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Abstract—In this paper, the formulation of a new group 

iterative method called the Modified Explicit Decoupled Group  

method in solving the two dimensional Helmholtz equation is 

described.  The method is derived using a combination of the 

five-point finite difference approximation on the rotated grid 

stencil together with the five-point centred difference 

approximation on the standard grid stencils.  Numerical 

experimentations of this new formulation shows significant 

improvement in computational complexity and execution timings 

over the original Explicit Decoupled Group method [2].  

Keywords—explicit decoupled group; Helmholtz equation; 

finite difference; rotated grid 

I.  INTRODUCTION  

Over the last few decades, fast explicit group methods for 
solving partial differential equations using finite difference 
schemes derived from skewed (rotated) difference operators 
have been extensively investigated [1,2,3,4,5,6,10,11]. In 
particular, the formulation of the Explicit Decoupled Group 
(EDG) method was presented in [1] as an addition to the family 
of four-point explicit group methods in solving the Poisson 
equation which was shown to be more economical 
computationally than the Explicit Group (EG) scheme due to 
Yousif and Evans [9].  The method uses a skewed difference 
formula which leads to lower computational complexities since 
the iterative procedure need only involve nodes on half of the 
total grid points in the solution domain and thus a reduced 
system of linear equations is attained. In 2007, a modification 
to the EDG method was introduced in the iterative process by 
combining the the rotated five-point finite difference 

approximation on the 
2h

Ω grid together with the five-point 

centred difference approximation on the hΩ  and 2hΩ grids 

and was shown to have a better rate of convergence than the 
original EDG method in solving the Poisson equation. In this 
paper, we extend the idea of the modification to the EDG 
method to investigate whether this strategy is able to produce a 
more improved scheme in solving the two-dimensional 
Helmholtz equation. The derivation of the relevant finite 
difference formulas in solving the Helmholtz equation is 
presented in Section II followed by the formulation of the 
MEDG method in Section III. Section IV presents the analysis 

of the computing efforts of the explicit group methods. Section 
V describes the numerical experiments carried out and the 
results obtained, followed by the conclusions in Section VI.   

II. FINITE DIFFERENCE DISCRETIZATIONS 

     Consider the two dimensional Helmholtz equation as 

follows: 

     ( , )xx yyu u u f x yα+ − =                         (1)                

with Dirichlet boundary conditions  

   ( , ) ( , )u x y g x y= ,             ( , )x y ∈∂Ω . 

Here α is a non-negative constant and ( , )f x y  is a function  

in a bounded region Ω in 
2ℜ .  Many problems related to 

steady-state oscillations (e.g. mechanical, thermal) lead to the 

two dimensional Helmholtz equation. The simplest finite 

difference formula to approximate (1) is the five-point 

difference approximation formula: 
2 2

1, 1, , 1 , 1 , ,(4 )i j i j i j i j i j i ju u u u h u h fα+ − + −+ + + − + = . 

                  (2)                                              

We assume that a rectangular grid in the (x,y) plane with grid 

spacing h in both directions with ,= =
i j

x ih y jh  is used 

and ( ),
,

i j i j
u u x y=  with  , 0,1, 2,...,i j n= . Another type of 

approximation that can represent the Helmholtz equation is 

based on the cross orientation operator which can be obtained 

by rotating the i-plane axis and the j-plane axis clockwise by 

45
o
[7]. This operator may be expressed in coordinates rotated 

45
0
 with respect to the original mesh and the spacing between 

points becomes 2h .  This will result in the rotated (skewed) 

five-point approximation formula: 

      
2 2

1, 1 1, 1 1, 1 1, 1 , ,(4 2 ) 2i j i j i j i j i j i ju u u u h u h fα+ + + − − + − −+ + + − + =

               (3) 
By applying central difference approximation to 2h-spaced 

grid points, (1) may be approximated by a 2h-spaced centred 
difference formula: 

2 2
2, 2, , 2 , 2 , ,(4 4 ) 4i j i j i j i j i j i ju u u u h u h fα+ − + −+ + + − + =  

               (4) 
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Using the two dimensional Taylor series expansion, a 

rotated 8h -spaced difference formula can be obtained 

as:
2 2

2, 2 2, 2 2, 2 2, 2 , ,(4 8 ) 8i j i j i j i j i j i ju u u u h u h fα+ + + − − + − −+ + + − + =

                (5) 

Using the combination of finite difference approximation 
formulas (1)-(5), we shall now describe the formulation of the 
proposed explicit group method in the next section. 

