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Abstract—In this paper two similar models for the maintenance 

of a production-inventory system are considered. In both models, 

an input generating installation supplies a buffer with a raw 

material and a production unit pulls the raw material from the 

buffer. The installation in the first model and the production unit 

in the second model deteriorate stochastically over time and the 

problem of their optimal preventive maintenance is considered. 

In the first model, it is assumed that the installation, after the 

completion of its maintenance, remains idle until the buffer is 

evacuated, while in the second model, it is assumed that the 

production unit, after the completion of its maintenance, remains 

idle until the buffer is filled up. The preventive and corrective 

repair times of the installation in the first model and the 

preventive and corrective repair times of the production unit in 

the second model are continuous random variables with known 

probability density functions. Under a suitable cost structure, 

semi-Markov decision processes are considered for both models 

in order to find a policy that minimizes the long-run expected 

average cost per unit time. A great number of numerical 

examples provide strong evidence that, for each fixed buffer 

content, the average-cost optimal policy is of control-limit type in 

both models, i.e. it prescribes a preventive maintenance of the 

installation in the first model and a preventive maintenance of 

the production unit in the second model if and only if their degree 

of deterioration is greater than or equal to a critical level. Using 

the usual regenerative argument, the average cost of the optimal 

control-limit policy is computed exactly in both models. Four 

numerical examples are also presented in which the preventive 

and corrective repair times follow the Exponential, the Weibull, 

the Gamma and the Log-Normal distribution, respectively.  

Keywords—Maintenance; Production; Buffer; Semi-Markov 

decision processes; Control-limit policies; Expected average cost 

I. INTRODUCTION 

The maintenance of a production system is an important issue 
in modern industry. A failure of a system component may 
cause considerable delay in the production process, especially 
if the necessary time for its repair is long. The construction and 
analysis of a mathematical model for the description and 
optimal control of a deteriorating system component can result 

in substantial saving in operation and, also, in increased 
availability of the whole production system. In the last fifty 
years, a great number of maintenance problems have been 
studied and various mathematical models have been proposed 
for their solution. In Wang [19], a survey of different kinds of 
maintenance policies of deteriorating systems was given. The 
Markov decision model has been proved to be a powerful and 
flexible tool for the description and solution of many problems 
which are related to the optimal maintenance of a system. For 
example, in the papers of Federgruen and So [6], Douer and 
Yechiali [5], Van Der Duyn Schouten and Vanneste [18], Chen 
and Feldman [4], Benyamini and Yechiali [2], Moustafa, 
Maksoud and Sadek [12], Grosfeld-Nir [7], Tomasevicz and 
Asgarpoor [17], Kurt and Kharoufeh [10,11], Piunovskiy [14], 
Huang and Guo [8], Zhang and Gao [20], Bassey and Chigbu 
[1] and Borrero and Akhavan-Tabatabaei [3], suitable Markov 
decision models were constructed for various maintenance 
models. In the present paper we modify two models (see 
Karamatsoukis and Kyriakidis [9], Pavitsos and Kyriakidis 
[13]), in which the problem of the optimal maintenance of a 
production-inventory system was considered. Henceforth, we 
refer to Karamatsoukis and Kyriakidis [9] model as Model 1 
and to Pavitsos and Kyriakidis [13] model as Model 2. In 
Model 1, a deteriorating installation supplies a buffer with a 
raw material and a production unit pulls the raw material from 
the buffer with constant rate. In Model 2, the raw material is 
transferred at a constant rate to a buffer and a deteriorating 
production unit pulls the raw material from the buffer. If the 
installation in Model 1 and the production unit in Model 2 are 
found to be at failed condition, a corrective maintenance must 
be commenced, while, if they are found to be at an operative 
condition, a preventive maintenance may be initiated. A 
suitable cost structure for the installation in Model 1 and for the 
production unit in Model 2 were introduced, including 
operating costs, maintenance costs, storage costs, shortage 
costs, penalty costs and costs due to the lost production. In both 
models, it was assumed that the maintenance times are 
geometrically distributed. Suitable discrete-time Markov 
decision processes were considered in both models in which 
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stationary policies which minimize the long-run expected 
average cost per unit time were computed. It was proved that 
the average-cost optimal policy for each fixed buffer content is 
of control-limit type, i.e. it initiates a preventive maintenance 
of the installation in Model 1 and a preventive maintenance of 
the production unit in Model 2 if and only if the degree of their 
deterioration is greater than or equal to a critical level. In the 
present paper we modify the models by assuming that the 
preventive and the corrective repair times are continuous 
random variables which follow some known continuous 
distributions (e.g. Exponential, Weibull, Gamma, Log-
Normal). In Model 1, it is assumed that, after the completion of 
a preventive or a corrective maintenance, the installation 
remains idle until the buffer is evacuated. In Model 2, we 
assume that if the buffer is not full when a preventive or a 
corrective maintenance of the production unit is completed, the 
production unit remains idle until the buffer is filled up. When 
the repair times are continuous, it seems intuitively reasonable 
that the optimal policy is again of control-limit type in both 
models. However, rigorous proofs seem to be difficult in both 
models. Suitable semi-Markov decision processes are 
constructed and numerical results provide strong evidence that 
the average-cost optimal policies are again of control-limit type 
in both models. The average cost of a control-limit policy is 
computed exactly in both models by applying the usual 
regenerative argument. The rest of the paper is organized as 
follows. The description of Model 1 is given in the next section 
and the description of Model 2 is given in Section III. In 
Section IV, we briefly describe how the average cost of a 
control-limit policy can be computed exactly in both models. In 
Section V, two numerical examples for Model 1 and two 
numerical examples for Model 2 are presented in which the 
preventive and corrective repair times follow the Exponential, 
the Weibull, the Gamma and the Log-Normal distribution, 
respectively.     

