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Abstract

In this paper, a discrete Adomian decomposition
method (DADM) is developed in avoid to …nd the solu-
tion of non linear parabolic partial di¤erential equation
(PDE) with Dirichlet boundary conditions. The method
converts the nonlinear boundary value problem into a
system of ordinary di¤erential equations. By solving the
system by Adomian method, the solution can be deter-
mined. Compary the methodology for some examples
where the exact solution are known and with the classi-
cal technique : …nite di¤erence method shows that the
present approach is easy to use and reliable.

Key-word : Discrete Adomian decomposition
method- PDE- Heat equation-Fisher equation.

1 Introduction

Many phenomena (physical, mechanics, biological, . . . )
governed by the partial di¤erential equations (PDE)
was solved by the discrete Adomian decomposition
method (DADM). Bratsos and al. applied the DADM
to discrete nonlinear Schrödinger equations. Zhu and
al. [2] have developed the DADM to 2D Burgers’
di¤erence equations. In [3], the DADM is implemented
to nonlinear di¤erence scheme of generalized Burger’s–
Huxley equation.

In this context, many algorithm of Adomian de-
composition method (ADM) was proposed in the liter-
ature ([11],[16], [4],[7],). In [4] a numerical algorithm,
based on the Adomian decomposition method, is pre-
sented for solving heat equation with an initial condi-
tion and non local boundary condition. Khan Marwat
et al.[7] have solved two problems dealing with the heat
conduction with variable physical properties by ADM
, the compression of the …rst problem with eigenfunc-

tion expansion is also made. The two analytical solution
agree exactly with each other. Although, the two meth-
ods arrive at the same result. To apply this method, the
authors have shown that generalized Fourier series is re-
quired to build up the solution instead of trigonometric
Fourier series.

The main disadvantage of the Adomian decompo-
sition method (ADM) is do not take into account the
boundary conditions for solving most partial di¤erential
equations ([9] , [10]). In order to avoid this problem the
DADM is proposed to solve the linear and non linear
parabolic PDE with the Dirichlet boundary conditions.
This approch needs the use of two steps : …rst , the
space variable is discretised , then the di¤erential sys-
tem is solved by the ADM.

The paper is organized as follows. In section 2, a
discrete Adomian decomposition method for non linear
parabolic PDE is presented. In section 3, the Adomian
decomposition method is given to solve an ordinary dif-
ferential system and the analysis of the proposed dis-
crete ADM is also made . The illustrative examples are
given and developed with numerical results in Section
4. Section 5 concludes the paper.

2 Proposed discrete Adomian decomposition
method to non linear parabolic PDE

Let us consider the non linear parabolic PDE for one
space variable :
(1)8
>>><

>>>:

@u(x; t) = ®@u(x; t) +N(u) +R(u) + h ,(x; t) 2 Q

u(x; 0) = f(x); x 2
¡

­
u(0; t) = g1(t); t > 0
u(l; t) = g2(t); t > 0
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Where :
­ = [0; l]; l > 0; Q = ]0; l[£]0; T [:
u(x; t) is a function of two variables x and t. Here x

is the space variable, so x 2 [0; l], where l is the length.
N(u) is non linear function of u,
R(u) is a linear function of u,
h(x; t) is a known function,
f; g1 and g2 are known functions, and ® is a positive

constant.
The second derivative by the central di¤erence

approximation is given as follow :

(2)
@2u(x; t)

@x2
=
u+1(t)¡ u(t) + u¡1(t)

¢x2

The interval 0 6 x 6 l is uniformly spaced such
that :

x = i¢x

where ¢x = 
 ; M is a discretization number of

the interval [0; l]:
The function u(x; t) = u(i¢x; t) is the discrete func-

tion denoted by u(t). Similarly the function u(x; 0) =
f(x) = f(i¢x) is the discrete function designed by f.

