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Abstract—We are interested by the problem of combinatorial
auctions in which multiple items are sold and bidders submit
bids on packages. First, we present a multi-objective formulation
for a combinatorial auctions problem extending the existing
single-objective models. Indeed, the bids may concern several
specifications of the item, involving not only its price, but also
its quality, delivery conditions, delivery deadlines, the risk of
not being paid after a bid has been accepted and so on. The
seller expresses his preferences upon the suggested items and the
buyers are in competition with all the specified attributes done
by the seller. Second, we develop and implement a metaheuristic
algorithm based on a tabu search method.

Keywords: multi-objective combinatorial optimization, combinato-
rial auctions, metaheuristics, tabu search.

I. INTRODUCTION

The general multi-objective combinatorial optimization problem
can be expressed as:

(MOCO)
{

“max ”F (x) = (f1(x), f2(x), . . . , fp(x))
x ∈ S

where p ≥ 2 is the number of objective functions, x =
(x1, x2, . . . , xd) is the vector representing the decision variables, S
is the (finite) set of feasible solutions in the solution space Rd. The
set Z = F (S) represents the feasible points (outcome set) in the
objective space Rp and z = (z1, z2, . . . , zp), with zi = f i(x), is a
point of the objective space.

Note that, in (MOCO), the term “max” appears in quotation marks
because, in general, there does not exist a single solution that is
maximal on all objectives. As a consequence, several concepts must
be established to define what an optimal solution is. The more used
one is the dominance relation also known as Pareto dominance (see
Fig. 1.).

Definition 1: We say that a point z = (z1, z2, . . . , zp) dominates
a point w = (w1, w2, . . . , wp) and we write z � w if and only if
for all i ∈ {1, . . . , p}, zi ≥ wi with for at least one i0 ∈ {1, . . . , p},
zi0 > wi0 .

Definition 2: A solution x∗ ∈ S is called (Pareto) efficient for
(MOCO) if and only if there does not exist any other feasible solution
x ∈ S, such that x dominates x∗. The point F (x∗) is then called a
non-dominated point.

The set of efficient solutions, also called the Pareto optimal set,
is often denoted by E and the image of E in Z is called the non-
dominated frontier or the Pareto optimal front, and is denoted by
ZE .

-

6

tz

f2(x)

f1(x)

�
�
�

�
��

�
�

�
�
��

�
�

�
�
��

�
�

�
�

��

�
�

�
�

��

�
�

�
�

��

�
�
�

�
��

�
�
�

�
��

�
�
�

�
��

�
�

�
�
��

�
�

�
�
��

�
�

�
�
��

�
�

�
�

��

�
�

�
�

��

�
�
�

�
��

�
�
�

�
��

�
�
�

�
��

�
�
�

�
��

�
�

�
�
��

�
�

�
�
��

�
�

�
�
�

�
�

�
�

�
�

��

�
�
�

�
�
��

�
�

�
�
�

�
�

�
�

�
�

��

�
�
�
�
���

H
HHH

HHH
HHH

HHH
HHH

HHHH

HHH
HHH

HHHH

HH
HHH

HHH
HH

HH
HHH

HHH
HH

H
HHH

HHH
HHH

H
HHH

HHH
HHH

HHH
HHH

HHHH

HHH
HHH

HHHH

HHH
HHH

HH

HHH
HHHH

HH
HHHH

HH
HH

HHH
HH

HH
HHH

HHHH

H
HHH

HHHH

H
HHH

HH

HHH
HH

HHHHH

d d
d

d
d

d
d

d d c c
c

c
c

c
c

c c b b
b

b
b

b
b

b b

�

�

�

Worse than z Indifferent with z

Indifferent with z Better than z

Fig. 1. Dominations in the Pareto sense in a bi-objective space.

Note that if x, y ∈ S are such that F (x) dominates F (y) we usually
say that x dominates y and we also write x � y.

In (MOCO), we can optimize each of the objectives by solving
the following problems:

(COP(k))
{

max fk(x)
x ∈ S k = 1..p

Suppose that xk∗, k = 1..p are optimal solutions of the above
problems respectively. Then, the optimal value of objective k is given
by fk∗ = fk(xk∗).

Definition 3: The point F ∗ = (f1∗, f2∗, . . . , fp∗) is called the
ideal point in the objective space.

In general, an ideal point is not a feasible solution. Otherwise, the
objective would not be in conflict with one another.

