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Abstract—This is a review article to show that delay differential
models have a richer mathematical framework (compared with
models without memory or after-effects) and a better consistency
with biological phenomena such dynamical diseases and cell
growth dynamics. The article provides a general computational
technique to treat numerically the emerging delay differential
models. It introduces the numerical algorithms for parameter
estimations, using least squares approach. The article introduces
a variational method to evaluate sensitivity of the state variables
to small perturbations in the initial conditions and parameters
appear in the model. An application to show the consistency of
DDE models with cell growth dynamics is also considered.
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I. INTRODUCTION

A retarded functional differential equation (RFDE) de-
scribes a system where the rate of change of state is determined
by the present and the past states of the system. If the
rate of change of the state depends on its own values as
well, the system is called a neutral functional differential
equations (NFDEs). When only discrete values of the past
have influence on the present rate of change of state, the
corresponding mathematical model is either delay differential
equation (DDE) or neutral differential equation (NDDE). The
theory of RFDEs is of both theoretical and practical interest,
as they provide a powerful model of many phenomena in
applied sciences such as physics, biology, economics, control
theory and so on. They play an important role in explaining
many different behaviors. The work reported in [1], [2], [3],
[4], [5], [6], [7], [5], [8], [9], [10] indicates the scope for
applications of RFDEs in bioscience. The authors remark,
therein, how delay differential equations have, prospectively,
more interesting dynamics than equations that lack memory
effects; in consequence they provide potentially more flexible
tools for modelling. However, the numerical treatments of such
problems still remains a relatively unexplored area and further
research is needed to provide biomodellers with user-friendly
adaptive packages.

This paper is organized as follows: Sections 2 & 3 introduce
the role of delay differential models in dynamic diseases. Sec-
tion 4 provides most suitable computational techniques for the
emerging DDEs. Parameter estimations and sensitivity analysis
are given respectively in Sections 5 &6. An applications with
cell growth dynamics is given in Section 7, and a conclusion
in Section 8.

II. DELAY MODELS IN DYNAMIC DISEASES

In many applications in the life sciences a delay is intro-
duced when there are some hidden variables and processes,
which are not well understood but are known to cause a
time-lag [11]. Thus, a delay may in fact represent a reaction
chain or a transport process. We shall see later that the math-
ematical properties of DDEs justify such approximations. A
well-known example is Cheyne-Stokes respiration (or periodic
breathing), discovered in the 19th century: some people show,
under constant conditions, periodic oscillations of breathing
frequency [12]. This strange phenomenon is apparently due to
a delay caused by cardiac insufficiency in the physiological
circuit controlling the carbon dioxide level in the blood.
Delays also occur naturally in the chemostat (a laboratory
device for controlling the supply of nutrient to a growing
population [13]). The use of ODEs to model the chemostat
carries the implication that changes occur instantaneously.
This is a potential deficiency of the ODE model. There are
two sources of delays in the chemostat model: delays due to
the possibility that the organizm stores the nutrient (so that
the “free” nutrient concentration does not reflect the nutrient
available for growth); and delays due to the cell cycle; see
[14], [5], [7].

A. Immunology
The response of an immune system cannot be represented

correctly without the hereditary phenomena being taken into
account: cell division, differentiation, etc. (the time needed
for immune cells to divide, mature, or die). The simple math-
ematical model of immune response employed by Marchuk
[15] describes the interaction of viruses, V (t); antibodies,
F (t); plasma cells, C(t); and the relative characteristic of the
affected organ, m(t), of a person infected by a viral disease.
This model is formulated as a system of four nonlinear DDEs:

V ′(t) =
(
p1 − p2F (t)

)
V (t),

C ′(t) = ξ(m)p3F (t− τ)V (t− τ)− p5
(
C(t)− C∗),

F ′(t) = p4
(
C(t)− F (t)

)
− p8F (t)V (t),

m′(t) = p6V (t)− p7m(t),

(1)

with t ≥ 0 and ξ(m) is defined by

ξ(m) =

{
1 if m ≤ 0.1,
(1−m) 109 if 0.1 ≤ m ≤ 1.

The first equation describes the change in the number of
antigen in an organizm (it is a Volterra-Lotka like predator-
prey equation). The second equation describes the creation
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of new plasma cells with time-lag due to infection (in the
absence of infection, the second term creates an equilibrium
at C(t) = C∗). The third equation models the balance of the
number of antibody reacting with antigens: the generation of
antibodies from plasma cells is described by p4C(t) and their
decrease due to aging are described by (−p4F (t)) and binding
with antigens by (−p8F (t)V (t)). The relative characteristic
m(t) of damaging organizm is given by the fourth equation
of which the first term expresses the degree of damage to an
organ and the second term describes the recuperation due to
the recovery activity of the organizm. Finally, the definition of
ξ(m) expresses the fact that the creation of plasma cells slows
down when the organizm is damaged by the viral infection.

