
 

 

  
Abstract— Residual noise and collateral distortion are two key 

features for any image denoising filter. The former is the amount of 
noise still affecting the data after filtering, the latter represents the 
price to be paid in terms of detail blur. Measuring these effect is of 
paramount importance for the validation of a denoising algorithm. 
This work focuses of Non-Local Means (NLM) filtering that 
represents one of the most effective approaches to grayscale image 
denoising. The exact values of residual noise and collateral distortion 
are derived from NLM theory and an in-depth analysis of these 
features is provided for different input data and different parameter 
settings. 
 
Keywords— Image denoising, image filtering, Gaussian noise, 

nonlinear filtering.  

I. INTRODUCTION 
T is known that nonlinear filters have become a powerful 
and widespread used resource for digital image denoising 

because they can distinguish between noise (to be removed) 
and image details (to be preserved) [1-6]. In this framework, 
non-local means (NLM) filters [7] represent one of the most 
effective and attractive approaches to noise cancellation in 
grayscale digital images. Unlike other filtering technique that 
exploit only the local information in the neighborhood of the 
pixel to be processed, NLM methods take into account the 
spatial correlation in the whole image. As a result, NLM filters 
show superior performance over other denoising operators and 
are adopted in a growing number of research and application 
fields. Many different implementations have been proposed in 
order to increase the computational efficiency [8-12] or to 
improve the filtering performance with respect to the basic 
NLM algorithm [13-17]. Clearly, applications areas where the 
information lost during noise removal is a very critical issue 
(such as medical and forensic imaging) require a knowledge of 
the filtering behavior that goes beyond subjective appearance 
[18]. A quantitative evaluation of the filtering features, 
however, is not a trivial task. Any filtered image is affected by 
two main kinds of errors: residual noise (RN) due to 
insufficient filtering and collateral distortion (CD) caused by 
excessive (or wrong) filtering that corrupts the information 
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embedded in the image data. In order to estimate these errors, 
a variety of full-reference metrics have been recently proposed 
[19-22]. Many of them belong to the class of vector metrics. In 
this approach a vector error is computed whose components 
estimate the amounts of residual noise and collateral distortion 
produced by the filtering. Vector techniques overcome the 
limitations of classical scalar metrics, such as the mean 
squared error (MSE) and the peak signal-to-noise ratio 
(PSNR) that cannot discriminate between noise cancellation 
and detail preservation. Vector metrics also overcome the 
limitations of scalar methods that try to mimic the human 
perception: as shown in [20], these techniques can be 
insensitive to different mixtures of residual noise and detail 
blur and, in any case, they yield a subjective evaluation of the 
filtering action [23-24]. However, a common problem with  
metrics for RN and CD evaluation is their validation.  Indeed,  
the accuracy of these methods has been assessed only in 
particular cases, where the true values of RN and CD are 
known and can be used for a comparison [25-26].  

The aim of this paper is twofold: to show a novel approach 
to the evaluation of RN and CD and to provide an in-depth 
analysis of the filtering behavior of the basic NLM algorithm.  
Under the hypothesis of additive noise, we aim at theoretically 
evaluating the filtering effects for this class of filters and for 
any image. The error analysis presented in this paper 
overcomes the limitations of current metrics and reveals the 
exact amounts of RN and CD occurring in NLM filtering. 
Many computer simulations are reported in order to show how 
the filtering features depend upon the various parameter 
settings and the different amounts of noise corruption. This 
paper is organized as follows. Section II describes the method 
for the theoretical evaluation of the filtering errors, Section III 
shows the results of many computer simulations, Section IV 
focuses on some metrological aspects and, finally, Section V 
reports conclusions.  

II. EXACT  COMPUTATION OF RN AND CD 
In this section, we briefly review the fundamentals of the 

NLM approach. Then, we show how formal expressions for 
RN and CD can be obtained from the NLM theory. 

A. The Basic NLM Algorithm 
Let us deal with digitized images having Q gray levels 
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(typically Q=256). Let r(i,j) be the pixel luminance at location 
[i,j] in the reference (noise-free) image (i=1,…,L1; j=1,…,L2) 
and let c(i,j)=r(i,j)+e(i,j) be the pixel luminance at the same 
location in the noisy picture, where e(i,j) represents the amount 
of noise corruption. Formally, the output f(i,j) of a NLM filter 
operating into a (2M+1)×(2M+1) neighborhood (research 
window) is yielded by a nonlinear weighted average [7], as 
follows: 
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where w(i,j,p,q) is a weight that depends upon the similarity 
between the corrupted pixels c(i,j) and c(i−p,j−q). The set of 
weights satisfies the following conditions: 
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Unlike other approaches, the similarity between the pixels 
c(i,j) and c(i−p,j−q) is determined by the similarity of their 
neighborhoods. Let d(i,j,p,q) be the weighted Euclidean 
distance (in terms of gray level intensities) of two 
(2N+1)×(2N+1) square neighborhoods (comparison windows) 
centered on c(i,j) and  c(i−p,j−q), respectively: 
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where Ga(u,v) is a Gaussian kernel with standard deviation a 
(a>0). Thus, the weights are defined as follows: 
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where Z(i,j) is a normalizing term (according to (3)) and h is 
the main parameter that controls the smoothing. 

