
 

 

  
Abstract—The Vandermonde matrix is ubiquitous in 

mathematics and engineering. Both the Vandermonde matrix and its 
inverse are often encountered in control theory, in the derivation of 
numerical formulas, and in systems theory. In some cases block 
vandermonde matrices are used. Block Vandermonde matrices, 
considered in this paper, are constructed from a full set of solvents of 
a corresponding matrix polynomial. These solvents represent block 
poles and block zeros of a linear multivariable dynamical time-
invariant system described in matrix fractions. Control techniques of 
such systems deal with the inverse or determinant of block 
vandermonde matrices. Methods to compute the inverse of a block 
vandermonde matrix have not been studied but the inversion of block 
matrices (or partitioned matrices) is very well studied. In this paper, 
properties of these matrices and iterative algorithms to compute the 
determinant and the inverse of a block Vandermonde matrix are 
given. instructions give you guidelines for preparing papers. A 
parallelization of these algorithms is also presented. The proposed 
algorithms are validated by a comparison based on algorithmic 
complexity. 
 

Keywords—Block Vandermonde matrix, Matrix determinant, 
Matrix polynomials, Matrix inverse, Parallelization, Solvents.  

I. INTRODUCTION 
HE Vandermonde matrix is very important and its uses 

include polynomial interpolation, coding theory, signal 
processing, etc. Literature on Vandermonde matrix goes back 
to 1965 and even before, where many papers deal with the 
study of its properties, its inverse and its determinant [1]-[5]. 
The importance of the Vandermonde matrix in control theory 
particularly has been emphasized by Tou [6], Brule [7], and 
Reis [8]. Vandermonde matrix may be also encountered in 
other domains, as in computer science, for example for  the 
design of cross layer protocols with recovering from errors and 
packet loss impairments [9], and in [10] the quasi-cyclic (QC) 
protograph low-density parity-check (LDPC) codes are based 
on Vandermonde matrices. 

In [11], the author proved that every generic nxn matrix is a 
product of a Vandermonde matrix and its transpose, and in 
[12] a Vandermonde matrix is decomposed to obtain variants 
of the Lagrange interpolation polynomial of degree≤n that 
passes through the n +1points. Generally, the inverse of the 
usual Vandermonde matrix as well as the inverse of the 
generalized Vandermonde matrix is based on using 

 
M. Yaici is with the Laboratoire LTII, University of Bejaia, Bejaia, 06000, 

Algeria (corresponding author : 213 664608272; fax: 213 34813721; e-mail: 
yaici_m@hotmail.com).  

K. Hariche is with IGEE institute, University of Boumerdes, Boumerdes, 
35000, Algeria. (e-mail: kharicher@yahoo.com). 

interpolation polynomials. 
The inversion of the Vandermonde matrix has received 

much attention for its role in the solution of some problems of 
numerical analysis and control theory. The work presented in 
[13] deals with the problem of getting an explicit formula for 
the generic element of the inverse to result in two algorithms in 
O(n2) and O(n3).  

One of the first papers where the term block vandermonde 
matrix (BVM) is used, to my knowledge, is [14] but it is in 
[15] and [16] that the concept is fully studied; the block 
Vandermonde matrix is defined and its properties are 
explored. A method, based on the Gaussian elimination, to 
compute the determinant is also proposed.  

In [17], the author gives a method to determine the biggest 
integer n=v(q,t) for which there exist t×t matrices 
{A1…An}with the highest power q such that the BVM  is 
invertible.  

In [18], linear diffusion layers achieving maximal branch 
numbers called MDS (maximal distance separable) matrices 
are constructed from block Vandermonde matrices and their 
transposes. Under some conditions these MDS matrices are 
involutory (its inverse is itself) which is of great value in 
cryptography.    

Methods to compute the inverse of a block vandermonde 
matrix have not been studied but the inversion of block 
matrices (or partitioned matrices) is very well studied! The 
method to compute the inverse of a 2×2 block matrix is 
known, under the conditions that at least one of the two 
diagonal matrix entries must be non-singular. In [19], this 
condition is overcome by using three new types of symbolic 
block matrix inversion. 