II. MODEL 1 

We consider a production-inventory system which consists of 
an installation (I) that supplies a buffer (B) with a raw material 
and a production unit (P) which pulls the raw material from 

the buffer with a constant rate equal to d  (units/time). The 

buffer has finite capacity which is equal to K  units of raw 
material and has been built between the production unit and its 
input generating installation to cope with unexpected failures 
of the installation. As long as the buffer capacity is not 
reached, the installation operates at a constant rate of p  units 

of raw material per unit time )( dp >  and the excess output is 

stored in the buffer. As long as the buffer is filled up, the 

installation reduces its speed from p  to .d  The three 

components of the system are depicted in Figure 1. 
 
 

 

 

Fig. 1.   The three components of the system 

 

As mentioned in Van Der Duyn Schouten and Vanneste [18], 
an example of this production system could be an offshore oil 
exploration platform which provides the crude oil to onshore 
refineries. The crude oil is transported by pipelines from the 
platform to storage tanks from which is further transported to 
the refineries. In this case, the crude oil, the exploration 
platform, the refineries and the storage tanks are the raw 
material, the installation, the production unit and the buffer, 
respectively.  We suppose that the installation deteriorates as 
time evolves and it is monitored at discrete, equidistant time 
epochs …,1,0=τ  (say every day) and a decision must be 

made at each epoch. There are three possible actions 

}2,1,0{∈a  which are selected at each time epoch. The 

possible actions are: (i) the action of allowing the installation to 

operate )0( =a  (ii) the action of starting a preventive 

maintenance of the installation )1( =a  and (iii) the action of 

starting a corrective maintenance of the installation ).2( =a  A 

policy is any rule for choosing actions at each decision epoch. 
A policy is said to be stationary, if at a time epoch it chooses 
one action which depends only on the current state of the 
process. The state of installation at each decision epoch is 
classified into one of 2+m  working conditions ,1,,1,0 +m…  

which describe increasing degrees of deterioration. State 0 
represents a new installation before any deterioration occurs 
while state 1+m  represents the failure state of the installation. 

The intermediate states m,,1…  are operative. If at a time 

epoch τ  the state of the installation is operative and the 
content of the buffer is ,Kx <  then the content of the buffer at 

the next time epoch 1+τ  will be ).,min( Kdpx −+  This 

increase of the buffer content will happen even if the state of 
the installation at the time epoch 1+τ  is the failure state 

.1+m  The transition probability of moving from working 

condition i  at time epoch τ  to working condition j  at time 
epoch 1+τ  is equal to .ijp  We assume that the probability of 

eventually reaching the condition 1+m  from any initial state 

i  is nonzero. If at a time epoch the installation is found to be at 

the working condition ,1+m  then the action 2=a  is 

compulsory. If at a time epoch the installation is found to be at 

state },,,1{ mi …∈  then we may choose either action 0=a  or 

action .1=a  Both preventive and corrective maintenance are 

nonpreemptive, i.e. they cannot be interrupted and they bring 
the installation to the perfect working condition 0. It is assumed 
that the preventive and the corrective repair times are 
continuous random variables with known probability density 

functions )(1 xf  and ),(2 xf  respectively. The cost rates during 

a preventive and a corrective maintenance are equal to pc  and 

to ,fc  respectively. If at a time epoch the installation is found 

to be at state },,0{ mi …∈  and the action 0=a  is chosen, an 

operating cost is incurred until the next time epoch, which is 

equal to ,ic  if the buffer is not full, or to ,~ic  if the buffer is 

full. We suppose that, during any maintenance (preventive or 
corrective) of the installation, the buffer is not supplied with 
raw material. If during a preventive or a corrective 
maintenance the buffer is empty, then the operation of the 
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production unit stops. A shortage cost is incurred when a 
preventive or a corrective maintenance is performed and the 
buffer is empty. The unit of cost has been chosen in such a way 