The model (1) has been used to study the relationships
between pathogen and the host immune system parameters
determining the stability of various steady states. It can also
be used to underlying the basic types of infectious disease
dynamics: subclinical, acute with recovery, chronic and lethal,
or predicting the results of external manipulations with the
immune system. In other words, this model allows us, by
changing the coefficients p1, p2 . . . , p8, to model all sorts of
behaviour of stable health, unstable health, acute form of
a disease, chronic form etc. (see Marchuk [?]). One of the
stationary solutions of (1), that describes the healthy state of
an organizm, is

V (t) = 0, C(t) = C∗, F (t) = F ∗ = C∗, and m(t) = 0.

FIGURES 1 & 2 show the solutions of the model (1) (with
different parameters) for τ = 0.5, with initial values:

V (0) = 0.5× 10−6, C(0) = 1, F (0) = 1 and m(0) = 0;

and with initial functions:

V (t) = max(0, 10−6 + t), F (t) = 1, t ≤ 0.

It may also be noted, from the graphs, that there is either a
complete recovery, as in FIGURE 1, or periodic outbreak of
the disease, as shown in FIGURE 2 .

Marchuk and his associates [15] developed a hierarchy of
immune response models of increasing complexity to account
for the various details of defence responses to pathogens.
The delays are used in the functional terms describing the
proliferation and differentiation of lymphocytes, and represent
the time needed for cells to divide, mature (i.e., express certain
genes), or to die. Whereas the basic model of an infectious dis-
ease has only one time-lag, more sophisticated mathematical
models for viral-bacterial infections in lungs, or T-cell division
incorporate about ten delays; see [16]. Another example of
generic time-lag equations in immunology is provided by
Mohler et al. [17] who developed compartmental models for
lymphocyte migration. The delays represent the time that cells
reside in a particular compartment, or the transit times through
compartments, or the duration of inter-compartmental transfer;

It has recently been shown, in a mathematical model for
virus dynamics [18], [19], [20], [21], that explicit considera-
tion of the delay between infection of a cell and the production
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Fig. 1. shows the plot of model (1) for τ = 0.5 and p1 = 2, p2 = 0.8,
p3 = 104, p4 = 0.17, p5 = 0.5, p6 = 10, p7 = 0.12 and p8 = 8.
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Fig. 2. shows the solution of (1) with the same parameter of 1 except
for p6 = 300. The graphs illustrate the periodic outbreak of the disease.

of new viruses is necessary to estimate reliably the turn-over
of HIV (Human Immunodeficiency Virus) in infected patients.

The delay differential equations have also long been used
in modeling cancer phenomena [22], [23], [24], [25]. In
such models the critical time-delay, for which a destabilising
Hopf bifurcation of the relevant fixed point occurs, and the
conditions on the parameters for such bifurcation are found.

B. Physiology

The great potential of simple DDEs for capturing complex
dynamics observed in physiological systems, was shown in
a series of related works by an der Heiden, Mackey et al.
[26], [12]. Delay differential equations were used to model
unstable patterns of (i) the human respiratory system and
regulation of blood concentration of CO2 (periodic breathing
and prediction of low- and large-amplitude oscillations), (ii)
the production of blood cells (periodic and chaotic regimes),
and (iii) hormone regulation in the endocrine system (period-
doubling bifurcations and chaotic solutions); see also [27].
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Fig. 3. (top) shows the numerical solution of (2) with parameter values
α = 0.1, γ = 0.1 days−1, λ = 0.2 days−1, m = 10 and τ = 6
days; (bottom) shows the numerical simulation with the same parameter
values as in (a) except an increase in the delay to τ = 20 days.

The following model is concerned with the regulation of
hematopoiesis, the formation of blood cell elements in the
body. For example white and red blood cells, platelets and so
on are produced in the bone marrow from where they enter the
blood stream. When the level of oxygen in the blood decreases
this leads to a release of a substance which in turn cause an
increase in the release of the blood elements from the marrow.
There is thus a feedback from the blood to the bone marrow.

As an illustrative example, let c(t) be the concentration
of cells (the population species) in the circulating blood. We
assume that the cells are lost (=die) at a rate proportional to
their concentration, that is like γc(t), where the parameter γ
has dimensions (day)−1. After the reduction in cells in the
blood stream there is about a 6 day delay before the marrow
release further cells to replenish the deficiency (see [12]). We
thus assume that the flux λ of cells into the blood stream
depends on the cell concentration at an earlier time, namely,
c(t − τ), where τ is the delay. Such assumptions suggest a
model equation of the form

dc(t)

dt
= λc(t− τ)− γc(t).