In [20], the properties of block matrices with block banded 
inverses are investigated to derive efficient matrix inversion 
algorithms for such matrices. In particular, a recursive 
algorithm to invert a full matrix whose inverse is structured as 
a block tridiagonal matrix and a recursive algorithm to 
compute the inverse of a structured block tridiagonal matrix 
are proposed.  

Block Vandermonde matrices constructed using matrix 
polynomials solvents are very useful in control engineering, 
for example in control of multi-variable dynamic systems 
described in matrix fractions (see [21]). It is in these particular 
BVM that we are interested. 

Parallelization may be a solution to problems where large 
size matrices, as BVM, are used. Large scale matrix inversion 
has been used in many domains and block-based Gauss-Jordan 
(G-J) algorithm as a classical method of large matrix inversion 

A particular block Vandermonde matrix 
Malika Yaici and Kamel Hariche 

T 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 13, 2019

ISSN: 2074-1278 1



 

 

has become the focus of many researchers. But the large 
parallel granularity in existing algorithms restricts the 
performance of parallel block-based G-J algorithm, especially 
in the cluster environment consisting of PCs or workstations. 
The author of [22] presents a fine-grained parallel G-J 
algorithm to settle the problem presented above. 

In this paper a new algorithm to compute the inverse and 
the determinant of a block Vandermonde matrix constructed 
from solvents are given. An implementation using Matlab has 
been undergone, in order to obtain the speed-up of the 
proposed algorithms compared to Matlab built-in functions. A 
parallelization of the two algorithms is also proposed. 

After this introduction, some needed mathematical 
preliminaries are presented in section 2, and then the main 
results come in section 3. A parallelization of the proposed 
algorithms is given in section 4.  A conclusion finishes the 
paper.  

II. MATHEMATICAL PRELIMINARIES 
In linear algebra, a Vandermonde matrix, named after 

Alexandre-Théophile Vandermonde, is an m×m matrix with 
the terms of a geometric progression in each row:  

 
 
                                                                                           (1) 
 
 
  
And a column Vandermonde matrix of order n is the 

transpose of V. 
 
For a set of n m×m matrices {A1, A2, …, An}, the 

corresponding block Vandermonde matrix (BVM) of order t is 
defined as follows: 

 

1 2

1 1 1
1 2

n

t t t
n

I I I
A A A

V

A A A− − −

 
 
 =
 
 
 





   



                                     (2) 

 
The block Vandermonde matrices, we will be dealing with, 

are constructed from solvents of matrix polynomials. In this 
section, a recall on matrix polynomials, solvents, and their 
properties, will be given. 

A. Matrix polynomials 
Definition 1: A polynomial matrix (also called a λ-matrix), 

of order m, is an m x m matrix given as follows: 



















=

)()()(

)()()(
)()()(

)(

21

22221

11211

tatata

tatata
tatata

tA

mmmm

m

m









                   (3) 

where aij(t) are scalar polynomials (of degree r) over the 
field of complex numbers.  

 
From a polynomial matrix we can construct a matrix 

polynomial and vice-versa. 
 
Definition 2: An m’th order, r’th degree matrix polynomial 

is given by: 
1

1 1 0( ) r r
r rA t A t A t A t A−

−= + + + +                          (4) 
 where Ai are m × m real matrices and t a complex number. 
 
Definition 3: Let X be an m × m complex matrix. 
A right matrix polynomial is defined by: 

1
1 1 0( ) r r

R r rA t A X A X A X A−
−= + + + +                (5) 

And a left matrix polynomial is defined by: 
1

1 1 0( ) r r
L r rA t X A X A XA A−

−= + + + +                 (6) 
 
Definition 4: The complex number λi is called a latent value 

of A(t) if it is a solution of the scalar polynomial equation 
det(A(t))=0. The non-trivial vector vi, solution of the equation 
A(λi)vi=0, is called a primary right latent vector associated to 
the latent value λi. Similarly, the non-trivial row vector wi, 
solution of the equation wiA(λi)=0 is called a primary left 
latent vector associated with λi [21]. 

