matrixW.
The study of related differential systems which are nonlinear,
depend on parameters and may be of arbitrary size is a highly
nontrivial task.

Even in the simplest cases the analysis of such systems
provide nontrivial results. For instance, in the work [8] the
simplified system of the form





dx1

dt
=

1
1 + e−µ(x2−Θ)

− x1,

dx2

dt
=

1
1 + e−µ(x1−Θ)

− x2,

(1)

was considered with the regulatory matrixW =
∣∣∣∣
0 1
1 0

∣∣∣∣ . It

was proved that this system has no more than three critical

points. The complete description of the critical points were
given.

It was proven later [1] that for arbitrary dimensionn any
possible critical point is of the form(x, . . . , x), that is, any
critical point locate on the bisectrix. This allows to study the
case of a general system consisting ofn differential equations
for regulatory matrix

W =

∣∣∣∣∣∣∣∣∣∣

0 1 1 ... 1
1 0 1 ... 1
...
1 1 ... 0 1
1 1 ... 1 0

∣∣∣∣∣∣∣∣∣∣

. (2)

This is the so called “cross-activation” case. Full description of
critical points was given for this case [1]. The specific region
Ω in a (µ, Θ)-plane was obtained with the properties: 1) if
(µ, Θ) ∈ exterior Ω, then the attracting set consists of one
critical point (attraction in all dimensions); 2) if(µ, Θ) ∈ ∂ Ω,
the attracting set consists of two critical points, one attracting
in all dimensions (all characteristic numbers are negative) and
the second point attracting in(n− 1)-dimensions and degen-
erate (the respectiveλ is zero) in the remaining dimension; 3)
if (µ, Θ) ∈ interior Ω, then there are three critical points; the
middle point is attracting in(n− 1)-dimensions and repelling
in the remaining dimension (the respectiveλ is positive); the
two side critical points are attracting in all dimensions.

In the sequel we consider cases of different regulatory
matrices W and provide conclusions on the character of
critical points that form the attractors for related differential
systems.

General information about networks, kinds of models can
be found in the review articles[4], [5], [6], [7].

A. General information

We consider systems of the form

dxi

dt
= f(

∑
Wijxj −Θ)vg − xivg − η, (3)

where f is sigmoidal function,Wij are entries of the reg-
ulatory matrix W, Θ is a regulatory parameter that can be
adjusted, parameterη represents stochastic behavior.
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This differential system describes the dynamics of the
expression level of the protein on thei-th gene.

Thexi variables represent the deterministic behavior of gene
i.

The deterministic and stochastic behaviors are controlled
by growth ratevg, which represents the conditions of the
metabolic reaction network.

Regulations of protein expression levels on genei by other
genes are indicated by regulatory matrixWij , the elements
of which take values−1, 0, or +1 (due to inhibition, no
interaction and activation, respectively).

In what follows we consider the simplified system (vg = 1,
η = 0)





dx1

dt
=

1
1 + e−µ(W11x1+W12x2+...+W1nxn−Θ)

− x1,

dx2

dt
=

1
1 + e−µ(W21x1+W22x2+...+W2nxn−Θ)

− x2,

...

dxn

dt
=

1
1 + e−µ(Wn1x1+Wn2x2+...+Wnnxn−Θ)

− xn.

(4)

The sigmoidal functions are many. The sigmoidal function
used in our analysis isf(z) = 1/(1 + eµz). The parameterµ
indicates the gain rate of the sigmoidal function.

II. I NHIBITION -ACTIVATION CASE

We consider the case where the regulatory matrix is

W =

∣∣∣∣∣∣∣∣∣∣

0 −1 −1 ... −1
1 0 −1 ... −1
...
1 1 ... 0 −1
1 1 ... 1 0

∣∣∣∣∣∣∣∣∣∣

. (5)

The differential system takes the form





x′1 =
1

1 + e−µ( −x2−x3+...−xn−1−xn−θ)
− x1,

x′2 =
1

1 + e−µ(x1 −x3+...−xn−1−xn−θ)
− x2,

...

x′n−1 =
1

1 + e−µ(x1+x2+ ...+xn−2 −xn−θ)
− xn−1,

x′n =
1

1 + e−µ(x1+x2+...+xn−2+xn−1− θ)
− xn,

(6)

A. Critical points

Critical points of system (4) are to be determined from



x1 =
1

1 + e−µ( −x2−x3+...−xn−1−xn−θ)
,

x2 =
1

1 + e−µ(x1 −x3+...−xn−1−xn−θ)
,

...

xn−1 =
1

1 + e−µ(x1+x2+...+xn−2 −xn−1−θ)
,

xn =
1

1 + e−µ(x1+x2+...+xn−2+xn−1 −θ)
,

(7)

Since the right sides in (7) are positive but less than a unity,
all critical points locate in the figure(0; 1)×(0; 1)×(0; 1)...×
(0; 1).

Lemma 2.1:Any positive solution of the system (7) is
unique.

Proof for 2D system is easy.

