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Abstract—Two classes of computational algorithms have been
applied to solve the most fundamental problem in Bioinformatics-
sequence comparison. Due to computational limitation in align-
ment methods, alignment-free methods become a predominant
approach for devising sequence similarity. Of the alignment-free
methods, return time distribution(RTD) based approaches are
widely applied to answer various biological queries. However,
existence of sequence noise becomes a principle bottle-neck to
achieve precision in results for RTD approaches. Additionally,
use of single length for k-mer strings often neglects evolutionary
information that can be extracted using k-mers of other lengths.
I inspect these flaws and propose a new method that considers
multiple lengths of k-mer strings for generating features. Marko-
vian dependency is assumed to estimate expected distribution
for k-mer strings and to reduce sequence noise. Additionally,
a criteria based on uniform independent model of sequence
composition for selecting maximum k value is used.
Experiments on benchmark datasets of 18s-rRNA sequence and
whole genome mitochondrial(mtDNA) sequence of eutherians
orders show superiority of the proposed method over all existing
RTD and two start-of-the-art non-RTD methods.

I. INTRODUCTION

Return time distribution(RTD)[1], [2] is an alignment-free
approach for sequence comparison. Due to it’s simplicity when
compared to multiple-sequence-alignment, methods based on
RTD have been widely applied for virus classification, subtyp-
ing and for phylogeny reconstruction; some formulas for pa-
rameterizing RTD viz., standard deviation along with mean[3],
[4], [5] and information entropy[6] have been proposed.
However, the existing RTD methods suffer certain statistical
problems, thereby underestimate the amount of evolutionary
information contained in genetic sequences. In this paper,
I inspect two of such problems and suggest corresponding
solution to circumvent the situation.
Being an exact string matching approach RTD methods suffer
from sequence noise due to effect of neutral mutation, thus
reduction of noise is an essential step that is to be incorporated
for parameterizing a distribution. I enrich the formula of en-
tropy estimation[6] of RTDs, based on principle of maximum
entropy, which can quantify nonrandom occurrence pattern of

k-mer strings over the sequence. Throughout the paper I will
use the term interval entropy to denote the parameter that
represent information entropy of a RTD. More precisely, I
derive the expected interval entropy of RTD for k-mer strings
using principle of maximum entropy and the deviation of
expected interval entropy from its observed entropy is used
to quantify information entropy of RTD for a k-mer.
Another problem lays on the use of a single length k-mers. By
using a fixed-length k-mer strings the methods usually neglect
information content of the sequence that can be extracted
using k-mers of other lengths, hence underestimates amount
of information in the sequence. Thus incorporating multiple
lengths for k-mer are likely to extract complete information
of a sequence and I termed it as Interval Entropy Profile(IEP).
Additionally, I suggest a practical approach under the as-
sumption of a uniform independent model[7] to choose a
maximum(optimal[8]) k-mer length to consider for estimating
sequence information contributing to precise sequence com-
parison.
Experiments on natural sequence sets are used to test ef-
fectiveness of the proposed method over existing sequence
comparison approaches. Use of standard benchmark dataset
of 18s-rRNA and mitochondrial genomes(mtDNA) show su-
periority of the proposed method over all RTD methods(use
of parameter standard deviation with mean[3] as well as
information entropy[6]) and other two state-of-the-art non-
RTD methods[9], [10] in terms of accuracy and biological
consistency.

II. MATERIALS AND METHOD

A. Reiterate interval entropy

Define S as a DNA sequence composed of N repeated
occurrences of the four nucleotides {A, C, G and T}. Let
h(αk) be the observed interval entropy of a k-mer αk; where
αk is made by k successive repetition of α ∈{A, C, G and T}
and (1≤ k ≤ N ) as defined in our initial work[6], let brief
the steps of the method,
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1) Computation of successive interval for a k-mer

Intervali =

{
Li+1 − Li i < m
N− Lm + L1 i = m

(1)

Li denotes starting location of a k-mer where as m
indicates its frequency of occurrence over the sequence.

2) Constructing interval distribution

pj =
f(Intervalj) ∗ Intervalj∑m

i=1 Intervali
and

β∑
j=1

pj = 1 (2)

β is the number of unique interval value, pj denotes
appearing probability of the particular interval value
= Intervalj and f(Intervalj) denotes is frequency of
occurrence.

3) Entropy of interval distribution

h =

β∑
j=1

pj ∗ log2
1

pj
(3)

4) Interval entropies of all possible k-mers of length k
represent the feature vector as

Hk = {h(αk1), h(αk2), · · · , h(αki ), h(αki+1), · · · , h(αk4k)}
(4)

where h(αki ) = hi /
∑4k

i=1 hi, 1≤ i ≤ 4k and hi is the entropy
of interval distribution of ith k-mer that can be defined by
Eq3. In what follows I derive the expected interval entropy for
each h(αki ), let denote it by E(h(αki )), and propose a criteria
to choose maximum k value, k′, use for constructing the
composite feature vector, Interval Entropy Profile (IEP). I will
denote IEP as {H3, H4, · · · , Hk′}, each Hi denotes feature
profile at k=i(by Eq 4). It is to be note that, as I a assuming
(k-2) order Markovian dependency to derive expected interval
entropy, hence it is require to exclude k-mer strings of length
1 and 2 in IEP.