The time derivation is approximated at point (x; t)
as follow :

(3)
@u(x; t)

@t
=


u(t)

Substituting the approximation (2) and (3) in equa-
tion (1), we get :
(4)8
>>>><

>>>>:


u(t) = ®

+1()¡2()+¡1()
¢2 +N(u) +R(u) + h(t),

u(0) = f , i = 1::::M
Boundary conditions are :
u0(t) = g1(t); t 2]0; T [
u+1(t) = g2(t); t 2]0; T [

The ordinary di¤erential equations (ODEs) (4) can
be written in matrix form as follows :
(5)
½ 

U(t) = BU(t) +N(U) +R(U) + 1
¢2C +H(t),

with initial condition u(0) = f; i = 1; ::;M

It is the discrete form of initial value problem (1).
Where :
U(t) = (u1(t); ::::; u(t))



N(U) = (N(u1); ::::;N(u))


R(U) = (R(u1); ::::; R(u))


H(t) = (h1; ::::; h))


B is tridiagonal matrix of (M £M) :

B = ¡
¢2

2

6
6
6
6
6
6
4

2 -1 0 0 0 0
-1 2 -1 0 0 0
0 -1 . . 0 0
0 0 . . . 0
0 0 0 . 2 -1
0 0 0 0 -1 2

3

7
7
7
7
7
7
5

;

The vector :
C =

£
g1(t) 0 0.......0 0 g2(t)

¤

To solve the di¤erential system (5) with initial con-
ditions, we propose the use of Adomian decomposition
method ([11],[9],[8]). We have shown, that the bound-
ary conditions are introduced in the system (4) without
any di¢culty.

3 Applying Adomian decomposition method to
solve the ODEs

Adomian decomposition method is applied to solve the
ODEs (5), we assume that (5) has series solution :

(6) u(t) =
1X

=0

u ; i = 1; ::;M

where u(t)(n ¸ 0) is the approximation of u(t):
The nonlinear function is decomposed as follow :

(7) N(u1(t); u2(t); :::; u(t)) =
1X

=0

A

where A are the Adomian polynomials ([9]) de-
pends on w = (u01; :::; u1; :::; u0 ; :::; u); and ob-
tained via the following formula, i = 0; ::;M :

(8) A(w) =
1

n!

d

d¸
N

0

@
X

=0

¸u

1

A

¯
¯
¯
¯
¯
¯
=0

; i = 0; ::;M

Put the equations (6) and (7) and applying the

inverse operator L¡1 (:) =

Z

0

(:)d¿ on both the sides of

equation (5), yields :

1X

=0

u = f ¡
®

¢x2
L¡1 b U


 (t) + L

¡1


1X

=0

A +

L¡1 R(
1X

=0

u) +
1

¢x2
L¡1 C + L

¡1
 h(9)

where b is the i th row of matrix B and U (t) =
(u1(t); ::::; u(t))

 :
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The termes u ,i = 1; ::;M are given as follow :
(10)
8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

u10(t) = f1 + L
¡1
 h1(t) +

1
¢2L

¡1
 g1(t)

u1(t) =

¢2L

¡1
 (u2 ¡ 2u1) + L

¡1
 A10+

L¡1 R(u10); n ¸ 0

u0(t) = f1 + L
¡1
 h(t); i = 2; ::;M ¡ 1

u(t) =

¢2L

¡1
 (u+1 ¡ 2u + u¡1) + L

¡1
 A+

L¡1 R(u); i = 2; ::;M ¡ 1

u0(t) = f + L¡1 h1(t) +
1

¢2L
¡1
 g2(t)

u+1(t) =

¢2L

¡1
 (u¡1 ¡ 2u) + L

¡1
 A+

L¡1 R(u); n ¸ 0:

In practice the solution will be approximated by
series form to order "s":

(11) u(t) =
X

=0

u ; i = 1; ::;M

The convergence results of ADM for ODEs exist in
the literature (see [9], [10]).

4 Illustrative examples

We use an example where the exact solution is known :
the heat equation and an application of Fisher equation
are made to illustrate the proposed approach.

4.1 Example 1: Heat equation Consider the heat
equation ([12]) :
(12)8
<

:

@u(x; t) = 0:01@u(x; t) , (x; t) 2 ]0; l[£]0;+1[:
u(x; 0) = 300; 0 < x < l
u(0; t) = u(l; t) = 0; t > 0

² The exact solution :

The theorical solution is given as follow :

u(x; t) =
1X

=1

b sin (¸x) e
¡2 (13)

=
2f

l

1X

=1

(1¡ cos¸l)

¸
sin (¸x) e

¡2

where ¸ =

 and b is Fourier series coe¢cients

of u(x; 0) given by the following formula :

(14) b =
2

l

Z

0

f(») sin(¸»)d» =
2f(1¡ cos¸l)

l¸

² The ADM solution

The classical form of ADM yields the solution of
equation (12) as follows :

(15) u(x; t) =
1X

=0

u = u0 + u1 + :::: = 300

where :

(16)

8
>><

>>:

u0 = u(x; 0) = 300
u1 = 0:01L

¡1
 L u0 = 0
:::

u+1 = 0:01L
¡1
 L u = 0

The solution (15) dosen’t satisfaying the boundary
conditions, this is a disadvantage of the ADM.