Proof. Indeed, the functionx1(x2) =
1

1 + e−µ(−x2−θ)
is

decreasingin the interval[0, 1]. On the other hand, the second
of equations (7) can be rewritten as

x1 = Θ− 1
µ

log
( 1
x2
− 1

)
. (8)

This function monotonically increases from−∞ to +∞ in
the interval(0, 1). There is only one point of intersection of
the graphs of both functions.¤
B. Linearized system

To get the character of possible critical points, consider the
linearized system




u′1 = −u1 − µg1(u2 + u3 + ... + un),
u′2 = −u2 − µg2(−u1 + u3 + ... + un),
...
u′n = −un − µgn(−u1 − u2 − ...− un−1),

(9)

where

g1 =
e−µ(−x2−x3−...−xn−θ)

[1 + e−µ(−x2−x3−...−xn−θ)]2
(10)

g2 =
e−µ(x1−x3−...−xn−θ)

[1 + e−µ(x1−x3−...−xn−θ)]2
(11)

...

gn =
e−µ(x1+x2−...+xn−1−θ)

[1 + e−µ(x1+x2−...+xn−1−θ)]2
(12)

Values ofg1 andg2 are always positive and less than unity.
The matrixA of the system (9) is

A =

∣∣∣∣∣∣∣∣

−1 −µg1 −µg1 ... −µg1

µg2 −1 −µg2 ... −µg2

...
µgn µgn ... −µgn −1

∣∣∣∣∣∣∣∣
(13)

A− λI =

∣∣∣∣∣∣∣∣

−1− λ −µg1 −µg1 ... −µg1

µg2 −1− λ −µg2 ... −µg2

...
µgn µgn ... −µgn −1− λ

∣∣∣∣∣∣∣∣
(14)
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C. Specificcases

1) Two-dimensional system :We consider the specific case

W =
∣∣∣∣
0 −1
1 0

∣∣∣∣ (15)

The differential system looks as




x′1 =
1

1 + e−µ(−x2−θ)
− x1,

x′2 =
1

1 + e−µ( x1−θ)
− x2,

(16)

Introducingthe notation

g1 =
e−µ(−x2−θ)

[1 + e−µ(−x2−θ)]2
(17)

g2 =
e−µ(x1−θ)

[1 + e−µ(x1−θ)]2
, (18)

where values ofg1 and g2 are always positive and less than
unity, the linearized system can by written as

{
u′1 = −u1 − µg1u2,
u′2 = µg2u1 − u2.

(19)

A− λI =
∣∣∣∣
−1− λ −µg1

µg2 −1− λ

∣∣∣∣ (20)

det|A− λI| = λ2 + 2λ + µ2g1g2 + 1 = 0 (21)

{
λ1 = −1− µ

√
g1g2 i,

λ2 = −1 + µ
√

g1g2 i.
(22)

It appearsthat only one type of critical point is possible for
the 2D system. Sinceλ1,2 are complex numbers, the type of
critical point is stable focus.

∣∣∣∣
−1 −µ

√
g1g2

µ
√

g1g2 −1

∣∣∣∣ (23)

Proposition 2.1: The system (16) has only one type of a
critical point, namely, stable focus.

2) Three-dimensional system :We consider the specific
case

W =

∣∣∣∣∣∣

0 −1 −1
1 0 −1
1 1 0

∣∣∣∣∣∣
(24)

We introduce variablesgi to simplify the linearized system

g1 =
e−µ(−x2−x3−θ)

[1 + e−µ(−x2−x3−θ)]2
(25)

g2 =
e−µ( x1−x3−θ)

[1 + e−µ( x1−x3−θ)]2
(26)

g3 =
e−µ( x1+x2−θ)

[1 + e−µ( x1+x2−θ)]2
(27)

Values ofgi are in (0; 1). Linearized system now is




u′1 = −u1 − µg1u2 − µg1u3,
u′2 = µg2u1 − u2 − µg2u3,
u′3 = µg3u1 + µg3u2 − u3.

(28)

A− λI =

∣∣∣∣∣∣

−1− λ −µg1 −µg1

µg2 −1− λ −µg2

µg3 µg3 −1− λ

∣∣∣∣∣∣
(29)

The characteristic equation is

det|A− λI| = −λ3 − 3λ2 − µ2(g1g2 + g1g3 + g2g3)(λ + 1)−
−3λ− 1 = 0

(30)
The eigenvaluesλ are





λ1 = −1,
λ2 = −1− µ

√
g1g2 + g1g3 + g2g3 i,

λ3 = −1 + µ
√

g1g2 + g1g3 + g2g3 i.
(31)

We arrive at the proposition.
Proposition 2.2: For any critical point of the respective

differential system the following is true: there is 2D-subspace
with a stable focus and a attraction in the remaining dimension.

Consider a number of examples illustrating (and confirming)
our analysis.

For parametersµ = 1 and θ = 0.5, the critical point
is (0.211336, 0.311244, 0.505645). The values ofλ for this
critical point are





λ1 = −1,
λ2 = −1− 0.36191 i,
λ3 = −1 + 0.36191 i.