B. Solvents 
Definition 5: A right solvent (or a block root) R of a 

polynomial matrix A(t) is defined by: 
 1

1 1 0( ) 0r r
r r mA R A R A R A R A−

−= + + + + =        (7) 
and the left solvent L of a polynomial matrix A(t) is defined 

by: 
    1

1 1 0( ) 0r r
r r mA L L A L A LA A−

−= + + + + =        (8) 
A solvent is automatically non-singular. The determinant is 

non-null because its latent values (eigenvalues) are distinct; the 
latent vectors (eigenvectors) must be linearly independent. 

C. Block Vandermonde matrix 
As for an eigenvalue system, a block Vandermonde matrix 

can be defined for solvents with particular properties [21].  
Let a set of r right solvents Ri (m×m matrices) of a 

corresponding matrix polynomial A(t). A row block 
Vandermonde matrix of order r is a r*m×r*m matrix defined 
as: 





















=

−

−

−

1

1
22

1
11

1

1
1

n
mm

n

n

xx

xx
xx

V









INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 13, 2019

ISSN: 2074-1278 2



 

 

       1 2

1 1 1
1 2

m m m

r

r r r
r

I I I
R R R

V

R R R− − −

 
 
 =
 
 
 





   



                         (9) 

 
And given a set of r left solvents Li (m×m matrices) of a 

polynomial matrix A(t) a column block Vandermonde matrix 
of order r is a defined as: 

              





















=

−

−

−

1

1
22

1
11

r
rrm

r
m

r
m

LLI

LLI
LLI

V









                          (10) 

 
Remark1: In [23], the general right (left) block 

Vandermonde matrix constructed by solvents, where a right 
(left) solvent Ri (Li) with multiplicity mi exists, is given. 

D. Non-singularity 
Theorem 1: If A(t) has distinct latent roots, then there exists 

a complete set of right solvents of A(X) {R1, …, Rm} and for 
any such set of solvents, The associated BVM V is 
nonsingular. 

Proof : see [15] 
 
Theorem 2: If we let σ[A(t)] denote the set of all latent roots 

of A(t) and σ[Ri] the set of eigenvalues of the right solvent Ri, 
then a complete set of right solvents is obtained if we can find 
r right solvents such that: 

              
[ ] [ ]

[ ]
1

( )r
ii

i j

R A t

R R

σ σ

σ σ
=

 =


  = ∅   



                             (11) 

and the block Vandermonde matrix thus constructed is 
nonsingular. 

Proof: see [16] 
 
Just as for the right solvents, the existence of a left block 

root depends on the existence of a set of m linearly 
independent left latent vectors. A complete set of left block 
roots is obtained if we can find r left block roots where each 
block root involves a distinct set of m latent roots of A(t). This 
in turn requires that for each such a distinct set, we can find a 
corresponding set of linearly left latent vectors. 

 
Theorem 3: A block Vandermonde matrix as defined in (9) 

is non-singular if and only if the set of k solvents {R1 … Rk} 
with multiplicities {m1 …mk} is a complete set. 

Proof: see [15, 23] 
 
Theorem 4: The set of left solvents of A(t), which satisfies 

the following properties,  

                    

[ ] [ ]





=

=

=

=
∑

i
k
i

k

i
i

LtA

mr

σσ 1

1

)( 

                            (12) 

and a nonsingular corresponding block vandermonde 
matrix, is called the complete set of the left solvents of A(t). 

Proof: see [24] 
 
Remark 2: A complete set of right or left solvents will then 

describe completely the latent (eigen) structure of A(t). 

III. MAIN RESULTS 
The following results are mainly given on a row-BVM 

constructed from right solvents. The same procedures can be 
applied to a column-BVM constructed from left solvents. 

A. Iterative construction of BVM 
Let V1=Im, where Im is the m×m identity matrix, then BVM 

of order 2 constructed from two solvents is as follows: 

                                                          (13) 

 If we define the following matrices: B1=Im, C1=R1 and 
D1=R2 Then a BVM of order three (3 solvents) is as follows: 

 

                                                             (14) 

 

Where  ,   and  . 

The following theorem is deduced from previous results: 
 
Theorem 5: A BVM of order r, constructed from r solvents, 

is as follows: 
 

                                                     (15) 

 

where  ,   

   
and  . 
 