Glass & Mackey [28] proposed a possible replacement in the
form of the non-linear delay differential equation

dc(t)

dt
=

λamc(t− τ)

am + cm(t− τ)
− γc(t), t ≥ 0,

c(t) = α, t ≤ 0,
(2)

where λ, a,m, g, τ , and α are positive constants. Graphs in
FIGURE 3 show the numerical solutions of (2) for two values
of the delay time τ .

C. Epidemiology
Epidemics have ever been a great concern of human kind,

since the impact of infectious diseases on human and animal is

enormous, both in terms of suffering and social and economic
consequences. This concern is now increased, specially when
new swine flu viruses H1N11 [29] and recently H5N1 have
sparked a deadly outbreak in some countries and spread
into other parts of the world. Mathematical modeling is an
essential tool in studying a diverse range of such diseases.
The basic elements for the description of infectious diseases
have been considered by three epidemiological classes: S(t)
that measures the susceptible2 portion of population, I(t)
the infected3, and R(t) the removed4 ones. It was natural to
assume that the number of newly infected people per time unit
is proportional to the product S(t)I(t). It was also assumed
that the number of newly removed persons is proportional
to the infected ones, and the total population is a constant
N = S + I + R (except death from the disease). Kermack-
McKendrick [30] thus arrived at the SIR model:

S′(t) =− βS(t)I(t),

I ′(t) =βS(t)I(t)− αI(t),

R′(t) =αI(t).

(3)

Here β is the number of contacts between an average infective
and the population per unit time (pairwise rate of infection),
and α is the fraction of the population which leaves the
inflective class (removal rate of infectives). The qualitative
analysis is displayed as follows: If S(0) < α/β, then I(t)
is a decreasing function which tends to 0, and S(t) is also
decreasing and tends to a constant level greater than 0.
However, If S(0) > α/β, S(t) is also decreasing and tends to
a constant level greater than 0, but I(t) will first increase in
a time period (0, T0), then decrease and tends to 0 after T0.

Define a dimensionless quantity R0 = βS(0)/α, that is
a threshold quantity. If we introduce a small number of
infectives I(0) into the a susceptible population, then an
epidemic will occur if R0 > 1. As an example, the solution
(with all constants equal to one) of (3) (with initial values
S(0) = 5, I(0) = 0.1, R(0) = 0) is plotted in FIGURE 4.
We note that an epidemic breaks out, and everybody finally
becomes “removed” and nothing further happens.

To prevent an epidemic, we reduce R0 =
βS(0)

α
, and

maximize the immunization by reducing I(0) and transferring
S(t) to R(t) (removed ones). Suppose that p percent of
population is successfully immunized, then S(0) is replaced
by (1− p)S(0), then p > 1− α

βS(0)
. (For practical study to

estimate the epidemiological parameters, I refer to [31], [29].)
From the above model, we note that the occurrence of

an epidemic depends solely on the number susceptibles, the
transmission rate, and recovery rate. In other words, the initial

1Influenza viruses are defined by two different protein components, known
as antigens, on the surface of the virus. They are spike-like features called
haemagglutinin (H) and neuraminidase (N) components.

2Susceptible: who are not yet infected
3Infected: who are infected at time t and are able to spread the disease by

contact with susceptible
4Removed: who have been infected and then removed from the possibility

of being infected again or spreading (Methods of removal: isolation or
immunization or recovery or death)
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Fig. 4. Solution of SIR model (3) that illustrate the spread of an infection
disease in a population.
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Fig. 5. Solution of model (4) with time delays that displays periodic
outbreak of the disease.

number of infectives plays no role in whether or not there
is an epidemic. Other considerations, such as vital dynamics
(births and deaths), length of immunity, the incubation period
of the disease, and disease induced mortality can all have large
influences on the course of an outbreak.

1) Development of SIR model (3): The nonautonomous
phenomenon occurs mainly due to the seasonal variety, which
makes the population behaves periodically [32], [33]. To inves-
tigate this kind of phenomenon, in the model, the coefficients
should be periodic functions, then the system is called periodic
system. Many communicable diseases have this characteristic.

Assume that the immunized people become susceptible
again, say after time τ1 (say, τ1 = 10) (see [34], [35]). If
we also introduce an incubation period, τ2, between exposure
to infection and becoming infected (say, τ2 = 1), we can arrive
at the model
S′(t) = −βS(t)I(t− τ2) + γI(t− τ1), t ≥ 0,
I ′(t) = βS(t)I(t− τ2)− αI(t), t ≥ 0,
R′(t) = αI(t)− γI(t− τ1), t ≥ 0.

(4)

The solutions of (4) are shown (with initial functions
[S(t), I(t), R(t)]T = [5, 0.1, 1]T for t ≤ 0) in FIGURE 5; we
note a periodic outbreak of the disease.