B. Theoretical Evaluation of RN and CD 
Once the mathematical relationships defining NLM filtering 

are available, the formal expressions for residual noise and 
collateral distortion can be easily obtained. Remembering that 
c(i,j)=r(i,j)+e(i,j), we can rewrite eq.(1) in order to highlight  
the presence of two different filtering actions f 

+(i,j) and f 
−(i,j):  
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The term f +(i,j) denotes the desired filtering (positive action) 
that aims at reducing the noise e(i,j), i.e., the initial error 
affecting r(i,j). Conversely, f −(i,j) represents the unwanted 
filtering (negative action) that corrupts the original 
information constituted by r(i,j). According to (7-9), the 
filtering error E(i,j)=f(i,j)−r(i,j) can be expressed as follows: 
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E+(i,j) and E−(i,j) are responsible for the generation of residual 
noise and collateral distortion, respectively. The actual errors, 
however, depends on the possible compensation of these 
actions. In order to evaluate the resulting effects, we shall 
decompose the absolute error AE(i,j)  as follows: 
 

 ),(),(),(),( jiAEjiAEjiEjiAE CDRN +==                (13) 

where AERN(i,j) and AECD(i,j) are the absolute error 
components representing the resulting  residual noise and 
collateral distortion, respectively  (AERN(i,j)≥0,  AECD(i,j)≥0). 
In order to evaluate AERN(i,j) and AECD(i,j), the following 
cases should be considered. 
 

a)   If E+(i,j)=0 and E−(i,j)=0 then AERN(i,j)=0 and 
AECD(i,j)=0 (no error occurs). 

b)  If E+(i,j)≠0 and E−(i,j)=0 then AERN(i,j)=AE(i,j) and 
AECD(i,j)=0. 

c) If E+(i,j)=0 and E−(i,j)≠0 then AERN(i,j)=0 and 
AECD(i,j)=AE(i,j). 

d)  If E+(i,j)>0 and E−(i,j)>0 then AERN(i,j)=E+(i,j) and 
AECD(i,j)=E−(i,j). 

e)  If E+(i,j)<0 and E−(i,j)<0 then AERN(i,j)=−E+(i,j) and 
AECD(i,j)=−E−(i,j). 

f)  If E+(i,j)>0 and E−(i,j)<0 and |E+(i,j)|>|E−(i,j)| then 
AERN(i,j)=AE(i,j) and AECD(i,j)=0. 

g) If E+(i,j)>0 and E−(i,j)<0 and |E+(i,j)|<|E−(i,j)| then 
AERN(i,j)=0 and AECD(i,j)=AE(i,j). 
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                                                              (a)                                                                                  (b) 

                                                              (c)                                                                                  (d) 

Fig.1. Test images: (a) “Lena”, (b) “Lighthouse”, (c) “Motorbike”, (d) “Cat”. 
 

 

h)  If E+(i,j)>0 and E−(i,j)<0 and |E+(i,j)|=|E−(i,j)| then 
AERN(i,j)=0 and AECD(i,j)=0. 

i)  If E+(i,j)<0 and E−(i,j)>0 and |E+(i,j)|>|E−(i,j)| then 
AERN(i,j)=AE(i,j) and AECD(i,j)=0. 

j)  If E+(i,j)<0 and E−(i,j)>0 and |E+(i,j)|<|E−(i,j)| then 
AERN(i,j)=0 and AECD(i,j)=AE(i,j). 

k)  If E+(i,j)<0 and E−(i,j)>0 and |E+(i,j)|=|E−(i,j)| then 
AERN(i,j)=0 and AECD(i,j)=0. 

