
Collaborative Dialogue Information Model

Tomáš Nestorovič, Václav Matoušek

New Technologies for the Information Society

University of West Bohemia in Pilsen

Pilsen, Czech Republic

{nestorov,matousek}@ntis.zcu.cz

Abstract—This paper concerns a task-oriented dialogue

information management. Below we cover its main features –

knowledge combining and intention detection. The approach is

demonstrated in a step by step manner on one of sessions with a

spoken timetable application.

Keywords—dialogue systems; dialogue management;

information representation; artificial intelligence.

I. INTRODUCTION

Human-machine dialogue management focuses on finding
machine's best response given an interaction history with the
user. Ranging from simple finite state machines to Markov
decision networks, there is a wide collection of methods to
implement a dialogue management. Tightly related is the
dialogue information representation, partially constrained by
the way a dialogue is managed. In this paper, we focus on
agent-based dialogue management that often uses some variant
of Grosz and Sidner's work on collaborative dialogues [1] with
information usually represented as a set of facts or a semantic
network. This is also our case and below we show our
approaches to dialogue context representation, information
combining, and intention extraction.

II. MODEL FOR INFORMATION REPRESENTATION

As mentioned above, our model infers from the Grosz and
Sidner's work [1], meaning we organize information in a
similar fashion, e.g. assign each information to an intention,
however more on this later. Furthermore, for each information
our model exposes computed salience for further processing,
e.g. by the agent during its deliberation. However, the Grosz
and Sidner's work is limited by not providing or suggesting any
clue for intention detection, neither does it suggest the soft
notion of handling information combining. Thus these two
aspects were in our focus when developing the information
model.

The information model allows us to distinguish two
components contained in task-oriented dialogues – intentions
and passive data. Due to pragmatical reasons of easing
intention detection, we prevent intentions from sharing the
same information space with “data”. (Recall that we can keep
them separated thanks to data being assigned to their
corresponding intentions as proposed in [1].) We call the

separate intention and data spaces layers. Thus our approach to
dialogue context representation consists of two of them, simply
called the “upper” and the “lower” layers (Fig. 1). Both of
them serve a specific purpose – while the upper layer is to store
information on user's spoken intentions, the lower layer
accommodates known data. The working-cycle of the
information model is then simple. First, user's semantics is
divided into two fragments carrying intention and data update.
Then, the former fragment is anchored into the upper layer, and
based on its content, eventual new intention(s) are detected.
Finally, the “data fragment” is anchored into the lower layer.

Let us now focus on the working-cycle in detail. We then
will demonstrate in Section 3.

A. Fragmenting User's Utterance Semantics

The first issue that can be spotted is the dividing of an
utterance semantics. A user's single sentence may be a mixture
of intention and data components, as in utterance U1 “I need to
get to Utrecht” from Table 3 later on in Section 3. We therefore
need to find a filtering mechanism that splits a semantics into a
data fragment and intention fragment.

The key clue for finding a semantics best division is to take
into account that a user can refer to already existing objects
(e.g. utterance U8 “And the early bus” in Table 3). Hence, the
approach we follow is to divide the semantics in such a way
that the resulting two fragments are optimal in the sense of best
matching each layer's content. More specifically, consider a
semantics consists of a single piece of information (e.g. U4

“About eleven”) – it then may be part of 1) data fragment only,
2) intention fragment only, or 3) both fragments. Thus in

This work was supported by grant SGS-2013-029, Advanced Computer and Information Systems.

upper layer
(intention detection)

lower layer
(data storage)

input semantics

I1

I2

I3

I4 +

Fig. 1. Information model of task-oriented dialogue context representation.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2020.14.12 Volume 14, 2020

ISSN: 2074-1278 70

general case the complexity of the problem is O(3N) where N is
the number of pieces of information in the semantics. To
reduce the exponential expenses, we use a heuristics based on
excluding those pieces of information whose membership in
one of the fragments is certain. The heuristics can be formally
described by introducing a level of cardinality:

• atomic information (e.g. a single time point “2p.m.”) –
has zero cardinality since it is always certain,

• non-atomic information (e.g. a time span “2p.m. –
3p.m.”) – has a non-zero cardinality since it tends to be
uncertain (as it involves more options),

• empty information (e.g. an unknown time value hidden
in the word “when”) – has infinite cardinality since it is
uncertain.