II. SINGLE-OBJECTIVE COMBINATORIAL AUCTION
MODELS

The auctions research started essentially in 1961 with the Nobel
prized economist William Vickrey, but the early work on auctions
first appeared in operations research journals with Friedman [6] and
Rothkopf [14]. Since then, the field of auctions studies has grown
to more wide multidisciplinary fields like economics, games theory,
operations research, computer science, decision analysis, multicriteria
decision making, . . .
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Numerous applications have been reported in the literature for
combinatorial auctions. They have been employed in a variety of
industries (truckload transportation, bus routes, industrial procure-
ment, . . . ), in airport arrival and departure slots, in telecommunication
(allocating radio spectrum), in electronic business (eBAY, . . . ), in
public sector for procuring meals for schools, . . .

In combinatorial auctions, the auctioneer has a set M of m items
(M = {a1, a2, . . . , ai, . . . , am}) to sell, and the buyers submit a set
B of n bids, (B = {B1, B2, . . . , Bj , . . . , Bn}). The compelling
motivation for the interest on such problem is the presence of
complementarities (the value of the whole bundle is larger than
the sum of the values of its components taken separately) and
substitutions (the bidder only wants one of the items) among the
items. These characteristics differ across bidders and allow them to
fully express their preferences. A bid is a tuple Bj = 〈Sj , cj〉, where
Sj ⊆ M is a set of items and cj is a price for the whole package
Sj . The selection of the winning bids becomes in this case more
complicate (NP-hard problem [15]). This problem is known as the
Winner Determination Problem (WDP) of combinatorial auctions and
the most research on this area focuses on the computational issues
[4].

A. Single-unit case
The Winner Determination Problem in the single-unit case is to

label the bids as winning (xj = 1) or losing (xj = 0) xj (j = 1..n),
so as to maximize the auctioneer’s revenue under the constraint that
each item can be allocated to at most one bidder:

(WDP)



maxZ(x) =

n∑
j=1

cjxj

n∑
j/i∈Sj

xj ≤ 1 i = 1..m

xj ∈ {0, 1} j = 1..n

(WDP) is intractable. The branch and bound algorithms ([16], [17],
[18]) are the most common usual methods in the single unit case.
Exact methods guarantee that an optimal solution is found but do
not guarantee the running time! Recently heuristics and approximate
methods have been introduced to solve (WDP) in combinatorial
auctions ([11],[9]).

B. Multi-unit case
In this case, the auctioneer has some number µi of avail-

able units of each item ai (i = 1..m). The buyers submit a
set of bids {B1, B2, . . . , Bj , . . . , Bn}. A bid is a tuple Bj =
〈{λij , λ1

j , . . . , λ
i
j , . . . , λ

m
j }; cj〉, where λij is the (non negative in-

teger) number of units of the item ai (i = 1..m), required by the
j-th buyer (j = 1..n). The corresponding model is given by (WDP’).

(WDP’)


maxZ(x) =

n∑
j=1

cjxj .

n∑
j=1

λijxj ≤ µi i = 1..m

xj ∈ {0, 1} j = 1..n

Several exact approaches have been used for solving (WDP’):
dynamic programming [15], linear programming [13] integer pro-
gramming [1] and constraint programming [10].

III. MULTI-OBJECTIVE COMBINATORIAL AUCTIONS

Most studies in the literature are focus either on single-unit
combinatorial auctions with price only (single-objective) or on single-
item (but non-combinatorial auctions) with multi-objective auctions.
However, both auctions types alone are already very complicated.
Thus far, there has not been much work on multi-objective (multi-
attribute) combinatorial auctions and the most of works in this area

use the weighting function to translate the multi-objective into utility
function or use a single objective branch-and-bound algorithm based
on the ε− constraint method [3].

A. The problem formulation
The multi-objective formulation of (WDP’) is:

(MOWDP’)


“opt”Zk(x) =

n∑
j=1

ckjxj k = 1..p

n∑
j=1

λijxj ≤ µi i = 1..m

xj ∈ {0, 1} j = 1..n

where ckj is the value of the bid j (j = 1..n) for the criterion
k (k = 1..p) and the decision variables are defined as follows:

xj =

{
1 if the bid Bj is accepted (the winner offer);
0 otherwise.

The seller expresses his preferences upon the suggested items and
the buyers are in competition with all the specified attributes done
by the seller. So, the Multi-Objective Winner Determination Problem
(MOWDP’) consists of finding the accepted bids which simultane-
ously, for example, maximize the revenue of the seller and minimize
the payment time, under the constraints that at most the available
number of units of each item is allocated.

An acceptable bid (non risk of overlapping with other bids) for
which the vector of specifications (revenue vector) is not dominated
by any other vector of specifications of bids, is an efficient solution
for (MOWDP’).