so that, the shortage cost rate is equal to the lost demand d  for 

each unit of time during which a preventive or a corrective 
maintenance is performed. We also suppose that the cost of 
holding a unit of the raw material in the buffer for one unit of 

time is equal to .0>h  We assume that, if the buffer is not 

empty when a preventive or a corrective maintenance is 
completed, the installation does not resume its operation 
immediately but it remains idle until the buffer is evacuated. As 
soon as the buffer is evacuated, the installation restarts its 
operation by supplying the buffer with raw material at a rate 

equal to p  (units/time). Let PMm  and CMm  be the expected 

times required for a preventive and a corrective maintenance, 
respectively. The following conditions on the cost structure and 
on the transition probabilities are assumed to be valid: 

Condition 1. ,10 mccc ≤≤≤ …  .~~~
10 mccc ≤≤≤ …  That is, as 

the working condition of the installation deteriorates, the 
operating cost increases. 

Condition 2. .0,~ micc ii ≤≤≤  That is, the reduction of the 

speed from p  (units/time) to d  (units/time) of the installation, 

as soon as the buffer is filled up, causes a reduction of its 
operating cost. 

Condition 3. .CMPM mm ≤  That is, the expected time required 

for a preventive maintenance of the installation is smaller than 
the expected time required for a corrective maintenance.  

Condition 4. .fp cc ≤ That is, the cost rate of a preventive 

maintenance does not exceed the cost rate of a corrective 
maintenance. 

Condition 5. (An Increasing Failure Rate Assumption). For 

each ,1,,0 += mk …  the function ∑
+

=

=
1

)(

m

kj

ijk piD  is non-

decreasing in .0, mii ≤≤  

For the present problem, the state space of the system is the set 

},,,0{}1,,1,0{ KmS …… ×+=  where Sxi ∈),(  is the state in 

which i  is the working condition of the installation and x  is 

the content of the buffer. We consider a semi-Markov decision 
process in which we aim to find a policy that minimizes the 
long-run expected average cost per unit time. The relevant 
theory of semi-Markov decision processes can be found in 
Section 3.5 in Tijms’s [16] book. The decision epochs in our 
problem are the time epochs at which the system enters a state 

in .S  Let },2,1,0{),( ∈aapsl  be the probability that the state 

of the system at the next decision epoch will be the state ,Sl∈  

if the present state is Ss∈  and the action }2,1,0{∈a  is 

selected and let ),( asT and ),( asC  be the corresponding 

expected transition time and cost, respectively. These quantities 
are given below.  

,0,10,0,)0()),min(,)(,( Kxmjmipp ijKdpxjxi ≤≤+≤≤≤≤=−+

,0,0,1)0),,(( KxmixiT ≤≤≤≤=  

,0,0,)0),,(( KxmihxcxiC i <≤≤≤+=  

,0,~)0),,(( mihKcKiC i ≤≤+=  

,0,0,1)1()0,0)(,( Kxmip xi ≤≤≤≤=  

∫ 







−+=

dx

PM dttft
d

x
mxiT

/

0

1 ,)()1),,(( ,0,0 Kxmi ≤≤≤≤  

∫
∞

−++=
dx

PMp dttfxtd
d

hx
mcxiC

/

1

2

,)()(
2

)1),,((           (1) 

,0,0 Kxmi ≤≤≤≤  

,1)2()0,0)(,1( =+ xmp  ,0 Kx ≤≤  

∫ 







−+=+

dx

CM dttft
d

x
mxmT

/

0

2 ,)()2),,1((  ,0 Kx ≤≤  

∫
∞

−++=+
dx

CMf dttfxtd
d

hx
mcxmC

/

2

2

,)()(
2

)2),,1((

.0 Kx ≤≤   

 

We will explain in detail how (1) is derived. Suppose that the 
state of the system at a decision epoch is the state 

.0,0),,( Kxmixi ≤≤≤≤  If the action 1=a  of preventive 

maintenance is initiated, then the state of the system at the next 

decision epoch will be the state ).0,0(  The corresponding one- 

step expected cost )1),,(( xiC  consists of the expected 

maintenance cost, the expected holding cost and the expected 
shortage cost. The expected maintenance cost is equal to 

,PMpmc  the expected holding cost is equal to ∫ −
dx

dttdxh

/

0

)(  

and the expected shortage cost is equal to ( ) .)(

/

1∫
∞

−
dx

dttfxtd  By 

summing the above three expressions, we obtain (1). A great 
number of numerical examples, in which the optimal policies 
were found by implementing the standard value-iteration 
algorithm for semi-Markov decision processes (see pp. 222-
223 in Tijms [16]), provide strong evidence that, for each fixed 

buffer content },,,0{ Kx …∈  the optimal policy is of control-

limit type. It seems difficult to prove this conjecture. 

