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Abstract—This paper continues a couple of author’s papers
devoted to development of the exact rational computing and its
applications in numerical methods of analysis and solving ill-
conditioned tasks. Examples of application of the exact rational
computing in numerical methods of solving ill-conditioned tasks
are presented. Ill-conditioned linear equation systems, linear
equation systems with interval uncertainty of the coefficients are
examples of such tasks. Application of the interval regularization
procedure to the Firordt method of the spectrophotometric
analysis of the non-separated mixtures is one examples where
exact computing allows improving of the result robustness.

Index Terms—Exact computing, interval regularization, paral-
lel algorithms.

I. I NTRODUCTION

This paper continues a couple of author’s papers devoted
to development of the exact rational computing [1] and its
applications in numerical methods of analysis and solving ill-
conditioned tasks [2], [3].

A lot of papers are dedicated to the requirements that
scientists impose to numerical methods. Computational com-
plexity, efficiency, implementation simplicity are objects of
almost every paper describing some new numerical method
or modification of the existing one. But small amount of the
papers devoted to requirements to number representation or
number precision. Number precision is very important part
of the successful numerical methods application, if in some
moment intermediate result goes out from area of guaranteed
precision of the number presentation then it is impossible to
ensure required precision or even correctness of the aggregate
result [4].

II. L IBRARY OF CLASSESEXACT COMPUTATION

Current version is third version of the library. Previous
implementations was developed in 1999 as simple overlong
and rational C++ classes [5] with few distributed computing
abilities that GMP [6] had not being provided.

Version 2.0 [7] implemented in 2013 was presented in the
work [2], library architecture was redesigned and library code
was refactored.

Version 1.0 and 2.0 based on positional big number rep-
resentation with base216 and232 correspondingly, this bases

The work was supported by Act 211 Government of the Russian Federation,
contract 02.A03.21.0011.

are preferred to use advantages of 32 and 64-bit operating
systems.

Most important feature implemented in version 2.0 is CUDA
capable GPUs support since version 2.0 rational computing
also available on the GPUs.

New refactored result version 3.0 providesrational and
overlongclasses for CPU and GPU architectures and simple
interface. Also user can implement own number representation
(only basic arithmetic operations) and test it in application
without huge coding overhead.

There are a lot of scientific researches dealing with some
arithmetic algorithms. Testing of the correctness may be per-
formed independently from algorithm’s practical application
but important issues related with overhead during applications
are often hard to predict.

Applications usually operates with numbers irrelatively of
its representation, so single interface of the arithmetic opera-
tion may have independent implementations.

Applications are very important motive force of the ex-
act computing library development. Effective realization of
different algorithms requires various sets of basic functions.
Simultaneous development of numerical methods and exact
computing library in big project allows improving the weak
parts and designing of new library features.

Next section presents cases of successful deployment of
exact rational computing in applications.

III. A PPLICATION OFRATIONAL ARITHMETIC FOR

SCIENTIFIC TASKS

In this section, we will consider the applications of the
arbitrary precision arithmetic in certain tasks.

A. Ill-conditioned Linear Equation Systems

First of all, ill-conditioned problems such as solving linear
and non-linear systems with almost singular or ill-conditioned
matrices [8]. Commonly known example of such matrix is
Hilbert matrix.
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Hard problem in exact computing is uncertainty in input
data. Exact computing of the solution of the uncertain problem
is meaningless procedure [9]. Uncertain problems requires
another approaches such Lavrentiev’s normal pseudosolution
for the linear equation system [9], Tikhonov regularization
procedure [10] or interval regularization approach proposed
in [2], [3]. Aim of these solution procedures is decreasing
influence on input uncertainty on the computed result, because
of calculating errors are equivalent to infusion supplementary
uncertainty in the input data.

Some new approach to ill-conditioned linear system of
equations was proposed in [2], it was namedInterval Reg-
ularization Approach, it uses interval analysis advancements
to linear equation systems with interval uncertainty of the
coefficients.