III. FORMULATION OF THE EXPLICIT GROUP METHODS 

A.  Explicit Decoupled Group (EDG) Method 

The EDG method was formulated by applying (3) to any 
group of four points in the solution domain where the 
following (4x4) system of equations is obtained [2]: 

2
, 1

2
1 1 2

2
1 3

2
1 4

4 2 1 0 0

1 4 2 0 0

0 0 4 2 1

0 0 1 4 2

i j

i+ , j

i+ , j

i, j+

u b  h  

u b h  
  = 

u b   h

u b  h

α
α

α
α

+

  + −  
    − +     
    + −
    

− +        

          (6) 

where 
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2
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2
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          (7) 

The (4x4) matrix in (6) can be inverted to give 
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       (8) 

which can be decoupled as 
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and 
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 = 

u
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j,i

β
 .(10) 

where 124 22 −+= )h( αβ .   

From Fig. 1, it may be observed that the evaluation of (9) 

involves points of type  (including the ungrouped  points) 

only, while (10) can be evaluated involving points of type  

only. Thus, the calculations of (9) and (10) can be carried out 

independently which may save the execution time by nearly 

half if the iteration is carried out on only one type of points; 

either the type  or . Fig. 1 shows the various types of points 

involved if iteration is carried out on  points (grouped) using 

(9) and on  points (ungrouped) using (3) for n=14. After 

convergence is achieved, the solutions at the other remaining 

half of the points ( ) are computed directly once using the 

standard five-point formula (2).  
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Fig. 1. Types of points involved in EDG method for n = 14.  

B. Modified Explicit Decoupled Group (MEDG) Method 

     To formulate the MEDG method, we apply the rotated 

8h -spaced difference formula to groups of four points as 

shown in Fig. 2 and produce the following (4x4) system of 

equations 
2

, 1

2
2 2 2

2
2 3

2
2 4

4 8 1 0 0

1 4 8 0 0

0 0 4 8 1

0 0 1 4 8

i j

i+ , j

i+ , j

i, j+

u c  h  

u c h  
  = 

u c   h

u c  h

α
α

α
α

+

  + −  
    − +     
    + −
    

− +        

               (11) 

where 
2

1 2 , 2 2 , 2 2 , 2 ,

2
2 4, 4 , 4 4, 2 , 2

2
3 4, 2 , 2 4, 2 2,

2
4 2, 4 2 , 2 , 4 , 2

8

8

8

8

i j i j i j i j

i j i j i j i j

i j i j i j i j

i j i j i j i j

c u u u h f

c u u u h f

c u u u h f

c u u u h f

− − − + + −

+ + + + + +

+ + − + − +

+ + − − + +

= + + −

= + + −

= + + −

= + + −

                              (12) 

which can be inverted and rewritten in explicit forms 
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2
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2
2 4

4 8 1 0 0

1 4 8 0 01

0 0 4 8 1

0 0 1 4 8

i j

i+ , j+

i+ , j

i, j+

u c h α   

u c h α   
 = 

u c   h α

u c   h α

γ

   +  
     +     
     +
     

+      

                 (13) 

where 2 2(4 8 ) 1hγ α= + − .  This system can be decoupled as 

a system of (2x2) equations  

 
22

, 2 2 2 2 2 2 ,

22
2 2 4 4 4 4 2 2

84 8 11

81 4 8

i j i - , j - i+ , j- i- , j+ i j

i+ , j+ i, j+ i+ , j i+ , j+ i+ , j+

u u u u h fh
 =  

u u u u h fh

α
γ α

 + + −   +
     + + −+      

   (14) 
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and 
22

2 2 4 2 4 2 2

22
2 2 4 2 2 4 2

84 8 11

81 4 8

i , j i, j - i+ , j - i - , j+ i , j

i, j+ i - , j+ i , j i+ , j+ i, j+

u u u u h fh
 =  

u u u u h fh

α
γ α

+ +

−

 + + −   +
     + + −+      

 (15) 

 

It can be observed that the evaluation of (14) and (15) can be 

performed independently. Fig. 3 shows the discretization 

points of a unit square domain with n=14 and the various types 

of points involved. It is obvious that the evaluation of (14) 

involves only points of type  and the evaluation of (15) 

involves only points of type . In this paper we solve points of 

type  iteratively using (14) until convergence after which the 

points of type  is computed directly once using the standard 

2h spaced five-point formula (4). The remaining in-between 

points of type  are also computed directly once using the 

rotated five-point difference formula (3), and followed by 

points of type  using the standard five-point difference 

formula of (2). 
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Fig. 2. Group of four points with 2h spacing 

We define the four point MEDG method combined with 

Successive Over-Relaxation (SOR) scheme as follows: 

 

1. Divide the solution domain into five types of points as 

shown in Fig. 3 (for the case n=14). 