 

Once AERN(i,j) and AECD(i,j) are known for each pixel, we can 
evaluate the residual noise and collateral distortion on the 
entire image in terms of mean absolute errors MAERN and 
MAECD, as follows: 
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It is worth pointing out that the correct evaluation of residual 
noise and collateral distortion should be performed in terms of 
MAE instead of MSE. A two-terms decomposition of the MSE 
is conceptually inaccurate. Indeed, from eq.(13) we have:
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                                                         (a)                                                                                                            (b) 

                                                        (c)                                                                                                            (d) 
 

Fig.2.  MAE, MAERN and MAECD evaluations for test pictures corrupted by Gaussian noise with variance σ2=200 and processed 
by NLM filtering (M=7, N=3, a=2, 10≤h≤150): (a) “Lena”, (b) “Lighthouse”, (c) “Motorbike”, (d) “Cat”. 
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Unless MSEMIX=0, the MSE cannot be decomposed into two 
components respectively addressing residual noise and 
collateral distortion only, Conversely, the MAE can. Its 
decomposition into MAERN and MAECD is the correct way to 
separate (and measure) these key filtering features. In the next 
section we shall adopt these metrics for an in-depth analysis of 
the filtering behavior of the NLM method 

III. RESULTS OF COMPUTER SIMULATIONS 
We performed many computer simulations in order to study 

how MAERN and MAECD depend upon different parameter 
settings of NLM filtering. In these experiments, we considered 
four 512×512 grayscale images: “Lena”, “Lighthouse”, 
“Motorbike” and “Cat” (Fig.1). In the first group of tests, we 
generated four noisy pictures by adding zero-mean Gaussian
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                   h=10                  h=30                  h=50                  h=70                 h=90                 h=110                h=130                h=150 

Fig.3.  Portions of the “Lena” image corrupted by Gaussian noise (σ2=200) and filtered with increasing values of the parameter 
h. The corresponding errors maps AERN(i,j) (green) and AECD(i,j) (red) are also reported. 

 
 
noise with variance σ2=200. We set M=7 and N=3 because 
these choices are commonly adopted in the literature. We also 
chose a=2 as standard deviation of the Gaussian kernel. The 
values of MAERN and MAECD that are obtained when the main 
parameter h ranges from 10 to 150 are graphically depicted in 
Fig.2 The values of the overall MAE are also reported for 
reference. We can see that the MAERN correctly decreases as 

the smoothing parameter h becomes larger. On the contrary, 
MAECD increases because a stronger noise cancellation 
produces a larger collateral distortion. Samples of the 
processed data are shown in Fig.3 (“Lena”) and Fig.4 
(“Motorbike”). Graphical representations of the absolute errors 
AERN(i,j) (green) and AECD(i,j) (red) are also reported. We can 
see that, for h<50, the presence of unfiltered noise is apparent.  

 

               h=10                   h=30                 h=50                  h=70                  h=90                 h=110                h=130                h=150 

Fig.4.  Portions of the “Motorbike” image corrupted by Gaussian noise (σ2=200) and filtered with increasing values of the 
parameter h. The corresponding errors maps AERN(i,j) (green) and AECD(i,j) (red) are also reported.  
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          (a)                                                                                                                             (b) 

                                                       (c)                                                                                                                             (d) 

Fig.5.  MAE, MAERN and MAECD evaluations for test pictures corrupted by Gaussian noise with variance σ2=400 and processed 
by NLM filtering (M=7, N=3, a=2, 10≤h≤150): (a) “Lena”, (b) “Lighthouse”, (c) “Motorbike”, (d) “Cat”. 

 
 
We can see that, for h<50, the presence of unfiltered noise is 
apparent. For h=50, some residual noise is still well 
perceivable. For h=70, few pixels are still noisy and their exact 
locations are revealed by the error map. The price to be paid is 
a limited amount of collateral distortion that mainly affects 
small details of the image.  For h=90, almost all the noise has 
been removed and, as a counterpart, the image contours are 
significantly blurred. For h>90, the distortion becomes very 
annoying and heavily corrupts the image edges. Indeed, the 
graphical representation of AECD(i,j) basically becomes a map 
of lost contours.  

In the second group of tests, we increased the amount of 
Gaussian noise by setting σ2=400. The corresponding values 
of MAE, MAERN and MAECD are shown in Fig.5. With respect 
to the previous cases, the minimum MAE is reached for larger 
values of the parameter h. We can also observe that, when the 

minimum MAE occurs, the MAECD component is generally 
larger than the corresponding MAERN. Until now, visual 
inspection was the typical (and limited) source of information 
about residual noise and collateral distortion. Now, the exact 
quantitative evaluations of these important features can be 
obtained using the proposed method. 

In the third group of tests, we investigated the dependence 
of MAE, MAERN and MAECD on the variance a of the 
Gaussian kernel (see eq.(4)). Fig.6(a) shows the graphical 
representations of MAE in dependence on parameter h 
(10≤h≤150) and parameter a (0.5≤a≤5) for the “Lena” picture 
corrupted by Gaussian noise with variance σ2=200. We can 
notice that the parameter a does not play a very critical role: 
about the same minimum value of MAE (≈4) can be obtained 
in the interval 2≤a≤5 (although for different values of h). 
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                                            (a)                                                                                                             (b) 
 

Fig.6 – MAE evaluations in dependence on parameter h and parameter a: test image “Lena” corrupted by Gaussian noise with 
variance σ2=200 (a) and  σ2=400 (b). 