Proof: It is straight forward from the block partitioning of 

the BVM Vr as follows: 

  

1 2 1

2 2 2 2
1 2 1

1 1 1 1
1 2 1

|
|
|
|

|

m m m m

r r

r r r r
r r

r r r r
r r

I I I I
R R R R

V
R R R R

R R R R

−

− − − −
−

− − − −
−

 
 
 
 

=  
 
 − − − − − − − − − − −
  
 





    





        (16) 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 13, 2019

ISSN: 2074-1278 3



 

 

 

B. Inverse of a BVM 
From [25], the inverse of a block partitioned matrix is given 

as follows: 
If A is nonsingular: 

  
1 1 1 1

1 1

* * *
*

A A

A A

A B A E S F E S
C D S F S

− − − −

− −

 + − 
=    −   

      (17) 

Where  
,   ,  . 

SA is the Shur complement of matrix A, is nonsingular. 
 
And if D is non-singular: 










+−
−

=







−−−

−−−

111

111

***
*

DFSESE
FSS

DC
BA

DD

DD        (18) 

Where    
CDBASDBFCDE D **,*,* 111 −−− −===  

SD is the Schur complement of matrix D and should be non-
singular. 

 
Let us compute the inverse of a BVM of order r as given in 

(9) by using (17). In our case both diagonal entries are non-
singular. 

      
1 1 1

1 1 1 1
1 1
1 1

* * *
*

r r r
r

r r

V E S F E S
V

S F S

− − −
− − − −

− −
− −

 + −
=  

− 
             (19) 

where Sr-1 is the Shur complement of matrix Vr-1 (computed 
at iteration r-1)  

            1
1 1 1 1 1* *r r r r rS D C V B−

− − − − −= −                         (20) 

 ,    
and Dr-1, Cr-1, Br-1 are as given in (15). 
The same procedure will be used to determine the inverse of 

the BVM Vr-1. So the algorithm is an iterative procedure. 
 
Algorithm: Let a complete set of solvents {R1, ..., Rr} and 

the corresponding BVM Vr as given in (9). From the matrix Vr, 
all sub-matrices (Bi, Ci, Di and Si) will be first constructed, and 
then the inverse is computed. The algorithm uses a function 
which computes the inverse of the Shur complement. 

 
Step1: Let INV = Im 
Step2: 
for i = 2*m to r*m with step=m 
Bi-1 = Vr(1:i-2, i-1:i); 
Ci-1 = Vr(i-1:I, 1:i-2); 
Di-1 = Vr(i-1:I, i-1:i); 
Ei-1 = INV*Bi-1; 
Fi-1 = Ci-1 * INV; 
Si-1 =Di-1-Ci-1*INV*Bi-1; 

INV =  
1 1
1 1

1 1
1 1

* * *
*

i i

i i

INV E S F E S
S F S

− −
− −

− −
− −

 + −
 

− 
 

endfor 
 
Algorithmic Complexity: The iterative algorithm requires r-2 

iterations. The procedure consists of a set of affectations and 
the computation of the inverse of Si. The size of Si is m×m and 
Matlab uses Gaussian elimination method rather than an 
inverse algorithm. The Gaussian elimination has a complexity 
of O(m3).  

The overall complexity of our algorithm is: O((r-2) *m3). 
 

C. Determinant of a BVM 
From [25], the determinant of a block partitioned matrix is 

as follows:  
If A is non-singular 

   1det det *det( * * )
A B

A D C A B
C D

− 
= − 

 
       (21) 

And if D is non-singular: 

     )**det(*detdet 1 CDBAD
DC
BA −−=








    (22) 

Using this equation and the block decompositions given in 
the previous section we deduced the determinant of a BVM of 
order r as given in (9) by using (21) (both equations hold in 
our case).  

                 1 1det det *detr r rV V S− −=                          (23) 
where Sr-1 is the Shur complement of matrix Vr-1 defined in 

(20). 
 
Remark 2: The determinant is, in general, needed with the 

inverse. So the inverse of Vr-1 is computed using the previous 
algorithm. 

 
Algorithm: Let a complete set of solvents {R1…Rr} and the 

corresponding BVM Vr as given in (9). From the matrix Vr all 
sub-matrices (Vi, Bi, Ci, Di and Si) can be constructed and the 
determinant computed. The algorithm uses a function which 
computes the determinant of the Shur complement. 