2) Development of model (4): If the model allows for a
loss of immunity that causes recovered individuals to become
susceptible again, we may also consider the more general
nonautonomous SIRS epidemic model, with variable periodic
coefficients, with distributed delays

S′(t) = Λ(t)− β(t)S(t)
∫∞
0
k(τ)I(t− τ)dτ−

mu1(t)S(t) + ξ(t)R(t),
I ′(t) = β(t)S(t)

∫∞
0
k(τ)I(t− τ)dτ − (µ2(t) + α(t))I(t),

R′(t) = α(t)I(t)− (µ3(t) + ξ(t))R(t).

(5)

Here N(t) = S(t) + I(t) +R(t) denotes the total number of
the population at time t. The function Λ(t) is the growth rate
of the population; function β(t) is the daily contact rate, that
is the average number of contacts per day; functions µ1(t),
µ2(t), and µ3(t) are the instantaneous pro capita mortality
rates of susceptible, infective and recovered population, re-
spectively; functions α(t) and ξ(t) are the instantaneous pro
capita rates of leaving the infection stage and removed stage,
respectively. k(τ) is the fraction of vector population in which
the time taken to become infectious is τ , is assumed to be a
nonnegative function on [0,∞) and satisfies

∫∞
0
k(τ)dτ = 1

and
∫∞
0
τk(τ)dτ <∞.

To analyze the dynamics of the models, numerical methods
are necessary, as analytical studies can only provide limited
results. We next introduce some reliable computational tech-
niques to solve numerically the emerging delay differential
models in biosciences.

III. GENERAL APPROACH FOR SOLVING DDES

One general approach to the solution of DDEs

y′(t) = f(t, y(t), y(t− τ)), t ∈ [t0, T ],

y(t) = ψ(t), t ∈ [−τ, t0].
(6)

is based upon the following strategy:
1- Choose a discrete numerical method for solving ODEs;
2- Choose an interpolant ŷ(t) (such as a continuous exten-

sion, or a Hermite interpolant) to estimate the numerical
solution ỹ(t) at non-mesh points, then the delayed term
y(t− τ) can be computed at each step;

3- Compute the discontinuity points {ξk} (one after the
other) and, in each interval [ξk−i, ξk], use the chosen
numerical ODE method to approximate the solution of
the ODE

w′(t) = f(t, w(t), ŷ(t− τ)), ξk−1 ≤ t ≤ ξk,

w(ξk−1) = ŷ(ξk−1).
(7)

The first two steps of this procedure may alternatively be
replaced by the direct choice of a continuous numerical
method for ODEs (discrete and continuous numerical methods
mean the approximation of the solution is on the discrete set
of points or in the whole interval of integration, respectively).

As regards stage (3), we may instead seek a method such
that the stepsize is determined by the DDE solver (rather than
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the exclusively by the position of the {ξi}). We suppose ŷ(t)
has been computed by advancing from the initial point t0: the
approximate solution values, {ỹn}, have been computed on
the mesh points, then the solutions at non-mesh points ŷ(t)
can be computed for t0 ≤ t ≤ tn using some approximation
formula, and for t < t0 by evaluation of the initial function.
The next step in the numerical solution consists of choosing
a stepsize hn such that the solution on the interval (tn, tn+1)
contains no discontinuities, or only “small” discontinuities, in
its sufficiently low-order derivatives, and then solving

w′(t) = f(t, w(t), ŷ(t− τ)), tn ≤ t ≤ tn+1,
w(tn) = ŷ(tn).

(8)

In the case of constant lag τ , calculating the numerical solution
is straightforward provided that hn ≤ τ . For cases where τ is
small relative to the choice of stepsize, or for state-dependent
delays in which we find that τ(t∗, ŷ(t∗)) < 0 at some points
t∗, it seems there is a need to evaluate ŷ(t) with arguments
exceeding the subinterval endpoint tn+1 and possibly even
exceeding tn+2. Given a “discrete” numerical solution, defined
on a mesh {ti}, there are several methods of extending it to a
function of a continuous variable, for example by Lagrange
interpolation, or Hermite interpolation or by a continuous
extension formula provided by the method itself. The order
of accuracy is determined by the error in the interpolation
polynomial and the error in the mesh-value {ỹ(ti)}.

A bifurcation analysis of the system (6) is also used to
understand how the solutions and theirs stability change as the
parameters in the system vary. In particular, it can be used for
the stability, analysis and continuation of equilibria (steady-
state solutions), and periodic and quasi-periodic oscillations;
See [36], [37].

A. DDE and NDDE solvers and available softwares

From a modeller’s viewpoint, two historical periods in the
production of numerical codes for delay equations can be dis-
tinguished. During the first period, a number of experimental
codes were developed by modellers or numerical analysts.
The second period can be characterized by the availability of
more sophisticated DDE solvers. The major problems that the
designers of such codes try to accommodate are: automatic
location or tracking of the discontinuities in the solution or its
derivatives, efficient handling of any “stiffness” (if possible),
dense output requirements, control strategy for the local and
global error underlying the step-size selection, the cost and
consistency of interpolation technique for evaluating delayed
terms.