                      

                                             
                                            (a)                                                                                                             (b) 
 

Fig.7 – MAERN evaluations in dependence on parameter h and parameter a: test image “Lena” corrupted by Gaussian noise with 
variance σ2=200 (a) and  σ2=400 (b). 

 
 
Similar considerations can be applied to the case σ2=400 

(Fig.6(b)). The corresponding graphical representations of 
MAERN and MAECD are reported in Fig.7 and Fig.8, 
respectively. We can see that the parameter a has some 
influence on the values of MAERN and MAECD. Indeed, let the 
variance a range from 0.5 to 5 for a given value of the 
smoothing parameter h: the MAERN increases whereas MAECD 
decreases. A satisfactory choice is represented by a=2, adopted 

in the previous groups of experiments. 

IV. METROLOGICAL CONSIDERATIONS 
It is worth pointing out that MAERN and MAECD, evaluated 

by (14-15), yield the true values of residual noise and 
collateral distortion during NLM filtering. Hence, these 
metrics are more accurate than any previous evaluation system 
including the human eye. On one hand, the results given by
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                                                               (a)                                                                                                           (b) 
 

Fig.8 – MAECD evaluations in dependence on parameter h and parameter a: test image “Lena” corrupted by Gaussian noise with 
variance σ2=200 (a) and  σ2=400 (b). 

 
 

MAERN and MAECD are in perfect agreement with the visual 
inspection of the filtered data (see Figs.3-4). On the other 
hand, these metrics can yield a quantitative evaluation of the 
filtering features whereas the human perception cannot. 
Furthermore, the error maps provide the exact location and 
type of filtering errors at the pixel level.  In order to clarify the 
situation, let us focus on the following experiment (Fig.9), 
where we considered the “Lighthouse” picture corrupted by 
Gaussian noise (σ2=200) and processed by slightly different 
values of the smoothing parameter h chosen in the proximity 
of the minimum MAE: h=77 (Fig.9(c)) and h=78 (Fig.9(d)). 
From visual inspection, the image data look almost identical. 
The measurements of residual noise and collateral distortion 
reveal the differences. Indeed, we obtained the following 
evaluations: MAERN=1.695 and MAECD=2.621 (h=77), 
MAERN=1.640 and MAECD=2.875 (h=78). The image filtered 
by the larger value of h is really affected by more distortion 
and less noise, although the human eye cannot appreciate the 
difference neither the exact distribution of the filtering errors 
(Figs.9(e) and 9(f)). The analysis of these maps leads to some 
additional considerations about the accuracy of previous 
algorithms for quality assessment in image filtering. For 
instance, type-1 vector metrics [19] resorted to a simple idea: 
to compute the filtering distortion along the object borders 
(obtained from a map of edge gradients of the reference 
picture). The error maps depicted in Figs.9(e) and 9(f) show, 
however, that the filtering behavior is not so simple: some 
object contours are affected by collateral distortion, whereas 
other edge regions are impaired by residual noise only. Indeed, 
the filtering errors in the proximity of such edges change from 
residual noise to distortion for growing values of the 
smoothing parameter h (this effect is also apparent in Fig.3 and 

Fig.4). Even if the validation of previous metrics is not the 
scope  of  this  work,  a  study  of  their accuracy would greatly 
 
                                                                       

                            (a)                                           (b)  

                            (c)                                           (d)  

                         (e)                                       (f) 
 

Fig.9 – Portions of test picture “Lighthouse”: (a) original, (b) 
corrupted (σ2=200), (c) filtered with h=77 (MAERN=1.695, 
MAECD=2.621), (d) filtered with h=78 (MAERN=1.640, 
MAECD=2.875). Corresponding error maps: (e)-(f). 
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benefit from the availability of specific cases, where the exact 
amounts of residual noise and collateral distortion are known 
for any image. 

V. CONCLUSIONS 
 A new approach to quantitative evaluation of key filtering 
features in NLM processing has been presented. Instead of 
resorting to existing metrics, the formal expressions for 
residual noise and collateral distortion have been directly 
derived from NLM theory. As a result, the true values of 
MAERN and MAECD are now available for this class of filters 
and for any image corrupted by additive noise. Computer 
simulations have shown how residual noise and collateral 
distortion actually depend on the main smoothing parameter 
and the variance of Gaussian kernel. Furthermore the reported 
error maps have provided very accurate  information  about  
kind  and  spatial  location  of the filtering errors. Very likely, 
this information could suggest where the smoothing action 
needs to be corrected and then possibly lead to more effective 
generations of NLM methods. 
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