III. MODEL 2 

We consider a production system in which the raw material is 
transferred into a buffer (B) at a constant rate p  (units/time) 

and a production unit (P) pulls the raw material from the 
buffer. The capacity of the buffer is fixed and it is assumed to 
be equal to K  units of raw material. The production unit is 
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subjected to deterioration. As long as the buffer is not empty 
and the production unit is in operative condition, the 

production unit pulls the raw material at a constant rate of d  

(units/time). We assume that .pd >  When the buffer is empty 

and the production unit is in operative condition, the 

production unit reduces its pull-rate from d  to .p  As 

mentioned in Pavitsos and Kyriakidis [13], an example of this 
system could be the case in which the production unit is a 
power station. The raw material, that is oil or gas, is transferred 
at a constant rate to a storage tank (buffer) and the power 
station pulls it and converts it to electricity. The production unit 
deteriorates stochastically over time. We assume that it is 
monitored at discrete, equidistant time epochs …,1,0=τ  (say 

every day) and is classified into one of 2+m  working 

conditions ,1,,1,0 +m…  which describe increasing levels of 

deterioration. Working condition 0 means that the production 
unit is new or functioning as good as new, while condition 

1+m  means that the production unit is in failed (inoperative) 

condition and it cannot pull the raw material from the buffer. 
The intermediate states m,,1…  are operative. If at a time 

epoch τ  the working condition of the production unit is 
1+< mi  and the buffer contains 0>x  units of raw material, 

then the content of the buffer at time epoch 1+τ  will be 

).0,max( dpx −+  This decrease of the buffer content will 

happen even if the working condition of the production unit at 
time epoch 1+τ  is .1+m  If at a time epoch τ  the working 
condition of the production unit is 1+< mi  and the buffer is 

empty, then the buffer will remain empty at time epoch ,1+τ  

since in this case the production unit pulls the raw material 
from the buffer with rate p  (units/time). It is assumed that if at 

a time epoch τ  the working condition of the production unit is 
i  and the buffer content is x  then at time epoch 1+τ  the 

working condition of the production unit will be j  with 

probability .ijp  We suppose that the probability of eventually 

reaching the working condition 1+m  from any initial state i  

is nonzero. If the production unit at a time epoch is found to be 
at any working condition ,, mii ≤  a preventive maintenance 

may be started. If the production unit at a time epoch is found 
to be at the working condition ,1+m  then a corrective 

maintenance must be commenced immediately. Both 
preventive and corrective maintenance are nonpreemptive, i.e. 
they cannot be interrupted and they bring the production unit to 
the working condition 0. The preventive and the corrective 
repair times are random and we assume that they are 
continuous random variables with known probability density 

functions )(1 xf  and ),(2 xf  respectively. When a preventive or 

a corrective maintenance of the production unit is performed, 
the buffer is supplied with the raw material at a constant rate of 
p  (units/time) until it is filled up. As long as the preventive or 

the corrective maintenance of the production unit lasts, the 
production process is interrupted. We suppose that the cost due 
to the lost production during a unit of time in which a 
preventive or a corrective maintenance of the production unit is 
performed is equal to .0>C  When the buffer is not empty and 

the production unit pulls the raw material from the buffer with 

rate ,d  we do not incur a cost due to the lost production. 

However, when the buffer is empty, the production unit pulls 
the raw material from the buffer with rate p  which is smaller 

than .d  It is reasonable to assume that in this case the cost due 

to the lost production during a unit of time is equal to 

./])[( dCpd −  A penalty cost which is equal to 0>P  is also 

imposed for each unit of raw material that it is not stored in the 
buffer during a preventive or a corrective maintenance of the 
production unit when the buffer is full. This cost is due to the 
necessary labor for transferring and storing the raw material in 
another buffer until the completion of the maintenance. If at a 
time epoch the production unit is found to be at the working 
condition mii ≤≤0,  and no preventive maintenance is 

initiated, an operating cost is incurred until the next time epoch 

which is equal to ,ic  if the buffer is not empty, or to ,~ic  if the 

buffer is empty. When a preventive or a corrective repair is 
performed, a repair cost is incurred, which is equal for each 