² The proposed approach

We propose the use of the method presented in
section (2) to solve the boundary value problem (12).
We subdivide the interval [0; 1] in 10 points, with ¢x =
0:1, we get the ODEs :
(17)8
>>>><

>>>>:


u(t) = 0:01

+1()¡2()+¡1()
¢2 ; i = 1; ::; 10; t 2]0;+1[

u(0) = 300 , i = 1::::10
Boundary conditions are :

u0(t) = 0; t > 0
u11(t) = 0; t > 0

Which can be easily solved by ADM.
The following …gures presents the superposition

curves of solutions given by DADM (line) and the exact
solution (points) for (m = 30) at time t = 1 and the
relative error for di¤erent values of "s" :

Fig 1. Error curves between DADM
and exacte solution for
di¤erent value of "s"
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Fig 2. Curves of solution obtained
by DADM (ligne) with exact
solution (points) at t = 1

It is noteworthy that the greater the value of order
series "s", the closer we are to the exact solution and
the error is 1.2% for s=20.

4.2 Example 2: Application to Fisher equation
Consider the nonlinear di¤usion equation is the so-called
unforced Fisher’s equation in one dimension [14] :

(18)8
>><

>>:

@u(x; t) = ®@u(x; t) +¸u(1¡ u) , (x; t) 2 ]0; l[£]0; T [
u(x; 0) = f(x); 0 < x < l

u(0; t) = g1(t); t > 0
u(l; t) = g2(t); t > 0

Which provides a simple model for gene selection-
migration, with u denoting the frequency of an advanta-
geous gene and the constant ¸ measuring the intensity
of selection ( [15] ,[6], [5]).This equation gives a deter-
ministic approximation to a model for the spread of an
advantageous gene in a population (see Fisher [15]). It
is also referred to as the Kolmogorov, Petrovsky and
Piskunov (KPP ) equation ([17]).

We assume that the solution satisfy the condition
(see [6]) : 0 6 u(x; t) 6 1 .

By approximating the second derivation of equation
(18) by …nite di¤erence scheme yields :

(19)8
>>>><

>>>>:


u(t) = ®

+1()¡2()+¡1()
¢2 + ¸u(t)¡ ¸u

2
 (t) ;

u(0) = f ,i = 1; ::;M
Boundary conditions are :
u0(t) = g1(t); t 2]0; T [
u+1(t) = g2(t); t 2]0; T [

The di¤erential system (19) areM non linear equa-
tions and it’s can be solved by the ADM. It’s consist of
…nd the solutions into series form :

(20) u =
1X

=0

u ; i = 1; :::;M

and decompose the non linear termes N(u) = u
2
 ,

in series :

(21) N(u) =
1X

=0

A

Where A are the Adomian polynomials calculated
by the formula (8), yields :

(22)

8
>><

>>:

A0 = u
2
0

A1 = 2u0u1
A2 = 2u0u2 + u

2
1

:::::: and so on

We deduce a formulate to calculate this polynomials
:

(23) A =
X

=

u¡ u ; i = 1; ::M; n 2 N

Subsitute the series (20) and (21) in (19) and
integrate the equation (19) between 0 and t; yields :

1X

=0

u = f +
®

¢x2
L¡1 (u+1 ¡ 2u + u¡1) +

¸
1X

=0

u ¡ ¸L
¡1


1X

=0

A (24)

where the u , n 2 N are given as follow :

(25)8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

i = 1:
u10(t) = f1 +


¢2L

¡1
 u00 = f1 +


¢2L

¡1
 g1(t)

u1+1(t) =

¢2L

¡1
 (u2 ¡ 2u1) + ¸L

¡1
 u1+

¸L¡1 A1 . i = 2; :::;M ¡ 1
u0(t) = f
u+1(t) =


¢2L

¡1
 (u+1 ¡ 2u + u¡1) + ¸L

¡1
 u+

¸L¡1 A
i =M :
u0(t) = f + 

¢2L
¡1
 u+10 = f + 

¢2L
¡1
 g2(t)

u+1(t) =

¢2L

¡1
 (u¡1 ¡ 2u) + ¸L

¡1
 u+

¸L¡1 A

4.2.1 Numerical results We solve the Fisher equa-
tion by the discrete ADM and compare the solutions
with those given by explicit scheme in …nite di¤erences
(FDM) for various choices of the discretization parame-
ters ¢x and ¢t:
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We take the intial value function u(x; 0) and the
Dirichlet condition as follow [6] :