B. Interval Regularization Approach

Points of the tolerable solution set

Ξtol(A, b) = {x ∈ R
n | (∀A ∈ A)(∃b ∈ b)(Ax = b)}

of the interval linear equation systemAm×nx = b are
considered as solutions of the initial ill-conditioned linear
systemAx = b.

If solution does not exist (Ξtol = ∅) then minimal system
right-hand part extension coefficientz∗ may be found.

Point of the tolerable solution set may be found as solution
of the linear programming task vectorx∗ = x+

∗

−x−
∗

, where
x+

∗

and x−
∗

∈ R
m, z∗ ∈ R are solution to the linear

programming problem

min
x+, x−, z

z, (2)

m
∑

j=1

(aijx
+

j − aijx
−

j ) ≥ bi − zpi, i = 1, . . . ,m, (3)

m
∑

j=1

(aijx
+

j − aijx
−

j ) ≤ bi + zqi, i = 1, . . . ,m, (4)

x+

j , x
−

j , z ≥ 0, j = 1, 2, . . . , n.(5)

In addition, the vectorx∗ = x+
∗

− x−
∗

belongs to
Ξtol(A, b(z∗)). Matrix A = [aij ; aij ], i = 1, . . . ,m, j =
1, . . . , n, vectorsp, q ∈ R

+m are used to manipulate with
form of the right-hand part extension.

Interval regularization approach uses simple method to solve
linear programming task above, exact computations [7] and
procedure described in [11] to prevent simplex method cycling,
such synergy allows to solve ill-conditioned problems sensitive
to the data precision.

C. Firordt Method of the Spectrophotometric Analysis of the
Non-Separated Mixtures

The Firordt method is one of the methods of the analysis
of the non-separated mixtures [12]. According to the Firordt’s
method, we can determine the concentrationcj of the each

of them components by solving the following system of the
equations:

bi =
m
∑

j=1

aij · cj · l, (6)

where:

• bi is the measured absorbancy of the analyzed mixture
on thei-th analytical wave length(AWL),

• aij is an molar coefficient of the absorption (or extinc-
tion) of the j-th component oni-th AWL (measured in
advance for each component),

• l is the thickness of the absorbing layer.

Number of the AWL(k) (number of the equations) usually is
equal to the number of the components (m) in the mixture.
Overdetermined systems withk > m may be used for the
enhanced accuracy.

Spectrophotometric measurements are always performed
with some measurement errors, so, we have some imprecise
system of linear algebraic equations for analysis with equa-
tions of the form (6).

bi =

m
∑

j=1

aij · cj · l, (7)

System (7) will become simpler if all measurements are
performed usingl equal to1 centimeter, then system takes on
the form

bi =

m
∑

j=1

aij · cj , (8)

or, in matrix form,Ax = b, wherex – is the sought for vector
of the components concentrations.

This uncertain linear equation system may be solved using
interval regularization approach.

D. Number Theory and Arithmetic Algorithms

Every number presentation is simply sequence of byte in
the device memory and every basic arithmetic algorithm is
certain conversion of bits. This way wrapper for operations
with numbers after being once implemented may be used to
test different number representations and different arithmetic
algorithms. Test of the new research issue leads to small
changes in the existing library code that significantly reduces
time of the research cycle and amount of possible bugs. New
algorithm may be instantly checked on the existing code of
the known application.

Big research area is parallel algorithms of the basic arith-
metic operations, comparison, addition, multiplication, divi-
sion, etc. Library provides very useful testing platform for
newly developed arithmetic algorithms, allows testing one the
application tasks without additional coding overhead.