unit of time to pc  or to ,fc  respectively. We also assume that 

the cost of holding a unit of raw material in the buffer for one 

unit of time is equal to .0>h  We consider that, if the buffer 

content is less than K  units, when a preventive or a corrective 
maintenance is completed, the production unit does not resume 
its operation immediately but it remains idle until the buffer is 
filled up. As soon as the buffer is filled up, the production unit 

resumes its operation normally by pulling d  units of the raw 

material from the buffer per unit of time. There are three 

possible actions }.2,1,0{∈a  The action 0=a  (allow the 

production unit to operate), the action 1=a  (initiate a 

preventive maintenance of the production unit) and the action 
2=a  (initiate a corrective maintenance of the production 

unit). Let PMm  and CMm  be the expected times required for a 

preventive and a corrective maintenance, respectively. For the 
deteriorating production unit, we impose the same plausible 
conditions on the cost structure and on the transition 
probabilities as the one imposed for the deteriorating 
installation in the previous section for Model 1. For this 
problem, the state space of the system is the set 

},,,0{}1,,1,0{ KmS …… ×+=  where Sxi ∈),(  is the state in 

which i  is the working condition of the production unit and x  

is the content of the buffer. We again consider a semi-Markov 
decision process in which we aim to find a policy that 
minimizes the long-run expected average cost per unit time. 
The decision epochs in this problem are the time epochs at 

which the system enters a state in .S  Let },2,1,0{),( ∈aapsl  

be the probability that the state of the system at the next 

decision epoch will be the state ,Sl∈  if the present state is 

Ss∈  and the action }2,1,0{∈a  is selected and let ),( asT and 

),( asC  be the corresponding expected transition time and cost, 

respectively. These quantities are given below.  

 

,0,10,0,)0())0,max(,)(,( Kxmjmipp ijdpxjxi ≤≤+≤≤≤≤=−+

,0,0,1)0),,(( KxmixiT ≤≤≤≤=  
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,0,0,
)],min([

)0),,(( Kxmi
d

Cpxdd
hxcxiC i ≤<≤≤

+−
++=

,
)(~)0),0,((

d

Cpd
ciC i

−
+=  ,0 mi ≤≤  

,1)1(),0)(,( =Kxip  ,0,0 Kxmi ≤≤≤≤  

∫
−









−

−
+=

pxK

PM dttft
p

xK
mxiT

/)(

0

1 ,)()1),,((  

,0,0 Kxmi ≤≤≤≤  

∫
∞

−

−+++=
pxK

PMp dttfKtpxPxiCTmcxiC

/)(

1 )()()1),,(()1),,((  

∫
∞

−







 −
−+

−
+

pxK

dttf
p

xK
thK

p

xKh

/)(

1

22

,)(
2

)(
           (2) 

,0,0 Kxmi ≤≤≤≤  

,1)2(),0)(,1( =+ Kxmp  ,0 Kx ≤≤  

∫
−









−

−
+=+

pxK

CM dttft
p

xK
mxmT

/)(

0

2 ,)()2),,1((  

,0 Kx ≤≤  

)2),,1(()2),,1(( xmCTmcxmC CMf ++=+  

∫
∞

−

−++
pxK

dttfKtpxP

/)(

2 )()(  

∫
∞

−







 −
−+

−
+

pxK

dttf
p

xK
thK

p

xKh

/)(

2

22

,)(
2

)(
            

.0 Kx ≤≤  

 

We will explain in detail how (2) is derived. Suppose that the 
state of the system at a decision epoch is the state 

.0,0),,( Kxmixi ≤≤≤≤  If the action 1=a  of preventive 

maintenance is initiated, then the state of the system at the next 

decision epoch will be the state ).,0( K  The corresponding one-

step expected cost )1),,(( xiC  consists of the expected 

maintenance cost, the expected lost production cost, the 
expected penalty cost and the expected holding cost. The 
expected costs due to the preventive maintenance and due to 

the lost production until the system reaches the state ),0( K  are 

equal to PMpmc  and to ),1),,(( xiCT  respectively. By 

conditioning on the number of units of time that the preventive 
maintenance lasts, we deduce that the expected penalty cost 
and the expected holding cost, until the process reaches the 

state ),,0( K  are equal to ∫
∞

−

−+
pxK

dttfKtpxP

/)(

1 )()(  and 

∫∫
∞

−

−








 −
−++

pxK

pxK

dttf
p

xK
thKdttpxh

/)(

1

/)(

0

,)()(  respectively.  

By summing the above four expressions, we obtain (2). A great 
number of numerical examples, in which the optimal policies 
were found by implementing the standard value-iteration 
algorithm for semi-Markov decision processes, provide strong 

evidence that, for each fixed buffer content },,,0{ Kx …∈  the 

optimal policy is again of control-limit type. As for Model 1, in 
previous section, it seems again difficult to prove this 
conjecture. 