B. Tabu Search (TS) method for (MOWDP ′)
In this subsection, we propose an adaptation of the Tabu Search

(TS) method to (MOWDP ′). The addition of multiple units of
each item to (WDP ) involves too many possible combinations to
evaluate and so, causes new levels of complications in the auctions
process. Furthermore, the mathematical formulation of (MOWDP ′)
is closely related to the multi-objective multiconstraint knapsack
problem. Tabu Search is a local search strategy [8] used for intensifing
the research and designed for escaping from local minima. The main
components of tabu search are:

• Research space.
• Neighborhood.
• Tabu list.
• Random walk.

a) Research space: A solution is given by a binary vector
x = (x1, x2, . . . , xn) which verify all constraints i.e.,

n∑
j=1

αijxj ≤ µi,∀i ∈ {1, . . . ,m}.

Research space S is composed of all these binary vectors, i.e.,

S =

{
x ∈ {0, 1}n/

n∑
j=1

αijxj ≤ µi, i ∈ {1, . . . ,m}
}
.

For generating an initial solution we use the Random Key encoding
introduced by Bean [2]. We generate a sequence r of n random
real numbers between 0 and 1 where n is the number of submitted
bids. To each bid Bj , a key value rj , which constitutes its order of
selection, is associated. The first bid to choose and to include in the
selection is the one with the largest key value. Then, the bid having
the second largest key in the collection is accepted if its acceptance
does not create any conflict with bids already selected, otherwise it
is rejected. And so on, until all bids are reviewed. We get a subset
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Fig. 2. The conflict graph

of bids that may be a solution to (MOWDP’).

Example Let be:
- M = {a1, a2, a3} the set of three items to be auctioned.
- µ1 = 5, µ2 = 10 and µ3 = 7 (number of available units of the

each item).
- The offers Bj j = 1..7 upon the set M and their revenue

vectors cj (where each of their components is to maximize) are
done as follows:
• B1 = 〈{1, 2, 3}; c1 = (10, 12, 5)〉
• B2 = 〈{1, 3, 2}; c2 = (6, 8, 10)〉
• B3 = 〈{4, 6, 4}; c3 = (7, 5, 14)〉
• B4 = 〈{1, 3, 0}; c4 = (9, 4, 17)〉
• B5 = 〈{5, 2, 0}; c5 = (6, 3, 9)〉
• B6 = 〈{1, 4, 0}; c6 = (13, 11, 6)〉
• B7 = 〈{2, 7, 1}; c4 = (5, 4, 16)〉

The conflict graph is given in Figure 2.
B1 = 〈{1, 2, 3}; c1 = (10, 12, 5)〉 (for example) means that the

bid B1 contains one unit of item a1, two units of a2 and three units
of a3 and c1 is its revenue vector.

- First, we generate a key sequence r of seven random numbers
between 0 and 1: r = (0.07, 0.75, 0.4, 0.09, 0.29, 0.56, 0.67),
then the bids Bj , j = 1, . . . , n, are ordered according to the
increasing value of their keys rj : B2, B7, B6, B3, B5, B4, B1 .

- Second, a bid is accepted if it is in conflict with no of the
previous accepted bids. Thus, the bids B6, B3, B5 are not
accepted because they are in conflict with the bid B7 (see
Figure 2). So, x0 = (1, 1, 0, 1, 0, 0, 1) could be an initial
solution.

b) Neighborhood: The neighborhood N of our problem is
defined in the following way: let x and x′ in S, x and x′ are neighbors
if and only if they differ exactly in one component. It results that
from a current solution x, it is possible to obtain a neighbor solution
x′ (x′ ∈ N (x)) by adding or removing a bid such that x′ remains
feasible (it does not conflict with all previous accepted bids). The
movement from x to x′ is then characterized by the integer j which
is considered to be the attribute of movement and represents the index
of the component xj that was changed i.e., (xj : 0→ 1 or 1→ 0).

c) Evaluation of the Neighborhood: The evaluation of the
neighborhood is based on weighted Tchebychev metrics [19] for
measuring the distance, ‖z(x

′
) − z(x)‖λ∞, between two neighbors

x = (x1, x2, . . . , xn) ∈ S and x′ = (x′1, x
′
2, . . . , x

′
n) ∈ N (x).

Thus, the assessment of x′ is defined by the following function:

eval(x, x′) = ‖Z(x′)− Z(x)‖λ∞ (1)

= max
k=1..p

{λk|zk(x′)− zk(x)|}. (2)

with λ ∈
{
λ ∈ Rp : λk > 0 and

p∑
k=1

λk = 1
}

.