B. Deriving expected interval entropy of a k-mer

Let denote the frequency of a (k-1)-mer αk−1 by f(αk−1)
where α ∈ {A, C, G and T}, its trivial to observe that the
following relation holds,

E(αk−1A) +E(αk−1C) +E(αk−1G) +E(αk−1T ) = f(αk−1)

E(Aαk−1) +E(Cαk−1) +E(Gαk−1) +E(Tαk−1) = f(αk−1)
(5)

Clearly, there are four quantities in L.H.S of each equalities,
representing possible right and left α expansion of the (k-1)-
mer αk−1 while E(αk−1α) and E(ααk−1) denotes expected
frequency of the right and left α expansion of the (k-1)-mer
respectively, α ∈ {A, C, G and T}. For interval entropy we
can not definitely assume Eq5 holds directly, thus we need
to derive the relation between observed interval entropy of a
(k-1)-mer and its expansions of length k. If, E(h(αki )) denotes

expected interval entropy of the ith k-mer αki , then

E(h(αk−1i A)) +E(h(αk−1i C))+

E(h(αk−1i G)) +E(h(αk−1i T )) = hR(α
k−1
i )

E(h(Aαk−1i )) +E(h(Cαk−1i ))+

E(h(Gαk−1i )) +E(h(Tαk−1i )) = hL(α
k−1
i )

(6)

hR(α
k−1
i ) and hL(α

k−1
i ) are numerical constant that can be

calculated from h(αk−1i ). Clearly the system of equations do
not have unique solution, because Eq6 is under-determined.
Then for an estimated solution, we can select a combina-
tion of E(.) that maximizes their entropy -

∑4k

i=1 E(h(αki )) ∗
log2(E(h(αki ))) under some constraints.
To select one of the may solutions we can employ maximum
entropy principle and frame an optimization problem as:

maximize
4k∑
i=1

E(h(αki )) ∗ log(E(h(αki ))

subject to E(h(αki )) satisfying constraints

in Eq6

(7)

To solve the optimization problem, we need to identify the
unique set of constraints that are capable to decoupling a k-
mer from other. Let, write the ith k-mer αki using its left and
right expansions as αLαk−2i αR, where αL and αR are 1-mer
and αk−2i is the (k-2)-mer which appears in the ith k-mer αki
at its index 2 to (k-1). Lets rewrite the set of constraints as

E(h(Aαk−2i A)) +E(h(Aαk−2i C))+

E(h(Aαk−2i G)) +E(h(Aαk−2i T )) = hR(Aα
k−2
i )

E(h(Aαk−2i A)) +E(h(Cαk−2i A))+

E(h(Gαk−2i A)) +E(h(Tαk−2i A)) = hL(α
k−2
i A)

E(h(Cαk−2i A)) +E(h(Cαk−2i C))+

E(h(Cαk−2i G)) +E(h(Cαk−2i T )) = hR(Cα
k−2
i )

E(h(Aαk−2i C)) +E(h(Cαk−2i C))+

E(h(Gαk−2i C)) +E(h(Tαk−2i C)) = hL(α
k−2
i C)

E(h(Gαk−2i A)) +E(h(Gαk−2i C))+

E(h(Gαk−2i G)) +E(h(Gαk−2i T )) = hR(Gα
k−2
i )

E(h(Aαk−2i G)) +E(h(Cαk−2i G))+

E(h(Gαk−2i G)) +E(h(Tαk−2i G)) = hL(α
k−2
i G)

E(h(Tαk−2i A)) +E(h(Tαk−2i C))+

E(h(Tαk−2i G)) +E(h(Tαk−2i T )) = hR(Tα
k−2
i )

E(h(Aαk−2i T )) +E(h(Cαk−2i T ))+

E(h(Gαk−2i T )) +E(h(Tαk−2i T )) = hL(α
k−2
i T )

(8)

hL(α
Lαk−2i ) and hR(α

k−2
i αR) can be computable from

h(αk−1i ), αL and αR are 1-mer, hence we are assuming
existence of (k-2) order Markovian dependency for a k-mer.
Particularly, we are interested in deriving relation between
E(h(αLαk−2i αR)) with hL(αLαk−2i ) and hR(αk−2i αR).
To simply the notations, let, hL(αk−2i A) = γ1, hL(αk−2i C)
= γ2, hL(αk−2i G) = γ3, hL(αk−2i T ) = γ4, hR(Aαk−2i ) =
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λ1, hR(Cαk−2i ) = λ2, hR(Gαk−2i ) = λ3 and hR(Tα
k−2
i )