All problems mentioned in section above requires arbitrary
precision computing even in small tasks. Computing experi-
ments with rational calculations will be introduced in section
below.
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IV. COMPUTING EXPERIMENTS

A. Linear Equation System with Hilbert Matrix

Abilities of the rational computations are demonstrated on
the academic sample of the distributed computing realization
of the Gauss method of solving linear equation system. Ill-
conditioned matrices are the square Hilbert matrices (1) of
different sizes. Examples are significant because standard dou-
ble precision floating point can not provide sufficient precision
even for very small dimensions about ten equations and ten
variables [8].

Parallelism performed by cutting the matrix horizontally per
one line, process with rank 0 handles lines 0, size, 2*size, etc.,
process with rank 1 handles lines 1, size+1, 2*size+1, etc. and
so on.

Realization is academic and computing experiment demon-
strates applying rational arithmetic to existing solution with
changing only few lines of code. The applying also requires
only linking with library files in standard way. Administra-
tor account/skills, preliminary compilation or settings of the
library are unneeded.

Linear equation systems was solved on rather weak Intel
Core 2 Quad CPU Q8400, 2.66 GHz with different number of
processes, see Table I. Calculation time demonstrates abilities
of the exact rational computation even for non top computing
systems.

B. Interval Regularization Approach

Consider the simple2× 2 system:
{

(1 + ε)x+ y = 1, ε ≥ 0
x+ y = 1.

(9)

It has traditional solution(x, y) = (0, 1)> for any ε 6= 0
and normal pseudosolution(x, y) = (1/2, 1/2)> for ε =
0, consequently we have no convergence of the traditional
solution to the normal pseudosolution whenε → 0. For
the nondegenerated systems pseudosolution is equal to its
traditional solution.

Other well known method is the Tikhonov regularization
procedure, with regard to the linear system of equations it
leads to solving of the system(A>A − δE)x = A>b, where
(A> – is transposed matrix of the system,E – is unity matrix,
δ – is the parameter of the regularization, selection of theδ

TABLE I. T IME OF EXACT SOLUTION OF L INEAR EQUATION SYSTEM ON

CPU

Size NProc Time (Sec)

100 1 1.57
100 2 1.02
100 4 0.84
200 1 22.4
200 2 15.1
200 4 12.2

400 4 178
1000 4 7880

is the theme of a lot of papers. However, e.g., for the system
with Hilbert matrix the procedure doesn’t leads to success [8].

Interval regularization approach solution of the nondegen-
erated system is equal to its solution in standard way. For the
system (9) interval task is:

{

[1; 1 + ε]x+ [1; 1]y = [1; 1], ε ≥ 0
[1; 1]x+ [1; 1]y = [1; 1].

(10)

And point x = (0, 1) belongs to tolerable solution set.

C. Parallel Algorithms for Basic Arithmetic Operations

Algorithms of the basic arithmetic operations are important
part effective numerical methods.

In the Table II experimental data of parallel addition on
the GPU are provided. Data are obtained on the system with
Intel©Core i7–950 [3.06 GHz, 6 GB RAM]) and GPU of two
different architectures: Fermi (NV idia©GTX460 [700 MHz,
1 GB GDDR5]) and Kepler (NV idia©GTX660 Ti [980 MHz,
2GB GDDR5]). Provided time is average of 1000 runs to
reduce influence of the system tasks. Time of the parallel
addition algorithm on the GTX460 GPU marked as Fer(P)
and time on the GTX660 Ti marked as Kep(P).

D. Firordt Method of the Spectrophotometric Analysis of the
Non-Separated Mixtures

Computing experiments of the interval analog of the are
given in [3]. Interval regularization allows using all available
data and gives robust solution as point of the tolerable solution
set. Additional information about extension of the right-hand
part of the interval system displays accuracy of the correlation
between data and the Firordt method model.

V. CONCLUSION

A couple of methods based on exact computations was
developed. Exact computing allows solving ill-conditioned
tasks and improves robustness of the result. Simultaneous
development of the numerical methods using exact compu-
tations and library features allows designing essential features
necessary real numerical methods and applications.
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