2. Group all the 2h spaced    points into two-points groups 

as shown in Fig. 4. 

3. Iterate on the points  in each group using 
( 1) ( 1) ( 1) ( ) 22
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and implement the SOR relaxation scheme  
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4. If solution converged, go to step 5. Otherwise, repeat the 

iteration step 3. 

5. Evaluate the remaining points in this sequence: 
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Fig. 3. Types of points in MEDG for n = 14 

 

Fig. 4. Groups of iterative points in MEDG for n = 14 

IV. COMPUTATIONAL COMPLEXITY ANALYSIS 

     Assume that the solution domain is discretized with even 

integer n, then the number of internal mesh points is given by 

m
2
 where m=n-1. Basically, there are two types of internal 

mesh points namely, iterative points which are points involved 

in the iteration process, and direct points which solutions are 

computed directly  once after the iteration process converged. 

TABLE I lists the number of points for the various internal 

mesh points for the proposed MEDG method as well as for the 

original EDG method due to [2].  
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Next we estimate the computational complexity of 

MEDG method in terms of arithmetic operations performed in 

an iteration (excluding the convergence test). From (14) we 

obtain 
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Thus, the updated value uij  is in the form  

21 b*qb*pu~ j,i +=                                                            (18) 

and the SOR iterative scheme is given by 

)uu~(uu )k(
j,ij,i

)k(
j,i

)k(
j,i −+=+ ω1 .                                             (19) 

The updates in the iterations are done in groups of two 

points with the values of b1 and b2 calculated only once before 

the computation of those two points of u. This results in 6 

additions (adds) and 4 multiplications (mults) for a single 

point, provided the constants p, q  and 8h
2
  are computed and 

stored beforehand. Similarly it can be shown that the 

computational cost of a single iterative grouped point in the 

EDG method is 6 adds+4 mults. The cost of computing an 

iterative ungrouped point in EDG method using the rotated 

five-point difference formula is 6 adds+3 mults while the 

direct solution after convergence requires 4 adds+2 mults per 

point. Hence, the number of arithmetic operations required in 

an iteration and in the direct solution after convergence for the 

EDG and MEDG methods in terms of m are given in TABLE 

II.  

TABLE I.   NUMBER OF DIFFERENT TYPES OF POINTS INVOLVED IN          

EDG SOR [2] AND MEDG SOR METHODS 

Types of points 
EDG MEDG 

Iterative grouped points (m-1)2/2 (m-1)2/8 

Iterative ungrouped points m None 

Total iterative points, ip (m2+1)/2 (m-1)2/8 

Direct 2h spaced ‘standard’ points  None (m-1)2/8 

Direct h spaced ‘rotated’ points None (m+1)2/4 

Direct h spaced ‘standard’ points (m2-1)/2 (m2-1)/2 

Total direct points, dp (m2-1)/2 (7m2+2m-1)/8 

Total internal points, ip+dp m2 m2 

 

V. NUMERICAL EXPERIMENTS 

To test the effectiveness of the proposed method, several 
numerical experiments were conducted.  The proposed MEDG 
SOR method was implemented to solve the following model    
[8]: 

TABLE II.  COMPUTING EFFORTS OF EDG SOR [2] AND MEDG SOR 

METHODS 

Method 
Per Iteration After convergence 

adds mults adds mults 

EDG 
3(m-1)2 + 
6m 

2(m-1)2+ 
3m 

2(m2-1) (m2-1) 

MEDG 3(m-1)2/4 (m-1)2/2 (7m2+2m-1)/2 (7m2+2m-1)/4 

 

2 26 (2 )xx yyu u u x yα α+ − = − + , ( , ) [0,1] [0,1]x y x∈  

                           (20) 

with Dirichlet boundary conditions satisfying the exact 

solution 2 2( , ) 2u x y x y= + . The tolerance used was ε = 1.0 x 

10
-10

 and the acceleration parameter, optω , was chosen 

between 1 to 2 (up to 0.0001±  accuracy) which give the least 

number of iterations. Different grid sizes of n = 42, 114, 142, 

214 and 242 were chosen to record the timings in seconds, the 

iteration counts and the average absolute errors of all the 

group methods described in Section III. The values of n were 

chosen randomly such that (n-2)%4 equals 0 to ensure that 

there are no ungrouped points for the MEDG method (here, % 

is the remainder operator).  All of the experiments were 

carried out on a netbook with AMD E-450 APU 1.65GHz, 

2GB RAM running on Windows 7 Starter Edition using 

Microsoft Visual C++ 2010 Express.  For comparison 

purposes, the classical point SOR method derived from the 

standard centred difference formula was also included in the 

experiments. The numerical results for the point SOR (P 

SOR), EDG SOR and MEDG SOR are shown in Table III.  