(32)

In this example the 3D system of the (??) has one critical
point (stable focus in 2D-subspace and stable node in second
subspace).

3) Four-dimensional system :We consider the specific case

W =

∣∣∣∣∣∣∣∣

0 −1 −1 −1
1 0 −1 −1
1 1 0 −1
1 1 1 0

∣∣∣∣∣∣∣∣
(33)

We introduce new variables to simplify the linearized sys-
tem

g1 =
e−µ(−x2−x3−x4−θ)

[1 + e−µ(−x2−x3−x4−θ)]2
(34)

g2 =
e−µ( x1−x3−x4−θ)

[1 + e−µ( x1−x3−x4−θ)]2
(35)

g3 =
e−µ( x1+x2−x4−θ)

[1 + e−µ( x1+x2−x4−θ)]2
(36)

g4 =
e−µ( x1+x2+x3−θ)

[1 + e−µ( x1+x2+x3−θ)]2
(37)
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Valuesof gi are in (0; 1). The linearized system now is




u′1 = −u1 − µg1u2 − µg1u3 − µg1u4,
u′2 = µg2u1 − u2 − µg2u3 − µg2u4,
u′3 = µg3u1 + µg3u2 − u3 − µg3u4,
u′4 = µg4u1 + µg4u2 + µg4u3 − u4,

(38)

One has that

A− λI =

∣∣∣∣∣∣∣∣

−1− λ −µg1 −µg1 −µg1

µg2 −1− λ −µg2 −µg2

µg3 µg3 −1− λ −µg3

µg4 µg4 −µg4 −1− λ

∣∣∣∣∣∣∣∣
(39)

The characteristic polynomial is

det|A− λI| = λ4 + 4λ3+
+µ2(g1g2 + g1g3 + g1g4 + g2g3 + g2g4 + g3g4)λ2 + 6λ2+
+2µ2(g1g2 + g1g3 + g1g4 + g2g3 + g2g4 + g3g4)λ + 4λ+
+µ2(g1g2 + g1g3 + g1g4 + g2g3 + g2g4 + g3g4) + 1 = 0

(40)
Denote

Sg1 = g1g2 + g1g3 + g1g4 + g2g3 + g2g4 + g3g4 (41)

then

det|A− λI| = λ4 + 4λ3 + µ2(Sg1)λ2 + 6λ2+
+2µ2(Sg1)λ + 4λ + µ2(Sg1) + 1 + g1g2g3g4µ

4 = 0 (42)

Set
G = Sg1 −

√
S2

g1 − 4g1g2g3g4 > 0 (43)

then





λ1 = −1−
√

2
2

µ
√

G i,

λ2 = −1 +
√

2
2

µ
√

G i,

λ3 = −1−
√

2
2

µ
√

G i,

λ4 = −1 +
√

2
2

µ
√

G i.

(44)

Proposition 2.3:For any critical point of the 4D system the
following is true: there is two 2D-subspace with a stable focus.

4) Five-dimensional system :Finally we consider the
specific case

W =

∣∣∣∣∣∣∣∣∣∣

0 −1 −1 −1 −1
1 0 −1 −1 −1
1 1 0 −1 −1
1 1 1 0 −1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣

(45)

Set
Sg1 = g1g2 + g1g3 + g1g4 + g1g5+
g2g3 + g2g4 + g2g5 + g3g4 + g3g5 + g4g5

(46)

and

Sg2 = g1g2g3g4 + g1g2g3g5 + g1g2g4g5 + g1g3g4g5 + g2g3g4g5

(47)

then

det|A− λI| = λ5 + 5λ4 + µ2(Sg1)λ3 + 10λ3+
+3µ2(Sg1)λ2 + 10λ2 + µ4(Sg2)λ + 3µ2(Sg1)λ
+5λ + µ4(Sg2) + µ2(Sg1) + 1 = 0

(48)

Set
G = Sg1 −

√
S2

g1 − 4Sg2 > 0 (49)

then 



λ1 = −1,

λ1 = −1−
√

2
2

µ
√

G i,

λ2 = −1 +
√

2
2

µ
√

G i,

λ3 = −1−
√

2
2

µ
√

G i,

λ4 = −1 +
√

2
2

µ
√

G i.

(50)

Statementfollows.
Proposition 2.4:For any critical point of the 5D system the

following is true: there is two 2D-subspace with a stable focus
and stable node in remaining subspace.

Our suggestion is that the system (6) forN -dimensions has
only one critical point.

For N = 2K the respectiveλ values of a critical point are
pairs of complex numbers, where real parts are equal to−1.
The critical point is stable focus on all 2D-subspaces.

For N = 2K + 1 the values ofλ associated with the
critical point are pairs of complex value and the remaining
λ is real. All real parts ofλ-s values are equal to−1. Critical
point is stable focus on all 2D-subspaces and attractive in the
remaining dimension.
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