 
Step1: Let Det = 1 
Step2: 
for i = 2*m to r*m with step=m 
Vi-1 = Vr(1: i-2, 1:i-2) ; 
Bi-1 = Vr(1: i-2, i-1:i); 
Ci-1 = Vr(i-1: I, 1: i-2); 
Di-1 = Vr(i-1:I, i-1:i); 

Si-1 = Di-1 – Ci-1 *   * Bi-1; 
Det = Det * determinant(Si-1); 
endfor 
 
Algorithmic Complexity: As for the inverse algorithm, the 

determinant iterative algorithm needs r-2 iterations. The 
procedure consists of a set of affectations, the computation of 
the inverse of a BVM and of the determinant of S. The size of 
S is m×m and Matlab uses the triangular factors of Gaussian 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 13, 2019

ISSN: 2074-1278 4



 

 

elimination method to compute the determinant and the inverse 
of a square matrix. The Gaussian elimination has a complexity 
of O(m3).So the complexity depends also on the size of S.  

 
The overall complexity of our algorithm is: O((r-2)*m3). 

D. Illustrative example 
Let P(λ) be a matrix polynomial of degree 4 and order 2 :       
             
 
Where the matrix coefficients are:  
 
 
 
 
 
 
 
This matrix polynomial presents a full set of 4 solvents: 
 
 
 
 
 
 
 
Then the associated BVM of order 4 is constructed: 
  
 
 
 
 
 
 
The previous algorithms have been implemented on Matlab 

and the numerical results are as follows: 
 
 
 
 
 
 
 
 
 
Det = -1.0037e+007 
 
We used the tic/toc functions of Matlab to determine the 

execution time T1 of our procedure of the BVM inverse and 
determinant to be compared to the time T2 of the “inv” and 
“det” functions of Matlab.  

 
The results are for the inverse are: 
T1 =  2.2283e-005 
T2 =  2.4673e-004 
Speedup = T2/T1= 11.073 

 
The results are for the determinant are: 
T1 =  7.2925e-006 
T2 =  1.0615e-004 
Speedup =T2/T1= 14.556 

IV. PARALLELIZATION 
For both Determinant and Inverse, a parallelization is 

possible because of the decomposition step in the proposed 
algorithm. Even though the iterative approach is difficult to 
optimally parallelize! The above decomposition is useful only 
if a parallel execution is possible, otherwise the benefits are 
negligible. 

There exist two kinds of parallelization of matrix calculus: 
data or tasks (calculus) decomposition. Because data 
decomposition is already performed, so task decomposition is 
proposed.  

A. Parallel inverse of BVM 
From the data decomposition, master-slave task 

decomposition was performed on the sequential algorithm. 
The master task will execute the data scattering and gathering, 
and sequential instructions and at least three (3) slave tasks 
will execute the parallel blocks. 

 
Algorithm: 
Step1: Let INV = Im 
Step2: for i = 2*m to r*m with step=m 
Parallel block 
Bi-1 = Vr(1:i-2; i-1:i); 
Ci-1 = Vr(i-1:i; 1:i-2); 
Di-1 = Vr(i-1:i; i-1:i); 

End 
Parallel block 
Ei-1 = INV*Bi-1 ; 
Fi-1 = Ci-1*INV ; 
Si-1 = Di-1 –Ci-1*INV*Bi-1; 

end 

iS = 1
1iS −

− ; 

Parallel block 

INV = 
* * *
*

INV E iS F E iS
iS F iS

+ − 
 − 

 

end 
endfor 
 

B. Parallel determinant of BVM 
As for the precedent algorithm, master-slave task 

decomposition has been performed, and the master task will 
execute the data scattering and gathering and sequential parts, 
and at least four (4) slave tasks will execute the parallel 
blocks. 