Given the information cardinality, we can infer that: 1)
atomic information cannot contribute to intention shift as there
is nothing to discuss about it – therefore it is always a part of
the data fragment only, and 2) an empty information never
brings data to the dialogue and is thus guaranteed to be added
to the intention fragment (it is a non-exclusive membership –
e.g. utterance U7 “When does the train arrive?” in Table 3,
semantically shown in Fig. 4c, contains only one empty
information which grants it for the upper layer, however, at the
same time refers to one of previous trains from agent's S7

contained in the lower layer – we will return to this example
later in Section 3). Finally, the membership of a non-atomic
information cannot be determined by any other way than
passing it through the exponential fragmentation process.

Each generated intention and data fragments pair must be
evaluated with respect to the current state of the context. Note
that due to a dialogue being an interactive environment, the
context is changed (evolved along with a task) not only by the
user, but also by the agent. The evaluation therefore conceives
a set of rules concerning different context situations. Each rule
penalizes the corresponding fragment if it does not fit the
particular situation. The final sum of penalties of both of
fragments, let us denote it P, then indicates how well the
fragments fit the context (e.g. how well they meet system
expectation). The pair that yield the lowest compound penalty,
P*, is then considered optimal and used further in the working
cycle.

The building block of the evaluation rules is salience [1], a
number that expresses how recent an information is. Let us
define it as the higher the number, the older the information
(i.e. the lower the salience), and vice versa. In the following,
evaluation rules currently in use are listed. The rules assume
the input semantics to be organized hierarchically, as shown in
Fig. 4, with ~Root object on the top.

Rule 1 describes the most obvious situation – a user referring to
an object. We want to address the most salient object that
matches user's description, therefore we add each object's
salience to the penalty sum (recall that the higher the salience,
the lower the penalty). Formally: Let there be a path from
~Root to leaf information L in the Fragment (to spare on space

we will abbreviate as < ~Root ← L > ∈ Fragment) that is

completely unifiable1 with a layer content. Then for each object
on the path add its salience to the total penalty P.

Rule 2 describes a situation in which user introduces new
information (e.g. when no object matches user's reference). In
this case, we add the minimal penalty for the user changing the
layer's content. Formally: Let < ~Root ← L >. Let

< ~Root ← E > ⊆ < ~Root ← L > be maximum length subpath
unifiable with the layer content. Then for each object whose
distance is greater than E add minimal penalty Pm to P. (This
rule can be considered a special case of Rule 1.)

Rule 3 dictates that an addressed object should fully match a
given reference, otherwise it cannot be considered resolving it.

Formally: Let < ~Root ← L > ∈ Fragment be completely

unifiable with a layer content. Let E ∈ < ~Root ← L > be an
object for which Rule 2 applies. Then for each object on the
path add its salience to P.

Rule 4 demands objects to be maximally described by the
semantics provided (e.g. it is wrong to not consider all
information from semantics that matches an addressed object
during reference resolving). Formally: Let

< ~Root ← L > ∉ Fragment be completely unifiable with a
layer content. Then for each object on the path add twice its
salience to P.

Rule 5 requires objects that user disagrees with to exist.

Formally: Let < ~Root ← L > ∈ Fragment be partially

unifiable with a layer content. Let E ∈ < ~Root ← L > be an
object marked as disagreed. Then for each object on the path
add thrice its salience to P.

Rule 6 defines that infinite cardinality objects are more
“valuable” for intention detection than non-zero cardinality
objects. Formally: If an intention fragment contains at least one
leaf with infinite cardinality, then all paths from fragment
~Root to leaves with non-zero cardinality must be unifiable
with the upper layer content, otherwise assign P infinite
penalty.

Rule 7 fobids information that most probably regards intention
detection to be anchored into the lower layer. Formally: In a
data fragment, all paths from ~Root to leaves with infinite
cardinality must be unifiable with the lower layer content,
otherwise assign P infinite penalty.

Rule 8 forces intention fragment to always exist if the
semantics content indicates a possible intention shift. Formally:
Let semantics contain a non-zero or infinite cardinality
information. If intention fragment is empty, assign P infinite
penalty.

Rule 9 advantages objects currently in the system's focus over
those that are not, i.e. defines an implicit arbitration for cases in
which interpretation of the semantics in ambiguous. Formally:

Let < ~Root ← L > ∈ Fragment. Let < ~Root ← E > ⊆
< ~Root ← L > be the maximum length subpath unifiable with
system focus < ~Root ← F >. Then for each object whose
distance is greater than E add maximum penalty PM to P.