= λ4. Further, E(h(Aαk−2i A)) = h11, E(h(Cαk−2i A)) =
h21, E(h(Gαk−2i A)) = h31 and E(h(Tαk−2i A)) = h41, thus
h11 + h21 + h31 + h41 = γ1, other constraints can similarly
be simplified. Let the Lagrange function is defined as

F =
4∑

i,j=1

hij ∗ log2(hij) +
4∑
i=1

κi(γi − hi1 − hi2 − hi3 − hi4)

+
4∑
j=1

ζj(λj − h1j − h2j − h3j − h4j)

(9)

κi and ζj are Lagrange multiplier for the equations that involve
γi and λj . Taking δF/δhij =0, we have log2ij + 1 + κi + ζj
=0. Finally we can have

hij = 21+κi+ζj (10)

Using Eq10 and 8 we have,

2−(κi+1)(2−ζ1 + 2−ζ2 + 2−ζ3 + 2−ζ4) = γi

2−(ζj+1)(2−κ1 + 2−κ2 + 2−κ3 + 2−κ4) = λi
(11)

Thus,

(2−ζ1 + 2−ζ2 + 2−ζ3 + 2−ζ4)∗
(2−κ1 + 2−κ2 + 2−κ3 + 2−κ4)

= 2 ∗ (γ1 + γ2 + γ3 + γ4) = 2 ∗ ρ
(12)

From Eq10 and 12 we have 2−(κi+ζj) = 2∗γiλj / ρ. Then, by
Eq10 we have hij = γiλj / ρ which can be used to normalize
observed interval entropy, hence de-noising.

C. Choosing maximum k value

To determine maximum k value for a set of sequences, I
constructed a combined sequence generated by concatenating
all the sequences of a given sequence set. Let denote the
combined sequence by S, that provides empirical nucleotide
distribution for the sequence set, the representation vector
Hk of the sequence S is then computed. Let for a random
sequence(by random sequence I mean a sequence at which
probability of appearing all the four bases are equal), of
length same as with S, the representation vector is H ′

k

. The
difference between these two representation vector can be
obtained by Kullback-Leibler distance as

D(Hk, H ′k) =
4k∑
i=1

Hk(i) ∗ log2(Hk(i)/H ′k(i)) (13)

The distance is small if two distribution are close to each
other, which indicates Hk does not contain rich evolutionary
information, hence shows similarity with random sequence.

To construct IEP for a sequence, the ratio R =
∑ Hk

H ′k
is

taken for k = 3 to 10; Figures 1 and 2 shows R values against
different k values for 18s-rRNA and mtDNA sequence set. The
magnitude of R becomes close to 1 at k = 5 for 18s-rRNA
sequence set, which indicates k values greater than 5 does

not contains much evolutionary information and hence should
be discarded from IEP. Similarly, for mtDNA sequence set, k
values greater than 9 should be discarded.

III. EXPERIMENT

Experiments are conducted on a Laptop PC with Intel-
Corei5 processor and 4 GB RAM. 64-bit version of
Matlab-R2014a(8.3.0.532) software platform is used for
all implementation. Built-in function ’seqneighjoin()’, is
used to construct phylogeny trees, which in turn implement
Neighbor-Join[14] algorithm.

A. Datasets

The benchmark datasets used in this study are detailed in
Table I and II.

TABLE I: 18s-rRNA sequence set

Sequence label Accession No. Sequence label Accession No.
D1 AF173614 D21 AF173623
D2 AF173610 D22 AF173631
D3 AF173626 D23 AF173627
D4 AF173622 D24 AF173609
D5 AF173638 D25 AF173605
D6 AF173637 D26 AF115860
D7 AF173617 D27 X00686
D8 AF173630 D28 X82564
D9 AF173625 D29 K01593
D10 AF173628 D30 M11188
D11 AF173624 D31 V01270
D12 AF173613 D32 X06778
D13 AF173611 D33 K03432
D14 AF173612 D34 M10098
D15 AF173632 D35 U13369
D16 AF173618 D36 X03205
D17 AF173615 D37 X02995
D18 AF173616 D38 X04025
D19 AF173636 D39 AJ279506
D20 AF173619 - -

TABLE II: mtDNA sequence set

Sequence label Accession No. Sequence label Accession No
D1 V00662 D11 X72004
D2 D38116 D12 U20753
D3 D38113 D13 X61145
D4 D38114 D14 X72204
D5 D38115 D15 V00654
D6 X99256 D16 X14848
D7 Y18001 D17 V00711
D8 X79547 D18 Z29573
D9 Y07726 D19 Y10524
D10 X63726 D20 X83427