 
Algorithm: 
Step1: Let Det=1 
Step2: for i = 2*m to r*m with step=m 

01
2

2
3

3
4

2)( ppppIP ++++= λλλλλ









=








−
−−

=









−

=







−

−
=

20
11

,
23
11

,
13

52
,

53
21

01

23

pp

pp








 −−
=








−−

=









−
−

=







−
−

=

25.1075.7
50.423.3

;
86.160.0

42.496.0

37.048.0
11.157.0

;
70.8721.42
70.18140.87

43

21

RR

RR



















=

3
4

3
3

3
2

3
1

2
4

2
3

2
2

2
1

4321

2222

4

RRRR
RRRR
RRRR
IIII

V

































−−−−
−−−−

−−−
−−−−−

−−−−
−
−−−−−
−−−−−

=−

08.009.057.031.070.013.024.037.0
10.012.073.040.090.016.032.047.0
06.001.024.015.019.028.017.001.0
21.002.010.159.010.059.030.003.0

01.011.021.023.057.014.064.039.0
09.012.015.034.068.044.072.055.0
01.001.011.007.006.001.005.002.0
03.002.022.014.012.002.010.005.0

1
4V

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 13, 2019

ISSN: 2074-1278 5



 

 

Parallel block 
Vi-1 = Vr(1:i-2; 1:i-2); 
Bi-1 = Vr(1:i-2; i-1:i); 
Ci-1 = Vr(i-1:i; 1:i-2); 
Di-1 = Vr(i-1:i; i-1:i); 

end 

Si-1 = 
1

1 1 1 1* *i i i iD C V B−
− − − −−   ; 

Det = Det*determinant(Si-1); 
endfor 
 

C. Algorithmic complexity 
The overall time complexity of the two algorithms is the 

same as before: O((r-2)*m3). But the detailed complexity is 
slightly better. 

An implementation using Matlab has been done. Matlab 
(classical) offers parallel execution of a set of instructions 
(parallel block) using parfor. Matlab uses the number of 
cores available on the used computer using matlabpool. 

 

V. CONCLUSION 
In this paper new results on the computation of the inverse 

and the determinant of a particular block Vandermonde matrix 
are given. Efficient algorithms are proposed with their 
algorithmic complexities.  

We used the “tic/toc” functions of Matlab to determine 
the execution time of our algorithms to be compared to the 
execution time  of Matlab functions, and the proposed inverse 
algorithm is found 11 times quicker, and the determinant 
algorithm is 14 times quicker. The parallel execution time was 
greater than the sequential execution time, because of the large 
amount of data flowing between the cores at each iteration. 

These new computation techniques are very useful in 
control theory, where systems are described in matrix fractions 
description and their properties are deduced from solvents. In 
this case block Vandermonde matrices constructed from 
solvents, their inverse and determinants are needed. The future 
work is within this axis and it consists in proposing a parallel 
algorithm to solve the Compensator (Diophantine) equation 
where block Vandermonde matrices constructed using matrix 
polynomial solvents are involved. 
  

REFERENCES   
[1] A. Klinger, “The Vandermonde matrix,” The American Mathematical 

Monthly, vol. 74, no. 5, pp. 571-574, 1967. 
[2] V. Pless, Introduction to the Theory of Error-Correcting Codes. John 

Wiley, New York, 1982. 
[3] R. E. Blahut, Theory and Practice of Error Control Codes, Addison 

Wesley, Reading, Mass., USA, 1983. 
[4] G. H. Golub and C. F. Van Loan, Matrix Computation, Johns Hopkins 

Univ. Press, Baltimore, 1983, pp. 119-124. 
[5] J. J. Rushanan, “On the Vandermonde Matrix,” The American 

Mathematical Monthly, Published by: Mathematical Association of 
America, vol. 96, no. 10, pp. 921-924, 1989. 

[6] J. T. Tou, “ Determination of the inverse Vandermonde matrix,” IEEE 
Trans. Automatic Control (Correspondence), vol. AC-9, pp. 314, 1964. 

[7] J. D. Brule, “A note on the Vandermonde determinant,” IEEE Trans. 
Automatic Control (Correspondence), vol. AC-9, pp.314-215, 1964. 

[8] G. C. Reis, “A matrix formulation for the inverse Vandermonde 
matrix,” IEEE Trans. Automatic Control (Correspondence), vol. AC-12, 
pp. 793 (1967) 

[9] A. A. Al-Shaikhi and  J. Ilow, “Vandermonde matrix packet-level FEC 
for joint recovery from errors and packet loss,” In IEEE 19th 
International Symposium on  Personal, Indoor and Mobile Radio 
Communications (PIMRC), Cannes France, 2008, pp. 1-6. 