¸ = ¼2

u(x; 0) = sin2(2¼x); 0 6 x 6 1

u(0; t) = 0; 0 < t < 1

u(1; t) = 0; 0 < t < 1:

Case 1 : ¢x = 0:1. The following …gure presents
the absolute error (%) between the FDM and DADM
for di¤erents values of ¢t :

Fig 3. Error curves between DADM and FDM

for di¤erent values of ¢t

The …gure 4, show the superposition curves of
solutions obtained by the DADM (ligne) and DFM
(points) for ¢t = 0:25 (…g 4.a) and ¢t = 0:04 (…g 4.b).

Fig 4.(a) : Superposition curves of solutions
obtained by DADM (ligne) and FDM (points)

Fig 4.(b) : Superposition curves of solutions obtained
by DADM (ligne) and FDM (points)

Discussion :
It is found that the absolute error increase for

¢t = 0:5 which varies from 75% to 187% and for ¢t
= 0.25 the error varies from 0.6% to 20%, and it was
smallest value of ¢t = 0.04 from 0.2% to 0.7% (see
Figure 3).

We deduce that the DADM gives good solutions
over the time interval [0, 0.2]. The FDM gives solutions
for small ¢t, and for any instant t 2 [0; T ], it su¢ces
to satisfy the stability condition of the explicit scheme
(¢¢2 6

1
2). In order to increase the time interval we will

use the pasting together the solutions of a di¤erentials
equations by the Adomian method.

Figure 5, gives a superposition of the curves of
solutions obtained by the DADM with pasting of the
solutions (line) for ¢x = 0.1 and the …nite di¤erence
method (points) with a time step ¢t = 0.04 at time t
= 1 :

Fig 5. Curves of solutions given by the DADM
with pasting of the solutions (s = 8) and the
FDM at ¢t = 0.04
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The absolute error varies from 0.01% to 46%. The
curve is not smooth at x = 1.

Case 2 : ¢x = 0:04:The following …gure shows the
variation of the absolute error between the FDM and
DADM for di¤erent time step values :

 

0,0 0,2 0,4 0,6 0,8 1,0

0

2

4

6

8

10

er
re

ur

X

   dt=0.07
  dt=0.04

Fig 6. Error curve between DADM and FDM

for di¤erent time steps

The following …gure show the superposition of the
solutions given by DADM (line) with those of FDM
(points) for ¢t = 0:04 :

(a)¢t = 0:04

Fig 7. Superposition curves of solutions obtained

by DADM (ligne) and FDM (points)

for di¤erent values of ¢t

We notice in …gure 6, that the error is minimal and
varied from 0.002% to 4% at ¢t = 0:04, and the error
increase from 0.03% to 9% at time step¢t = 0:07, this is
interpreted as the smaller of the step, the error becomes
minimal.

We found that DADM gives good solutions over
small time interval [0; 0; 2], for this we will use the
DADM with the pasting of solutions to have the so-
lutions on large intervalles.

The superposition of the solutions obtained by the
DADMwith pasting of the solutions (line) and the FDM
to ¢t = 0:04 (points) at time t = 1 is given by the
following …gure :

Fig 8. Superposition of curves solutions given by
the DADM with pasting of the solutions (s = 5)
and the FDM at t = 1

Note that the absolute error varies from 0.003% to
53% for the truncated-order s = 5, this is due to the fact
that the solution given by the DADM is not smooth at
the boundary x = 1 . In order to reduce this error, it
is su¢cient to increase the order of the truncated series
or to reduce the step of pasting of the solutions. This
requires too many calculations and the execution time
increase of the DADM with pasting of the solutions.

5 Conclusion

The discrete Adomian decomposition method is suc-
cessfully applied to …nd the solutions of linear or non
linear partial di¤erential equations. The e¢ciency of
the proposed method is demonstrated by two examples:
Heat and Fisher equation. It may also be a promis-
ing method to solve other nonlinear partial di¤erential
equations and with other kinds of boundary conditions
: Neumman or Cauchy.
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