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Abstract---Epileptic diagnosis is generally achieved by visual 
scanning of Interictal Epileptiform Discharges (IEDs) using 
EEG recordings. The main objective of this research is to select 
a smallest relevant feature subset from the original dataset in 
order to reduce the diagnosis time and increase classification 
accuracy by removing irrelevant and redundant features. For 
this purpose we suggest a two-stage feature selection algorithm 
based on supervised classification approach adopting 
successively a wrapper feature selection and a wrapper feature 
subset selection method.  Matlab simulation results illustrate 
that through comparing the two classifiers, the high-
dimensionality is reduced at only one relevant feature that 
showed classification metrics of 100%. The epilepsy diagnosis 
is successfully tested in the discriminant Fisher-space with the 
single-best relevant feature.  
 
Keyword---Cross-validation, Classification metrics, EEG, 
Feature selection, IED’s, LDA, Mahalanobis Distance 
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I. INTRODUCTION 

Epileptic is a neurological disorder marked by sudden 

recurrent episodes of sensory disturbance, loss of 

conscience, convulsions, associated with abnormal electrical 

activity in the brain. The confirmation of the existence of an 

epileptic diseases is based on visual detection of isolated 

Interictal Epileptiform Discharges (IEDs)  (spikes or spike-

waves complex), using EEG (Electroencephalogram) signal 

recordings in certain brain areas , for example, the 

confirmation of the epileptic-absence  type is based on 

presence of a spike-waves rhythmic at 3 Hz [1],[2]. This 

technique is inaccurate, fastidious and too time consuming.  

The aim of our research is to establish an automated 

diagnosis of epileptic disease employing a supervised 

classification approach. Fig1 shows the different 

sections of the article: 

 

                  Fig.1 Block diagram of automatic diagnosis process 

To create a training set, we need to build a knowledge 

database composed of normal EEG sample and epileptic 

EEG sample. Feature extraction is an essential pre-

processing step to pattern recognition and machine learning 

problems. To build the training set, the signal pattern may be 

described by three field analysis: Time field, [4], [7]-[11], 

frequency field, [11]-[13], and time-frequency field, [4], [7], 

[11], [14]-[16]. In this article, EEG-signal pattern is 

described in high dimensionality in the three previous fields. 

To reduce the dimensionality at a SRFS (Smallest Relevant 

Feature Subset), we have proposed two-stage feature 
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selection algorithm using wrapper-based method in 

supervised classification [17]: The first stage uses the IFE 

(individual feature evaluation) method and the second stage 

uses the SBS (sequential Backward Selection) method.  

A Mahalanobis Distance-based Classifier (MDC) is 

suggested to classify the unknown EEG signal into 

“Normal” or “Epileptic” classes. For an optimal 

visualization of both of them, the samples are projected in 

the linear Fisher space [18], [19] using Fisher linear 

Discriminant Analysis (FDA) that consists of seeking the 

optimal directions that are efficient for discrimination.  

 
II. METHODS 

A. Knowledge Database 

       The population selected is composed of 20 labeled 

single-EEG signals (derived from the Neurology department 

of University Hospital of Sousse-Tunisia), sampled at a 

frequency F = 200Hz, segmented at 1 second epoch, and 

filtered from artifacts, divided into two groups: 10 normal 

signals for the first group and 10 epileptic signals for the 

second group. These signals will be modeled by a set of 

features to form the training set that will be used in the 

feature selection process.  

 
B. Feature Extraction  

      In feature extraction process, we have adopted the 

statistical analysis approach from each single-EEG signal. 

Feature vector is composed of 48 features that are extracted 

from time, frequency and time-frequency fields (Table1): 

 

                         Table 1. Analysis domains for Feature Extraction 

Analysis fields Methods Number of feature 

Time 

Min-Max 2 

Hjort parameters 3 

LPC 4 

Frequency 

DFTC 3 

CC 4 

DHTC 8 

Time-Frequency 
WC 16 

STFTC 8 

 Total:     48 

 

 

LPC: Linear Predictive Coefficients 

DFTC: Discret Fourier Transformation Coefficients 

CC: Cepstral Coefficients 

DHTC: Discret Hilbert Transformation Coefficients 

WC : Wavelet Coefficients 

STFTC : Short Time Fourier Transformation Coefficients 

 

C. Training Dataset  

The training dataset is represented as (nxd) data pattern, it is 

defined as:  

                                    i,
TR

kX x    ,                               (1) 

1 , 1i n k d                      

n: Total number of samples; d:dataset dimensionality 

,  i kx : General term of training dataset 

The signals are manually labeled and ordered into two 

groups, normal and epileptic, by an expert neurologist.  