The λ vector corresponds to a search direction in the objective
space, and enables to diversify the research. The best nearby con-
figuration x∗, to replace the current configuration x, is determined
using the following equation:

eval(x, x∗) = max
x
′∈N (x)

eval(x, x′). (3)

If multiple configurations check the equation, the algorithm chooses
one randomly.

d) Management of the tabu list: Every time a movement is
applied to go from the current solution x, to the neighbor solution
x′. To avoid cycling cases in which we would come back to x
and oscillate between x′ and x, the indication of the attribute of
the movement is registered in a tabu list. So, the inverse movement
(which corresponds on the way back to the departure configuration)
is forbidden for a certain number of subsequent moves.

e) Random Walk Tabu Search (RWTS) algorithm: Con-
trary to the basic tabu search algorithm, where the diversification is
ensured only by the tabu list, random walk tabu search algorithm
consists of realizing from time to time a move which is no more
guided by the evaluation function and then constitutes a diversifica-
tion diagram.

At every iteration of RWTS algorithm, a real value rw ∈ [0, 1] is
randomly generated. Let us put q ∈ [0, 1] the value threshold, then, if
rw > q the algorithm will select the best movement, otherwise, the
algorithm will make a feasible random movement. RWTS algorithm
can be described as follows:

Algorithm 1 RWTS algorithm.
Require: Number of iterations nb − iter, random threshold

q.
Ensure: A set ND of potentially non-dominated solutions.

1: Randomly select an initial solution x, according to the
”RK” encoding. ND ← {x}.

2: for i = 0 to nb− iter do
3: Generate a random value rw ∈ [0, 1].
4: if rw ≤ q then
5: choose a random allowed move j∗.
6: else
7: Choose the best allowed move j∗.
8: Update the tabu list with j∗.
9: Perform the chosen move j∗ in x.

10: Update the set of non-dominated solutions with x.
11: end if
12: end for

C. Experimental results
Numerical experiments are realized upon some randomly

generated instances (no benchmarks have been found in the
literature for the multi-objective case) of different sizes to test and
prove the efficiency of our approach which is compared to the
extended multi-objective branch-and-bound (MOBB) method (a
submitted paper). The instance pWDPn −m provides the number
of objectives (p), the type of problem (Winner Determination
Problem), the number of bidders (n) and the number of items
(m). We focus our experiments on a bi-objective case. However,
the results remain valid for a larger number of objectives. A tabu
list length is fixed to 15 for all the instances and the threshold
value for random walk q is set to 0, 15. The algorithms have
been implemented in matrix laboratory (Matlab R2009a) and each
instance is re-run ten times with each algorithm using a Pentium PC
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TABLE I
RESULTS OF THE RWTS METHOD

Instances hypervolume (%) CPU(t)
2WDP5-3 100 0.01
2WDP7-3 100 0.02
2WDP8-5 100 0.03
2WDP10-3 100 0.05
2WDP10-5 97.41 0.59
2WDP15-3 96.93 0.83
2WDP20-3 80.06 0.94
2WDP20-7 73.37 1.09
2WDP25-3 74.72 1.20
2WDP30-3 65.46 2.71
2WDP30-9 74.58 4.89
2WDP35-3 74.70 8.77
2WDP40-3 88.10 28.98
2WDP45-3 61.52 43.55
2WDP50-3 63.77 127.85

with dual core processor, FSB 800 Mb, DDR1 2 Go in Windows
operating system. The approximate algorithms have been evaluated
according to two measures of quality of Ê (approximate set of
efficient solutions):

1) Hypervolume metric [12]: it is based on calculating the volume
(in the objective space) covered by members of the obtained
non-dominated set of solutions.

2) Computational time represented by CPU(t) and measured in
seconds.

Experimental results are provided in Table I. They show that the
RWTS method is one of the most successful variants of the TS
method. In particular, it exploits partially the search space. Thus
for the MOWDP case, no factor guarantees that the search space
is completely explored. This influences on the set of solutions that
will not be always efficient (potentially efficient solutions). Indeed
evaluations of approximate solutions obtained by RWTS, show that
they are often far from the Pareto optimal front. Furthermore, the
number of iterations and the value of the random walk influence the
results a lot.

IV. CONCLUSION

In this paper we have adapted a Multi-Objective Random Walk
Tabu Search (MORWTS) method for the Winner Determination
Problem of combinatorial auctions in order to make it possible of
handling more than one constraint. Evaluations of the metaheuristic
of Random Walk Tabu Search show that they are often far from the
Pareto optimal front.
In future works, we propose to develop other mechanisms of diver-
sification and intensification more successful than the RWTS and to
hybridize this metaheuristic with an exact method to improve the
quality of solutions.
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