The earliest, simple, numerical methods for DDEs (6)
utilized the Euler or classical fourth-order RK methods with
a constant step-size, supplemented with linear interpolation
schemes for the retarded terms. Such adaptations provided
minimally effective means for solving models numerically:
they had no error control, used fixed step-size, and had
problems coping with “stiffness”. Numerical analysts are now
in a position to cite published algorithms for the numerical
solution of DDEs. Several packages and software are available

for the numerical integration and/or the study of bifurcations
in delay differential equations. Here is a short list for available
software:

- Archi (Paul [38]) simulates a large class of functional
differential equations.

- DDE23 (Shampine, S. Thompson [39]) simulates re-
tarded differential equations with several fixed discrete
delays.

- RADAR5 (Guglielmi, Hairer [40]) simulates stiff prob-
lems, including differential-algebraic and neutral delay
equations with constant or state-dependent (eventually
vanishing) delay.

- DKLAG6 (Thompson [41]) simulates retarded and neutral
differential equations with state dependent delays.

- MIDDE (Rihan,et al. [42]) simulates stiff and non-stiff
delay differential equations & Volterra delay integro-
differential equations, using mono-implicit RK methods.

• BIFDD (Hassard [37]) (Fortran 77) normal form analysis
of Hopf bifurcations of differential equations with several
fixed discrete delays.

• DDE-BIFTOOL (Engelborghs [36]) (MatLab) allows
computation and stability analysis of steady state solu-
tions, their fold and Hopf bifurcations and periodic solu-
tions of differential equations with several fixed discrete
delays.

For further study of some related issues to the numerical
treatments of DDEs, we refer to [7], [4].

IV. PARAMETER ESTIMATION WITH DDES

Consider even a predictive DDE model of neutral type,
parameterized by p ∈ RL which are estimated using a given
set of observations,

y′(t) = f(t,y(t),y(t− τ),y′(t− τ);p), t ∈ [0, T ],

y(t) = ψ(t,p), y′(t) = ϕ(t,p), t ∈ [−τ, 0].
(9)

In (9), the vector function f is sufficiently smooth with respect
to each arguments; y(t) ∈ RM , y(t − τ) ∈ RM ′

, p ∈ RL,
and τ ∈ RL′

is positive constant lag, which may have to be
identified as a parameter (L′ ≤ L, M ′ ≤ M ). ψ(t) and ϕ(t)
are given continuous functions.

Suppose that N observations, {tj ;Y i
j }Nj=1, have been ob-

tained. We are concerned with applying to these data a system
of NDDEs (9). The model-fitting problem is then select a value
or a set values for p for which the function y(t; p̂) provides
a ‘best’ fit, at arguments t = tj , to the given set {Y i

j }Nj=1

(1 ≤ i ≤ M ). The key part in fitting a model to data is
the formulation of the objective function to be optimized that
depends on the stochastic features of the errors in the data
[43].

There is a variety of methods for regression analysis and
interpretation of statistical properties of estimation schemes
[44], [45]. The discussion here will be based on the use of
weighted least squares (WLS) or a log-least squares (LLS)
approach for finding the best-fit parameter values to observed
data in the NDDE models. When determining the best fit by
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the WLS process, we suppose that the unknown parameter p̂
is the value of p minimizing the weighted objective function:

ΦW (p) =
M∑
i=1

N∑
j=1

[
yi(tj ,p)− Y i

j

]2
wij , (10)

where wj are the weights (possibly related to the accuracy
of the data points)5. When wj = 1, this is the method of
unweighted or ordinary least squares (OLS).

If we adapt the LLS approach, the objective function may
take the form

ΦL(p) =
M∑
i=1

N∑
j=1

[
log yi(tj ,p)− log Y i

j

]2
. (11)

The choice of LLS in model-fitting problem may decrease the
exponential nonlinearity of model predictions with respect to
p. (It will be assumed that yi(tj ,p) > 0.) Another significant
feature of the LLS approach is that small relative changes
in large data values can be unduly weighted. For comparing
between different formulae of objective functions, we refer
to Sheiner et al. (1985). (The optimum parameter p̂ is taken
to be the value such that Φ(p̂) ≤ Φ(p), for all physically
meaningful values of p and p̂.)

When the predictions are governed by models of the form
(9), then the least squares (LS) approach (even for models lin-
ear in their parameters) usually leads to a nonlinear minimiza-
tion problem, since the cost function is no longer quadratic.
Numerical algorithms for nonlinear LS approach are generally
iterative procedures for searching the parameter estimates and
require initial starting values. An obvious difficulty is that there
is the possibility of the iterative scheme converging to a local
minimum, or not converging at all, rather than achieving the
desired global minimum. Thus, an appropriate choice of the
objective function is a significant factor in determining the
ease of solving the parameter estimation problem [46].