1 Object X is said to be unifiable with object Y if parents of X are subset

of parents of Y and one of the following holds: 1) values of both objects are

equal, or 2) at least one of the objects has empty (undefined) value.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2020.14.12 Volume 14, 2020

ISSN: 2074-1278 71

Rule 10 advantages objects either expected by the agent (e.g.
required to solve a task) or used by the agent (e.g. in some of
planned steps) over objects that are useless in the scope of the

given task. Formally: Let < ~Root ← L > ∈ Fragment be not
completely unifiable with any system expectation
< ~Root ← Xi >. Then for each object on the path add
maximum object penalty PM to P.

As it can be seen, the set of rules spans across a variety of
situations in the context and the current state of the agent.
However, in a dialogue there are situations in which we need to
override the flat behaviour of the above rules to precise or
bypass the intention detection. The following are additional
rules we use to control the fragmentation process.

Rule 11 If user's utterance dialogue act type is declarative,
bypass the fragmentation process by setting intentional
fragment as empty and data fragment as input semantics. The
fragmentation process is triggered only if dialogue act is
determined as imperative or interrogative [2].

Rule 12 If the system performed a RequestElicitation as its last
dialogue move (e.g. the initial “How may I help you” prompt),
then even if the user replies with a declarative sentence, the
answer should be considered an interrogative response and
fragmentation process triggered.

In this section, we showed how an input semantics can be
broken down into two fragments which represent the two
updates the semantics is to make in the layers. Let us now have
a look at the process of carrying out the updates.

B. Fragment Anchoring Process (FAP), and Information

Combining

Each layer is a container of objects and relations (Fig. 2)
which we formally can describe by a set of nine-tuple facts

FACT (object1 , object2 , participant, intention, collection, cs,
firstOccurence, lastUpdate, salience) .

Each fact describes either an object or a relation between
objects (the object{1,2} parameters – if they are equal, the fact
describes an object). Each fact has been introduced by one of
the participants (user or system) when discussing one of
intentions. Furthermore, objects can be grouped into
collections, e.g. Train, Bus, and Airplane are all
Transportation Means (see domain data model in Fig. 5). Each

fact is assigned a confidence score (cs) ∈ < 0 ; 100 > gained
from the Automatic Speech Recognition module (ASR).
Finally, the firstOccurence, lastUpdate, and salience are time
stamps that allow us to process corrections (“I didn't say train
but plain”) and/or references (“the previous train”).

The FAP itself is used without modification by both of the
layers to update their content. The algorithm assumes a shared
space in which both participants may create and delete objects

(however, this feature is used by the lower layer only – the
system does not contribute to the upper layer with any
information, whereas uses the lower layer, for instance, to
introduce results from a database). The FAP can be split into
two phases, forward and backward ones. The forward
processing phase derives new objects from the already existing
ones and changes them in accordance with the underlying input
fragment. For example, if the existing original object is a Train
departing from Delft (see Fig. 2) and the fragment updates this
city to Rotterdam, then the forward processing derives a new
Train object which shares the same subobjects, and recurrently
traverses to the corresponding City:Delft object to replace it.
Afterwards, it clears the layer of redundant objects (i.e. those
no longer in use), moving them to dialogue history or deleting
them permanently. The backward processing phase then
merges equal objects. This is an important phase to cut down
time costs of agent's deliberation.

Let us now focus on how values for newly derived objects
are determined during the forward processing phase. In the
general case, an object value is an information type-specific
result [3] – a new object can replace, extend, or generally infer
from an old object (e.g. we can replace the number of
passengers, merge ticket discounts, and evolve time by
combining two Time objects). Therefore, the information
model does not provide any “combinatorial pattern” but instead
passes this responsibility to external sources, e.g. libraries
containing data types definitions (Table 1). However, two
pieces of information can be in different mutual relationships.
We distinguish three cases: 1) both pieces of information do
not have anything in common, 2) are equal, or 3) overlap.
Table 2 shows these relationships and their results for different
types of updates a fragment can do in a layer. Finally, let us
note that due to efficiency reasons the information model

Train 2

Train 1

Departure City:"Delft". . .

Fig. 2. A layer content example - two trains departing from Delft.

TABLE I. TYPE DEFINITION.