[10] N. Bonello, S. Cheng and L. Hanzo, “Construction of Regular Quasi-
Cyclic Protograph LDPC codes based on Vandermonde Matrices,” In 
IEEE 68th Vehicular Technology Conference, VTC 2008-Fall. Calgary, 
BC, 2008, pp. 1-5. 

[11] K. Ye, “New classes of matrix decompositions,” Lin. Algeb. and its 
App., vol.514, pp. 47-81, 2017. 

[12] I.-P.Kim and A. R. Kräuter, “Decompositions of a matrix by means of 
its dual matrices with applications,” Lin. Algeb. and its App., vol.537,  
pp. 100–117, 2018. 

[13] A. Eisinberg and G. Fedele, “On the inversion of the Vandermonde 
matrix,” Applied Mathematics and Computation, vol.174, pp. 1384-
1397, 2006. 

[14] J. E. Dennis, J. F. Traub and R. P. Weber, On the matrix polynomial, 
lambda-matrix and block eigenvalue problems, Computer Science 
Department Tech. rep., Carnegie-Mellon Univ., Pittsburgh, Pa., USA, 
1971. 

[15] J. E. Dennis, J. F. Traub and R. P. Weber, “The algebraic theory of 
matrix polynomials,” SIAM J. Numer. Anal., vol.1,3 no.6, pp. 831-845 
1976. 

[16] J. E. Dennis, J. F. Traub and R. P. Weber, “Algorithms for solvents of 
matrix polynomials,” SIAM J. Numer. Anal., vol.15, no.3, pp. 523-533 
1978. 

[17] D. R. Richman, “A result about block Vandermonde Matrices,” Lin. 
and Multilin. Alg., vol.21, pp. 181-189, 1987. 

[18] Q. Li, B. Wu, and Z. Liu, “Direct Constructions of (Involutory) MDS 
Matrices from Block Vandermonde and Cauchy-like Matrices,” 
International Workshop on the Arithmetic of Finite Fields (WAIFI), 
Bergen, Norway, June 2018, pp.14-16. 

[19] Y. Choi and J. Cheong, New Expressions of 2x2 Block Matrix Inversion 
and Their Application,” IEEE Trans. Auto. Cont., vol.54, no.11, 
pp.2648-2653, 2009. 

[20] A. Asif and J. M. F. Moura, “Inversion of block matrices with block 
banded inverses: application to Kalman-Bucy filtering,” IEEE Int. Conf. 
on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, 2000, 
vol.1, pp. 608-611. 

[21] M. Yaici and K. Hariche, “On eigenstructure assignment using block 
poles placement,” Euro. J. Cont., vol.20, pp. 217-226, 2014. 

[22] L. Shang, Z. Wang, S. G. Petiton and F. Xu, “Solution of Large Scale 
Matrix Inversion on Cluster and Grid,” 7th Int. Conf. on Grid and 
Cooperative Computing, Shenzhen, China, 2008, pp. 33-40. 

[23] K. Hariche and E. D. Denman, “Interpolation theory and Lambda 
matrices,” J. Math. Anal. Appl., vol.143, pp. 530-547, 1989. 

[24] L.S. Sheih, F.R. Chang and B.C. Mcinnis, “The block partial fraction 
expansion of a matrix fraction description with repeated block poles,” 
IEEE Trans. Autom. Control, vol.31, no.3, pp. 236-239,1986. 

[25] T. Kailath, Linear Systems, Prentice Hall, New Jersey, 1980. 
 
 

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volume 13, 2019

ISSN: 2074-1278 6


	INTRODUCTION
	Mathematical Preliminaries
	Matrix polynomials
	Solvents
	Block Vandermonde matrix
	Non-singularity

	Main results
	Iterative construction of BVM
	Inverse of a BVM
	Determinant of a BVM
	Illustrative example

	Parallelization
	Parallel inverse of BVM
	Parallel determinant of BVM
	Algorithmic complexity

	Conclusion
	References