Given a set of experimental data, {Yj}Nj=1, the technique for
finding the best-fit parameter values for a given mathematical
model and objective function consists of the following steps:
(i) Provide an initial guess p0 for the parameter estimates;
(ii) Solve the model equations, using Archi code [38]
with the current values of the parameters and calculate the
corresponding objective function Φ(p); (iii) The parameter
values are then adjusted (by the minimization routine, for
example E04USF6 from NAG library; (iv) When no further
reduction in the value Φ(p) is possible, the best fit parameter
values have been found; (v) Determine whether the chosen
set of parameter values is acceptable (and meaningful) or
unacceptable by comparing the objective function value to a
given criterion for the objective function or the estimates.

5The choice of the values wj is best based on knowledge of the relative
precision of the Yj .

6E04USF is designed to minimize an arbitrary smooth sum of squares
function subject to constraints (which may include simple bounds on the vari-
ables, linear constraints and smooth nonlinear constraints) using a sequential
quadratic programming (SQP) method.

Note that Φ(p) can have several local minima and that a
good code and/or good starting initial parameter values can
be of great assistance, both in accelerating the minimization
process and finding the global minimum. Local minimum can
also be avoided by repeating the iterative scheme for a variety
of different initial estimates of parameter vector. We should
also draw attention to the fact that, even if the right hand
side of (9) and the initial functions are smooth functions, a
discontinuity in the first time derivative of the solution appears
at time t0 and is propagated through the time. The higher
derivatives become smoother as time increases. Additional
jumps can arise due to discontinuities in the initial functions.
These discontinuities propagate into partial derivative of Φ(p)
with respect to pi, via solution values y(t,p). Thus, for
correct numerical parameter estimates in DDEs or NDDEs
attention should be paid to the position of the jumps and the
differentiability of state variable with respect to the time-lag
τ .

V. SENSITIVITY ANALYSIS

Of considerable importance in assessing the model (9), is
the sensitivity of the model solution y(t,p) to small variations
in the parameter p. For example, if it can be observed that
a particular parameter pj has no effect on the solution, it
may be possible to eliminate it, at some stage, from the
modelling process. We next provide the approach of variational
of parameter to evaluate the analysis of sensitivity for DDEs
or NDDEs.

A. Variational approach

The variational approach is to derive, analytically, general
sensitivity coefficients for minor changes in the parameters,
time delays, and initial data in the model. Use of this approach
gives an expression for the sensitivity functions in terms of the
solution of an adjoint equation. Variational approach has been
used in Rihan (2003) to investigate the qualitative behaviour
of the solution of a dynamic system of DDEs due to small
variations in the parameters occur in the model. Rihan (2010)
extended the approach to include a dynamic system described
by a system of NDDEs.

We desire to compute the sensitivity of the state variable
y(t,p) to small variations in the parameters which occur in
the NDDE (9). The familiar first-order sensitivity functions for
constant parameters α, are defined by the partial derivatives
Sij(t

∗) = ∂yi(t
∗)/∂αj , where αj represent the parameters pj ,

the constant lags τ or the initial values yj(0). Then the total
variation in yi(t) due to small variations in the parameters αj

is such that

δyi(t) =
∑
j

∂yi(t)

∂αj
δαj +O(|α|2). (12)

The functional derivative sensitivity coefficients, however,
when the parameters are functions of time such as the initial
function, are defined by βij(t, t

∗) = ∂yi(t
∗)/∂αj(t) (where
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ρ0 ρ1 τ ∥Error∥2
- 0.0518 0.1054 95.33 34.41

TABLE I
Parameter estimates for the growth model (17) that best fits

data of Figure 6.

t < t∗). Then the total variation in y(t∗) due to any perturba-
tion in α(t) is denoted by δy(t∗), such that:

δyi(t
∗) =

∫ t∗

0

∂y(t∗)

∂αj(t)
δαj(t)dt, t < t∗. (13)

The functional derivative sensitivity density function
∂yi(t

∗)/∂αj(t) measures the sensitivity of yi(t) at location
t∗ to variation in αj(t) at any location t < t∗.

For simplicity in equation (9), we write

f(t) = f(t,y(t),y(t− τ),y′(t− τ),p). (14a)

A∗(t) =
∂

∂y
f(t,y(t),y(t− τ),y′(t− τ),p). (14b)

B∗(t) =
∂

∂yτ
f(t,y(t),y(t− τ),y′(t− τ),p).(14c)

C∗(t) =
∂

∂y′
τ

f(t,y(t),y(t− τ),y′(t− τ),p).(14d)

D∗(t) =
∂

∂p
f(t,y(t),y(t− τ),y′(t− τ),p). (14e)

Theorem 1: If W(t) is an n-dimensional adjoint function
which satisfies the differential equation