The “normal” group is defined by the following dataset:  

                                    1 i, 1

TRTR
kX x      ,                          (2) 

 
1

1 TRX
i N                         

1
TRX

N  : Samples number of first group 

The “Epileptic” group is defined by the following dataset: 

                                    2 i, 2

TRTR
kX x      ,                          (3) 

 
1 2

( 1)TR TRX X
N i N          

2
TRX

N : Samples number of second group 

 

D.  Feature Selection algorithm  

      For the classification difficulty, wrapper feature 

selection consists of selecting the features that maximize the 

classifier performance and capable of discriminating 

samples that belong to different classes. In this research, the 

classifier performance is evaluated from the confusion 

matrix that derives the important metrics, such as, Accuracy, 

Sensitivity and Specificity. The feature selection algorithm 

is composed of the two following stages (Fig2): 

- IFE (Individual Feature Evaluation) stage,  

- SBS (Sequential Backward Selection) stage. 
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            Fig.2 Block diagram of the relevant feature selection process 

 

1) Individual Feature Evaluation stage 

       In the first algorithm stage, a wrapper feature selection 

method is used by applying the Individual Feature 

Evaluation technique. The choice of the features is accorded 

to the highest metrics that have been selected. Two 

classifiers have been evaluated for this process:  LDC 

(Linear Discriminant Classifier) and QDC (Quadratic 

Discriminant Classifier) that provide the two following 

Relevant Feature Subsets (RFS):  

RFS LDCF 
: Relevant Feature Subset corresponding to the 

higher ranked-LDC metrics  

RFS QDCF  : Relevant Feature Subset corresponding to the 

higher ranked-QDC metrics 

In the output of the first stage, the algorithm compare 

between the higher ranked LDC metrics and the higher 

ranked QDC metrics in order to select the Smallest-Best 

Relevant Feature Subset SBREFSF . 

  

2) Sequential Backward Selection stage 

       In the second algorithm stage, to reduce the 

dimensionality of SBREFSF , a wrapper feature subset selection 

method is used applying Sequential Backward Selection 

method, consists of removing sequentially the features of the 

SBREFSF set until the removal of further features increase the 

classification metrics. The feature subsets according to the 

highest metrics have been selected to provide the two 

Smallest Best Relevant Feature Subsets (SBRFS):  

SBRFS LDCF 
 : Smallest-Best Relevant Feature Subset using 

LDC classifier  

SBRFS QDCF   : Smallest-Best Relevant Feature Subset using 

QDC classifier 

The output of the second stage provides the smallest 

relevant feature subset SRFSF  that is finally obtained by 

selecting the best smallest size between SBRFS LDCF 
 

and SBRFS QDCF  . 

 

E. Mahalanobis distance classifier (MDC)  

       Mahalanobis Distance Classifier computes the distance 

d( , )unk kx m between unknown EEG feature vector and the 

two classes “Normal” and “Epileptic” as follow:     

          1T
unk c unk k unk cd(x , m ) (x m ) T (x m )

          (4)    

Xunk: Unknown feature vector;  

mk: Mean of the kth class; 

T: Covariance matrix of the learning dataset XTR 

 

III. RESULTS AND DISCUSSION 

A. First-stage experimental results 

        In the first part of individual feature evaluation (IFE) 

stage a 5-fold cross-validation procedure is used in LDC-

classifier in order to estimate the metrics (Accuracy, 

Sensitivity and Specificity) of each feature (Fig3). The 

algorithm chooses only the features having the higher 

metrics (Table2).  

                 Fig3.Metrics of individual features using LDC classifier 
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              Table 2. Top 4 feature indices using LDC-classifier 
 

Top 4 feature indices 16 19 20 21 

Accuracy 100% 100% 100% 100% 

Sensitivity 100% 100% 100% 100% 

Specificity 100% 100% 100% 100% 

The feature subset deduced from the first stage using LDC-

classifier will therefore be defined as: 

                       16 19 20 21, , ,FRFS LDCF f f f f   

In the second part of individual feature evaluation (IFE) 

stage, a 5-fold cross-validation procedure is applied in 

QDC-classifier in order to estimate the metrics of each 

feature (Fig 4) and the algorithm selects only the features 

having the higher metrics (Table 3).   