B. Case study 1: 18s-rRNA

Relationship among eukaryotic tetrapod species is a widely
discussed area in phylogeny and evolution. An important
research topic is whether birds are more closely related to
reptiles or mammals. We use the dataset, described in Xia
et al[11], as our eukaryotic dataset to study the phylogeny
relationship among these species using their 18s-rRNA gene
sequences for a scope to compare with biological findings.
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Fig. 1: R values at k = 1 to 10 for 18s-rRNA sequence set Fig. 2: R values at k = 1 to 10 for mtDNA sequence set

18s-rRNA genes are widely used in molecular analysis to
reconstruct the evolutionary history of organisms, especially in
vertebrates, as its slow evolutionary rate makes it suitable to re-
construct ancient divergences. The benchmark dataset of 18s-
rRNA contains 24 species from Birds(sequence D1 to D24), 2
reptiles(sequence D25 and D26), 10 mammals(sequence D27
to D36) and 3 Amphibians(sequence D37 to D39). According
to the benchmark report, birds are closely related with reptiles
and mammals are excluded from their group. Additionally,
Amphibians are placed as out-group species.
Phylogeny for the sequence set are drawn by different methods
and shown in Figures 3 to 7. Both the RTD[3] method and
FSWM[9] show some misclassification among the species;
These methods are even unable to perform correct segrega-
tion of the four groups of the benchmark species; addition-
ally benchmark groping is not consistent with the grouping
achieved with these methods. However, Clustal Omega[10]
and RTD with interval entropy[6] show clear segregation
of species, although benchmark grouping is not achieved.
Clustal Omega placed mammal with the groups of reptiles
and amphibians, while birds are isolated from all these species.
On the other hand RTD with interval entropy grouped birds
with mammals, while reptiles and amphibians are grouped to-
gether. The proposed method IEP shows consistent results with
benchmark groupings. Birds are grouped with reptiles, then
mammals are grouped with their common clade, amphibians
are completely isolated as out-group.

C. Case study 2: Mitochondrial genome set

The mitochondrial dataset consists of 7 Primates(D1-D7),
8 Ferungulates(D8-D15), 2 Rodents(D16-D17), and 3 out-
groups(D18-D20) species. Previous reports [12], [13] show
grouping of Primates with Ferungulates. Rodents species are

excluded from the group of Primates and Ferungulates, based
on analysis of whole genome mtDNA sequences. On the
contrary, the NADH dehydrogenase 1(ND1) data[12] strongly
suggest that Primates and Rodents clade exclude Ferungulates,
which is in contradiction with the overall mtDNA evidence.
Like the previous experiment I derive phylogeny trees for the
sequence set using all the methods considered in this study.
Figures 7 to 12 show the resulting phylogeny.
RTD method[3] shows highly mis-classified grouping of the

species, on the other hand FSWM shows complete biological
consistency as reported by the benchmark dataset. In case of
Clustal Omega[10] Primates are grouped with Rodents, while
Ferungulates are excluded from their clade, which is not sup-
ported by whole genome grouping. Similar misclassification
are also sown with the RTD method using interval entropy[6].
The proposed method gropued Primates with Ferungulates and
Rodents are exclude from their groups, as well as out-grouped
species are isolated.

IV. CONCLUSION

Mutation occurs more or less in random manner over the
nucleotide sequences and natural selection shapes the evolu-
tion. However, neutral mutation remains as sequence noise
that introduces some randomness in genetic sequences. Thus
reduction of such randomness is essential for estimating true
evolutionary information in sequences. Further, its likely to
miss evolutionary information through distribution of single
length k-mers(words) because its almost unknown exactly
what probability distribution or even any probabilistic model
is used to construct a genetic sequence. Thus, application of
multiple distribution is more powerful to extract evolutionary
information or at least positive estimation. Hence, I integrate
multiple word lengths to construct representation vector for
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Fig. 3: 18s-rRNA phylogeny using RTD method with standard
deviation and mean Fig. 4: 18s-rRNA phylogeny using FSWM

a sequence. Experiments are conducted to supports my point
view. Results of the experiments show that noise reduction and
use of multiple length of k-mer strings to construct features is
capable to extracting more information compared to features
without considering them and hence highly accurate results
are obtained.
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Fig. 5: 18s-rRNA phylogeny using Clustal Omega Fig. 6: 18s-rRNA phylogeny using RTD method with interval
entropy

Fig. 7: 18s-rRNA phylogeny using proposed IEP method
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Fig. 8: mtDNA phylogeny using RTD method with standard
deviation and mean Fig. 9: mtDNA phylogeny using FSWM

Fig. 10: mtDNA phylogeny using Clustal Omega Fig. 11: mtDNA phylogeny using RTD method with interval
entropy
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Fig. 12: mtDNA phylogeny using proposed IEP method
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