IV. COMPUTATION OF THE AVERAGE COST UNDER 

A CONTROL-LIMIT POLICY 

Suppose that the installation in Model 1 and the production unit 

in Model 2 cannot be improved on their own, i.e. 0=ijp  if 

},,1{ mi …∈  and .ij <  In this case, the average cost of a 

control-limit policy (i.e. a policy that, for each fixed buffer 

level },,,0{ Kx …∈  initiates a preventive maintenance of the 

installation in Model 1 or a preventive maintenance of the 
production unit in Model 2 if and only if the working condition 
of the installation in Model 1 or the working condition of the 
production unit in Model 2 is greater than or equal to a critical 

level ))(xi  can be computed exactly using the usual 

regenerative argument (see, for example, Proposition 5.9 in 
Ross [15]). The exact computations of the average costs are 
achieved, since, for both models, the processes under a control-
limit policy, are regenerative processes, where the successive 

entries into the state )0,0(  in Model 1 and into the state ),0( K  

in Model 2, can be taken as regenerative epochs between 
successive cycles. Detailed descriptions of these exact 
computations are given in Section 4 of Karamatsoukis and 
Kyriakidis [9] paper for Model 1 and in Section 7 of Pavitsos 
and Kyriakidis [13] paper for Model 2. For both models, the 
average cost of a control-limit policy can be computed in the 
same way as in the case in which the preventive and corrective  
repair times are geometrically distributed with the following 
differences: (i) The expected times until the system, under a 

control-limit policy, enters the state )0,0(  in Model 1 or the 

state ),0( K  in Model 2, if the initial state is the state 

),,( xi ,1)( +<≤ mixi  ,0 Kx ≤≤  are now equal to ).1),,(( xiT   

(ii) The expected times until the system, under a control-limit 

policy, enters the state )0,0(  in Model 1 or the state ),0( K  in 

Model 2, if the initial state is the state ),,1( xm +  ,0 Kx ≤≤  

are now equal to ).2),,1(( xmT +  (iii) The expected costs until 

the system, under a control-limit policy, enters the state )0,0(  

in Model 1 or the state ),0( K  in Model 2, if the initial state is 

the state ),,( xi ,1)( +<≤ mixi  ,0 Kx ≤≤  are now equal to 

).1),,(( xiC  (iv) The expected costs until the system, under a 

control-limit policy, enters the state )0,0(  in Model 1 or the 

state ),0( K  in Model 2, if the initial state is the state   

),,1( xm +  ,0 Kx ≤≤  are now equal to ).2),,1(( xmC +      

V. NUMERICAL RESULTS 

In the following numerical examples, we implemented the 

standard value-iteration algorithms and the algorithms for the 

exact computation of the minimum average cost by running 
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the corresponding Matlab programs on a personal computer 

equipped with an Intel Core 2 Duo, 2.5 GHz processor and 4 

GB of RAM. For Model 1, in Examples 1 and 2, we assume 

that the repair times of the installation follow the Exponential, 

and the Weibull distribution, respectively. For Model 2, in 

Examples 3 and 4, we assume that the repair times of the 

production unit follow the Gamma and the Log-Normal 

distribution, respectively.  

 

Example 1 (Model 1).  

Suppose that ,20=m ,10=K ,5=p ,3=d ,3.0=h ,5.1=fc  

,1=pc  ),1(1.0 += ici  ),1(05.0~ += ici .0 mi ≤≤  We assume 

that the nonzero transition probabilities 1,0, +≤≤ mjipij  are 

given by .1,)2(
1 +≤≤−+= −

mjiimpij  This means that if 

the present state of the installation is ,i  then the next state is 

uniformly distributed in the set }.1,,1,{ ++ mii …  These 

probabilities satisfy Condition 5 since, for each 

,1,,0 += mk …  the quantity ∑
+

=
−+
−+

=
1

2

2
m

kj

ij
im

km
p  is increasing 

in .0, mii ≤≤  We assume that the preventive and corrective 

repair times of the installation are exponentially distributed 

with parameters 01 >λ  and ,02 >λ  respectively. Their 

probability density functions are given by  

 

)exp()( 111 ttf λλ −=  and ),exp()( 222 ttf λλ −=  ,0≥t  

 

respectively. We choose 5.01 =λ  and .125.02 =λ  Note that 

Condition 3 is satisfied since the mean of the Exponential 

distribution with parameter 0>λ  is equal to .1−λ  The 

optimal policy obtained by the standard value-iteration 

algorithm is of control-limit type. The critical numbers 

},10,,0{),(* …∈xxi  that characterize the optimal policy are 

given in Table 1 below. 