              Fig4.Metrics of individual features using QDC classifier 

  

                  Table 3. Top 6 feature indices using QDC-classifier 

 

Feature indices 16 19 20 21 

 

28 

 

42 

Accuracy 100% 100% 100% 100% 100% 100% 

Sensitivity 100% 100% 100% 100% 100% 100% 

Specificity 100% 100% 100% 100% 100% 100% 

 

The feature subset deduced from the first stage using QDC-

classifier will therefore be defined as: 

               16 19 20 21 28 42, , , , ,FRFS QDCF f f f f f f     

       At the end of the first algorithm stage the smallest best 

relevant feature subset (SBRFS) have been selected by 

comparing between the metrics and the size of both 

RFS LDCF   and  RFS QDCF  subsets , the SBRFS will therefore 

be defined as:     

              16 19 20 21, , ,SBRFS f f f fF   

B. Second-stage experimental results: 

        To reduce the dimensionality of SBRFSF we have used 

the SBS (Sequential Backward Selection) search method 

that starts with all features and removes a single feature at 

each step until the desired dimension with the highest 

metrics is reached. For each step a 5-fold cross validation is 

applied for the feature subset selection process. In the first 

part of the second-algorithm stage, the experimental results 

using LDC-classifier illustrates that the SBRFS (Smallest 

Best Relevant Feature Subset) is composed of the 16th 

feature:  

                        16SBRFS LDCF f    

In the second part of the second-algorithm stage, the 

experimental results using QDC-classifier illustrates that the 

SBRFS (Smallest Best Relevant Feature Subset) is also 

composed of the 16th feature: 

                        16SBRFS QDCF f   

       The output of the second stage selects the smallest 

relevant feature subset comparing both the metrics and the 

size of SBRFS LDCF   and  SBRFS QDCF  ,  

The final SRFS (Smallest Relevant Feature Subset) is so 

deduced as:  16SRFS fF   

The final experimental result of the two-stage algorithm 

feature selection is resumed in the following figure (Fig.5).  

            Fig.5: Experimental results of relevant feature selection process 

The combination of these two techniques (IFE and SBS) 

leads to reduce the dimensionality of the original feature set 

at only one best relevant feature that will be used in epilepsy 

diagnosis. 
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            Fig6: Automated Diagnosis of the single-EEG signal 

The diagnostic result was successfully tested (Fig.6) on 

EEG signals containing spikes and spike-waves, this figure 

gives an example of automatic affectation (using a 

Mahalanobis distance classifier) of an EEG signal that 

containing two spike-waves (Epileptic). This diagnostic is 

made using only one feature (16th feature) that has been 

selected from the dataset. Index 16 is accorded to the 

maximum of the DHTC magnitude of EEG signal that is 

defined as:  max ( ( )DHT S n . 

IV. Literature review 

      Table4 show a comparative study on IED’s classification 

metrics in recent years, regardless of the number of features 

used: Our feature selection algorithm improves the 

classification metrics for both LDC and QDC classifier 

using the single-best relevant feature selected. 

                Table 4. Literature review of some classification metrics 

Ref  N° Classifier Accuracy Sensitivity Specificity 

[23] AdaBoost 93,9% 95,5% 92,4% 

[24] NN 99% __ __ 

 

[3] 

LDC 

QDC 

__ 

__ 

 

82% 

87% 

90% 

92% 

Current 

study 

LDC 

QDC 

100% 

100% 

100% 

100% 

100% 

100% 
 

AdaBoost: Adaptive Boost 

NN: Neural Network 

 

 CONCLUSION 

    A two-stage feature selection algorithm has been 

proposed in this article in order to remove the redundancy 

and to reduce the dimensionality of the dataset at the 

relevant feature subset. The mRMR (Minimum-Redundancy 

Maximum-Relevance) approach was successfully confirmed 

and tested in the first algorithm stage using IFE method, and 

the dimensionality of the relevant feature subset selected 

was successfully reduced in the second stage using SBS 

method at only one single best relevant feature that may be 

reduce considerably the processing time of the diagnostic. 

The performance of the results can be improved by using 

other robust dataset features and other classifier types for 

validation, such as the ANN (Artificial Neural Network), 

SVM (Support Vector Machine) and GA (Genetic 

Algorithm) methods. Using the automated IED’s diagnosis 

the doctor will no longer need to scan visually EEG signal 

leads.  
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