TABLE III.  PERFORMANCE COMPARISON BETWEEN POINT SOR,               
EDG SOR [2] AND MEDG SOR 

Mesh 

Size Method 

Relaxation 

Factor optω  

Number 

of 

Iterations 

Execution 

Time 

(Seconds) 

Average  

Absolute 

Error 

42 

P SOR 1.8299 168 0.061 8.228E-11 

EDG 

SOR 

1.7516 86 0.015 7.741E-12 

MEDG 

SOR 

1.5638 43 0.004 5.701E-12 

114 

P SOR 1.9350 457 1.010 9.814E-13 

EDG 

SOR 

1.8999 230 0.237 5.382E-11 

MEDG 

SOR 

1.8105 115 0.042 8.540E-12 

142 

P SOR 1.9474 569 2.025 1.166E-12 

EDG 

SOR 

1.9191 286 0.313 9.544E-12 

MEDG 

SOR 

1.8448 143 0.069 8.495E-12 

214 

P SOR 1.9632 856 6.930 7.315E-10 

EDG 

SOR 

1.9456 429 1.520 9.045E-12 

MEDG 

SOR 

1.8934 212 0.223 1.815E-10 

242 

P SOR 1.9673 968 15.4 8.741E-10 

EDG 

SOR 

1.9515 482 3.626 9.702E-11 

MEDG 

SOR 

1.9050 241 0.582 2.080E-10 
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TABLE IV.  REDUCTION PERCENTAGES OF THE NUMBER OF ITERATIONS 

AND EXECUTION TIME FOR THE EDG SOR AND MEDG SOR METHODS 

COMPARED TO PSOR METHOD. 

Method Number of 

Iteration (%) 

Execution 

Time (%) 

EDG SOR 48.81 - 50.21 75.41 – 84.54 

MEDG SOR 74.40 – 75.23 93.44 – 96.78 

 

It is clearly seen from the results tabulated in Table III, the 

MEDG SOR method is the fastest amongst the tested methods. 

From the reduction percentages of execution time (in seconds) 

in Table IV,  it is shown that MEDG SOR reduces the 

execution time about 93% to 97% of the PSOR method, 

followed by the EDG SOR by about 75% to 85% of the PSOR 

method.  In terms of number of iterations, the MEDG SOR 

requires about a quarter of the iterations required by PSOR 

method while the EDG SOR method requires about a half of 

PSOR. Among the three methods, the MEDG SOR method 

requires the least computational effort whilst maintaining the 

same degree of accuracy. 
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Fig. 5. Number of iterations for the three methods for different mesh sizes 
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Fig. 6. Execution timings (in secs) for the three methods for different mesh 

sizes 

TABLE V tabulates the total computing efforts in terms of 
operation counts for the two group methods for different grid 
sizes n.  The total number of arithmetic operations for these 
methods were obtained by combining the results from the 
experimental number of iterations shown in TABLE III with 
the number of operations required in each iteration by each 

method. Here, k is the number of iterations from each method 
obtained from TABLE III.  From the experimental results, we 
can clearly see that the MEDG SOR method shows better 
execution timings than the EDG SOR  method which is in 
agreement with its analysis of computing efforts. 

TABLE V.  COMPUTING EFFORTS FOR EDG SOR AND MEDG SOR. 

 

n 
Methods 

EDG SOR MEDG SOR 

k Operation 

count 

k Operation 

 count 

42 86 724,774 43 94,886 

114 230 14,697,814 115 1,870,406 

142 286 28,450,574 143 3,608,086 
214 429 97,363,377 212 12,148,666 

242 482 140,035,698 241 17,657,286 

VI. CONCLUSIONS 

In this paper, a new explicit group method was formulated 
to solve the two dimensional Helmholtz equation.  The 
proposed MEDG SOR method outperforms the original EDG 
SOR [2] in terms of number of iterations and execution 
timings.  It is also able to maintain almost as good accuracy as  
the existing point SOR method. Overall, the MEDG SOR 
serves as viable alternative solver to the Helmholtz equation. 
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