 

Table 1. The critical numbers of the optimal policy 

x  0 1 2 3 4 5 6 7 8 9 10 

)(* xi  16 14 12 10 7 3 0 0 0 0 0 

 

The average cost of the optimal policy is found to be 2.1456. 

We select as the prespecified accuracy number ε  for the 
stopping criterion of the value-iteration algorithm the value 

.10 4−=ε  The algorithm is stopped after 65 iterations. The 

required computational time for the termination of the value-

iteration algorithm was equal to 1.7472 seconds. The expected 

time and the expected cost of a cycle under this policy are 

equal to 4.3637 and 9.3628, respectively. 

 

Example 2 (Model 1).  

Suppose that ,15=m ,8=K ,11=p ,10=d 5.2=fc  and 

.4.0=h  We also assume that the operating costs 

micc ii ≤≤0,~,  and the nonzero transition probabilities 

,1,0, +≤≤ mjipij  are the same as in Example 1. We assume 

that the preventive and the corrective repair times of the 

installation follow the Weibull distribution with parameters  

0, 11 >λα  and ,0, 22 >λα  respectively. Their probability 

density functions are given by 

 

])exp[()()( 11
1

1
1111

αα λλλα tttf −= −
 and 

],)exp[()()( 22
2

1
2222

αα λλλα tttf −= −
 ,0≥t  

 

respectively. We assume that ,11 =α 31 =λ  and 

,5.02 =α .52 =λ  Note that Condition 3 is satisfied since the 

mean of the Weibull distribution with parameters 0>α  and 

0>λ  is ),1( 11 −− +Γ αλ  where ,)exp()(

0

1∫
∞

− −=Γ dtttx
x

 

,0>x  is the Gamma function. In Table 2 below, we present 

the critical numbers of the optimal control-limit policy 

obtained by the value-iteration algorithm for the values of pc  

in the set }.5.2,3.2,2,8.1,5.1,2.1{  

 

Table 2. The form of the optimal policy as pc  varies 

2.1=pc  

x  0 1 2 3 4 5 6 7 8 

)(* xi  16 14 10 6 1 0 0 0 0 

5.1=pc  

x  0 1 2 3 4 5 6 7 8 

)(* xi  16 14 11 6 1 0 0 0 0 

8.1=pc  

x  0 1 2 3 4 5 6 7 8 

)(* xi  16 14 11 6 2 0 0 0 0 

2=pc  

x  0 1 2 3 4 5 6 7 8 

)(* xi  16 15 11 7 2 0 0 0 0 

3.2=pc  

x  0 1 2 3 4 5 6 7 8 

)(* xi  16 15 11 7 2 0 0 0 0 

5.2=pc  

x  0 1 2 3 4 5 6 7 8 

)(* xi  16 15 12 7 2 0 0 0 0 

 

From Table 2, it can be seen that for each fixed buffer level ,x  

the critical number )(* xi  remains unchanged or increases as 

pc  increases. In Table 3, for the above values of ,pc  we 

present the average cost of the optimal policy obtained by the 
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value-iteration algorithm. We also present the expected time 

and the expected cost of a cycle under the optimal policy for 

the exact computation of its average cost. 

 

Table 3. The effect of varying pc  

pc  Average Cost Expected 

Time 

Expected 

Cost 

1.2 1.6293 2.4869 4.0519 

1.5 1.6623 2.5493 4.2376 

1.8 1.6942 2.5493 4.3190 

2 1.7146 2.6219 4.4955 

2.3 1.7449 2.6219 4.5749 

2.5 1.7642 2.6949 4.7545 

 

From Table 3, it can be seen, as expected, that the average cost 

of the optimal policy and also, the expected time and the 

expected cost of a cycle under the optimal policy, either 

increase or remain unchanged, as pc  increases. 

 

Example 3 (Model 2).  

Suppose that ,15=m ,5=p ,8=d ,10=C ,30=fc ,20=pc  

),1(6 += ici ),1(3~ += ici .0 mi ≤≤  The nonzero transition 

probabilities ,1,0, +≤≤ mjipij  are the same as in Examples 

1 and 2. We assume that the preventive and the corrective 

repair times of the production unit follow the Gamma 

distribution with parameters  0, 11 >λα  and ,0, 22 >λα  

respectively. Their probability density functions are given by 

 

)exp()]([)( 1
1

1
1

11
11 tttf λλα αα −Γ= −−  and 

),exp()]([)( 2
1

2
1

22
22 tttf λλα αα −Γ= −−  ,0≥t  

 

respectively, where, )(αΓ  is the Gamma function. We assume 

that 2,4 11 == λα  and  .2,14 22 == λα  Note that Condition 3 

is satisfied since the mean of the Gamma distribution with 

parameters 0>α  and 0>λ  is .1−αλ  It is interesting to 

examine the effect of the variation of K  on the average cost 

of the optimal policy. If the value of K  is small, it is probable 

that the buffer is filled up quickly during a maintenance 

causing a high penalty cost. If the value of K  is large, a high 

storage cost is incurred. In Table 4 below, we present, for 

different values of ,K  the average cost )(Kg  of the optimal 

policy for the following four cases: (i) ,15,3 == Ph  (ii) 