W′(t) = −A∗(t)TW(t)−B∗(t)TW(t+ τ)+

C∗(t)TW′(t+ τ), t ≤ t∗,

W(t) = W′(t) = 0, t > t∗;

W(t∗) = [0, . . . , 0, 1ith, 0 . . . , 0]
T ,W′(t∗) = 0,

(15)

then the functional derivative sensitivity functions of NDDEs
(9) can be expressed by the formulae

∂yi(t
∗)

∂y0
= W(0), (16a)

∂yi(t
∗)

∂p
=

∫ t∗

0

WT (t)D∗(t)dt, t ≤ t∗, (16b)

∂yi(t
∗)

∂τ
= −

∫ t∗−τ

−τ

WT (t+ τ)
[
B∗(t+ τ)y′(t) +

C∗(t+ τ)y′′(t)
]
dt, (16c)

∂yi(t
∗)

∂ψ(t)
= A∗(t+ τ)W(t+ τ), t ∈ [−τ, 0). (16d)

Proof 1: See Rihan (2010).

VI. APPLICATION TO CELL GROWTH PROBLEM

The goal of this section is to apply the above analysis of
sections IV and V to fit a time-lag model to the growth of a
population of Tetrahymena pyriformis (where the experimental
data is given in the Figure 6, and evaluate its sensitivity
functions.
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Fig. 6. The circles, Yi, represents the data for growth of a popula-
tion of Y0 = 50 of newborn cells of Tetrahymena pyriformis. This
data represents the multiplication of 25 cells in perfect division
synchrony at first population doubling. The line, y(t, p), shows
the prediction of the perfect model that based on the NDDE (17),
with y(0) = 50, y(t) = 25 for t < 0, and best fit parameters given
in Table I. The initially synchronized cell population becomes
desynchronized over time.

The cells in the culture of Tetrahymena pyriformis (dis-
played in Fig. 6) are initially homogeneous and synchronized.
This synchronized cell population becomes desynchronized
over time. The total observed population as function of time
of 50 cells which at time t = 0 are newborn is shown in Fig.
6. According to the above analysis, we can model this growth
by a parameterized linear NDDE

y′(t) = ρ0y(t) + ρ1y(t− τ) + ρ2y
′(t− τ), t ≥ 0,

y(t) = ψ(t), y′(t) = ψ′(t), t ∈ [−τ, 0], y(0) = y0.
(17)

One possible meaning of the parameters of (17) is that τ > 0
the average cell-division time; ρ0 < 0 the rate of cell-death
in culture; and ρ1 the rate of commitment to cell-division
process; and ρ2 is the gradual dispersal of synchronization of
cell-division (ρ2 = 2 implies pure synchronization). We adopt
the Log Least Squares Approach (11) to fit model (17) to the
observations given in Figure 6 to estimate the unknown param-
eters. We consider here a uniform initial function ψ(t) = 25
for t ∈ [−τ, 0), and initial value y(0) = 50. The graph of
Figure 6 displays model prediction for the best fit parameters
given in Table I. Prescott (1959) [47] measured the generation
times7 of a population of Tetrahymena pyriformis cells under
uniform conditions. The distribution of generation times in the
cell population was displayed for a subpopulation of new born
cells at a given time from the synchronized cell population, all
of age zero. The mean generation time τ̃ was 111 min, which
is close to estimated value of the best fit, τ = 96.33; see Table
I.

7Generation time, that varies from cell to cell, is defined as the age at which
a cell divides, where age is time measured from birth of a cell.
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We apply the analysis of Section 3 to find analytically the

sensitivity functions
∂y(t∗)

∂ψ(t)
&
∂y(t∗)

∂αi
(t ≤ t∗), where α =

[ρ0, ρ1, ρ2, y0]
T . In (17) α = [ρ0, ρ1, ρ2, y0, τ ]

T . The adjoint
equation for this case is

W ′(t) = −ρ0W (t)− ρ1W (t+ τ) + ρ2W
′(t+ τ), t ≤ t∗,

W (t) = 0, t > t∗; W (t∗) = 1.
(18)

The analytical solution of the adjoint Eq (18) is as follows:

(i) 0 < t∗ ≤ τ

W (t) = e−ρ0(t−t∗), t ≤ t∗, (19)

(ii) τ < t∗ ≤ 2τ

W (t) =

{
e−ρ0(t−t∗) − b(t− t∗ + τ)e−ρ0(t−t∗+τ), 0 < t ≤ t∗ − τ,

e−ρ0(t−t∗), t∗ − τ < t ≤ t∗.
(20)

Here b = (ρ1 + ρ0ρ2), W (t+ τ) = 0 for t∗ − τ < t ≤ t∗ and
W (t+ τ) = e−ρ0(t−t∗+τ) for 0 < t ≤ t∗ − τ .

The solution of the NDDE (17), with an initial function
ψ(t) = ym (ψ′(t) = 0), is

y(t) =


aeρ0t − ymξ, 0 < t ≤ τ,

aeρ0t − [ymξ − ab(t− τ)+

ymξ
2]eρ0(t−τ) + ymξ

2, τ < t ≤ 2τ,

(21)

where a = (y0 + ymξ), and ξ =
ρ1
ρ0

.

Thus the functional derivative sensitivity density function to
the initial function, by using (16d), becomes:

(i) 0 < t∗ ≤ τ

∂y(t∗)

∂ψ(t)
= ρ1W (t+τ) =

{
ρ1e

−ρ0(t−t∗+τ), −τ < t ≤ t∗ − τ,
0, t∗ − τ < t ≤ 0.

(22)
(ii) τ < t∗ ≤ 2τ

∂y(t∗)

∂ψ(t)
=


ρ1e

−ρ0(t−t∗+τ)−
ρ1b(t− t∗ + 2τ)e−ρ0(t−t∗+2τ),− τ < t ≤ t∗ − 2τ,

ρ1e
−ρ0(t−t∗+τ),t∗ − 2τ < t ≤ 0.

(23)

While the sensitivity function of y(t) to the initial condition
y(0), that given by the formula (16a), is

∂y(t∗)

∂y(0)
=W (0) =

{
eρ0t

∗
, 0 < t∗ ≤ τ,

eρ0t
∗
+ b(t∗ − τ)eρ0(t

∗−τ), τ < t∗ ≤ 2τ.
(24)

The sensitivity function of y(t) to the constant parameter ρ0(≡
1

η
), by using (16b), takes the form:

∂y(t∗)

∂ρ0
=

∫ t∗

0

W (t)
∂F

∂ρ0
dt ={

(at∗ − ymξη)e
ρ0t

∗
+ ymξη, 0 < t∗ ≤ τ,

I, τ < t∗ ≤ 2τ,
(25)

where

I =

∫ t∗−τ

0

W (t)
∂F

∂ρ0
dt+

∫ t∗

t∗−τ

W (t)
∂F

∂ρ0
dt

= (at∗ − ymξη)e
ρ0t

∗
− 2ymξ

2η −[
[ymξ − ab(t∗ − τ) + ymξ

2 + aρ2 − bymξη](t
∗ − τ)

−ymξη − 2ymξ
2η
]
eρ0(t

∗−τ)

(Similarly, we can deduce ∂y(t∗)/∂ρ1 & ∂y(t∗)/∂ρ2.) By
using (16c), we obtain the sensitivity of y(t) to small per-
turbations in the time-lag parameter τ as:

∂y(t∗)

∂τ
=

−
∫ t∗−τ

−τ

W (t+ τ)

[
∂f(t+ τ)

∂yτ
y′(t) +

∂f(t+ τ)

∂y′
τ

y′′(t)

]
dt

=

{
0, 0 < t∗ ≤ τ,

−ρ0ab(t∗ − τ)eρ0(t
∗−τ), τ < t∗ ≤ 2τ,

(26)

with a = (y0 + ymξ) and b = (ρ1 + ρ0ρ2).

  t*−τ −τ 

∂y(t*)/∂ψ(t) 

0 

0 τ 2τ 

0 τ 2τ 

2τ 0 

∂y(t*)/∂y(0) 

∂y(t*)/∂ρ
0
 

∂y(t*)/∂τ 

τ 

Fig. 7. Shows general sensitivity functions, ∂y(t∗)/∂ψ(t), ∂y(t∗)/∂y0,
∂y(t∗)/∂ρ0, and ∂y(t∗)/∂τ , for the NDDE (17).

We notice from the formula (26) that, as expected, y(t) is
sensitive to a change in τ in the time interval τ < t ≤ 2τ
and is insensitive to changes in the constant lag τ in the time
interval [0, τ ]. The plots (see FIG. 7) have a kink at t = τ
due to the existence of the delay in the system. We may also
remark from Eq (21), that if y0 ̸= ym, then ∂y(ti)/∂τ has a
jump at ti = τ . Thereafter attention has to be directed to the
objective function when τ is a parameter to be estimated.

VII. CONCLUDING REMARKS

Delay differential equations exhibit much more complicated
dynamics than ordinary differential equations since a time
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delay could cause a stable equilibrium to become unstable and
cause the populations to fluctuate. One requires realistic math-
ematical models that should be quantitatively and qualitatively
consistent with the biological phenomena and experimental
data. We have seen that delay models of real-phenomena have
more interesting dynamics than equations that lack memory-
effects.

Sensitivity functions clearly demonstrate the measure of the
importance of the input parameters. We have remarked how
these functions enable one to assess the relevant time intervals
for the identification of specific parameters and enhance the
understanding of the role played by specific model parameters
in describing experimental data.

The literature on this subject is very broad and we cannot
quote many interesting papers, as an exhaustive list of refer-
ences is not possible in this short entry.
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