,0,3 == Ph  (iii) 15,0 == Ph  and (iv) .0,0 == Ph  

 

Table 4. The minimum average cost )(Kg  as K  varies 

K  15,3 == Ph  0,3 == Ph  15,0 == Ph  0,0 == Ph  

1 68.9558 26.8800 66.6215 24.1981 

3 66.0687 30.9942 59.1483 23.4994 

5 69.1509 36.9032 57.1031 23.6317 

7 72.5769 42.5994 55.2288 23.5936 

9 76.7519 48.2473 54.3736 23.5765 

11 82.5085 54.2463 54.3242 23.5777 

13 88.1169 60.1858 54.2316 23.5762 

15 93.8200 66.1003 54.2069 23.5769 

17 99.7849 72.1025 54.2063 23.5769 

19 105.7056 78.0866 54.2036 23.5769 

21 111.6292 84.0622 54.2029 23.5769 

23 117.6178 90.0627 54.2026 23.5769 

25 123.5942 96.0572 54.2023 23.5769 

 

From Table 4, it can be seen that, in the first case the 

minimum average cost decreases for 31 ≤≤ K  and increases 

for .3≥K The minimum average cost is achieved at 3=K  

and it is equal to 66.0687. In Case (ii), )(Kg  is increasing 

with respect to ,K  in Case (iii), )(Kg  is decreasing with 

respect to K  and in Case (iv), )(Kg  is constant for .15≥K  

The graphs of )(Kg  as a function of K  for the four cases are 

given in Figure 2. 
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Fig. 2. The graph of )(Kg  

 

The blue line corresponds to Case (i), the green line 

corresponds to Case (ii), the red line corresponds to Case (iii) 

and the cyan line corresponds to Case (iv). 

 

Example 4 (Model 2).  

Suppose that ,25=m ,10=K ,8=d ,10=C ,16=fc ,9=pc  

,4=h .12=P  We also assume that the operating costs 

micc ii ≤≤0,~,  and the nonzero transition probabilities 

,1,0, +≤≤ mjipij  are the same as in Example 3. We 

consider that the preventive and the corrective repair times of 

the production unit follow the Log-Normal distribution with 

parameters ∈1µ ℜ, 02
1 >σ  and ∈2µ ℜ, ,02

2 >σ  respectively. 

Their probability density functions are given by 
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









 −
−= −

2
1

2
11

11
2

))(ln(
exp]2[)(

σ

µ
πσ

t
ttf  and 

,
2

))(ln(
exp]2[)(

2
2

2
21

22










 −
−= −

σ

µ
πσ

t
ttf 0>t , 

 

respectively. We assume that 5,9 11 == σµ  and 

.6,12 22 == σµ  Note that Condition 3 is satisfied since the 

mean of the Log-Normal distribution with parameters ∈µ ℜ 

and 02 >σ  is equal to .
2

1
exp

2 







+ σµ  It seems interesting to 

examine the effect of the variation of the replenishment rate 

p  on the form of the optimal policy and on the minimum 

average cost ).(pg  In Table 5, we present, for various values 

of ,p  the critical numbers ,100),(* ≤≤ xxi  that characterize 

the optimal policy and the corresponding minimum average 

cost ).(pg  

 

Table 5. The optimal policy and its average cost as p  varies 

p  Average 

Cost )( pg  

100),(* ≤≤ xxi  

1 74.4762 10 11 16 21 23 25 

26 26 25 24 22 

2 84.5467 15 12 16 19 21 23 

24 23 22 20 19 

3 95.3609 18 14 16 18 21 22 

21 20 19 18 17 

4 109.3707 21 16 18 20 21 20 

19 19 18 17 16 

5 122.2072 23 19 20 21 20 19 

19 18 17 16 15 

6 136.2852 24 21 22 20 20 19 

18 17 16 16 15 

7 148.5111 25 23 21 20 19 18 

17 17 16 16 15 

 

If ,1)(* += mxi  for some buffer level },,,0{ Kx …∈  then a 

preventive maintenance is never initiated whenever the buffer 

content is equal to .x  From Table 5, we observe that the 

minimum average cost increases, as p  increases. We also 

observe that, for constant buffer level ,x  the critical number 

)(* xi  is not a monotone function with respect to .p  
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