Function synopsis

void *Create (char *description)
Creates information based on its description.

int GetCardinality (void *inf)
Returns the cardinality of the specified information.

bool Equal (void *inf1 , *inf2)
Returns true if both pieces of information are equal.

bool IsCombinable (void **inf1 ; int nInf1 ; void *inf2)

Returns true if inf2 can be combined with inf1 .

void *Combine (void *inf1 , *inf2)

Returns the result of combining inf2 with inf1 .

void *Negate (void *inf)

Returns the negation of the specified information.

bool IsInstantiable (void *inf)

Returns true if the specified information is instantiable.

bool IsContainedIn (void *inf1 , *inf2)

Returns true if inf2 is fully contained in inf1 .

bool IsUndefined (void *inf)

Returns true if the specified information does not contain value.

char *ToText (void *inf)

Returns TTS module processable form of the specified information.

void Destroy (void *inf)

Destroys specified information.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2020.14.12 Volume 14, 2020

ISSN: 2074-1278 72

provides some common “built-in” types (String, Integer, and
Float).

Remark (objects passing/overriding). FAP allows particular
objects to be transmitted from one intention to another
(passing) and eventually changed there (overriding). According
to the fact definition, each object belongs to an intention. To
pass/override an object (e.g. in a nested query), we need to 1)
detect user's intention shift, 2) update the dialogue stack (see
below), and 3) assign each newly created object in the lower
layer to the intention on the top of the stack. This approach is
in coherence with Grosz and Sidner's work [1].

C. Intentions Detection and Management

Following the working cycle, once the intention fragment
has updated the upper layer, the most recent intention is to be
recognized. We use a simple template matching approach
where each intention has its own pattern. It is assumed each
two patterns are mutually non-interchangeable (although not
necessarily disjunctive). Thus for each pattern in our set we try
if it entirely matches the content of the upper layer (i.e., if the
pattern injectively projects itself onto the upper layer).2 If it

2 Thus, we do not compare the patterns merely with the user's last
utterance but with the whole upper layer. Its content evolved by user's

intention fragments observed in a dialogue. This way user's intention shift is

recognized even if spanning across multiple utterances (turns).

does, we compute its score of match as a sum of saliences of
objects involved. The extreme cases are handled as follows.

• If no pattern matches, it implies user's intention is
unknown yet. The agent's behaviour then depends on
the content of the layers – if they are empty, the agent
narrows the HowMayIHelpYou prompt, otherwise it
starts to process what is contained in the layers by
following its deliberation processes.

• If more than one pattern match, it is chosen the one
with the best score of match. As we do not consider
that user's utterance may contain more dialogue acts
(e.g. request to find a connection and buy a ticket),
this determination is sufficient – the agent sticks to the
most salient intention detected in the upper layer.

However, before pushing any newly detected intention onto
the top of the stack, we check if the currently topped intention
dominates it [1], i.e. if the intention on top of the stack, ITop,
“needs” the current intention I to get itself solved:

(ITop DOM I) → push (I) .

If the domination relation is not met, it indicates a
permanent change in user's intention state resulting in popping
the top-positioned intention out of the stack and retesting the
domination.

(ITop ¬DOM I) → pop (ITop) ∧ re-test dominance .

Finally, if the agent decides to return to a dominating
intention, e.g. because the top-positioned one has been
satisfied, it only refocuses itself without popping the intention
out of the stack. It is popped out if the user does not reopen it
by his next utterance [4].

III. EXAMPLE, RESULTS AND COMPARISON

The agent with the information model described was
applied in a timetable domain (Fig. 5). There were N = 12 users
interacting with the agent (Fig. 3). Before a session, each user
read through on-line instructions on how to use the system and
then called it by phone. One of the sessions is transcribed in
Table 3 and we will use it to demonstrate the information
model. Furthermore, Fig. 4 shows some of non-trivial
semantics processed by the information model. Let us note that
“__Disagreement__” is a directive to indicate either a yes-no
response (if as leaf in a semantics) or delimit a disagreed
portion of a semantics.

Let us now focus on the session in Table 3. After
welcoming the user, both of the layers are empty and the
system performs a RequestElicitation move by uttering the
open-ended “How may I help you”. The user formulates a
declaration of wanting to get to Utrecht, semantically shown in
Fig. 4a. The utterance consists of an empty Time and atomic
City objects. Rule 12 forces semantics to be split, and Rule 8
requires the intention fragment to exist. It particularly consists
of < ~Root ← Time > path only, as according to our heuristics
the atomic City object cannot update the upper layer. The data
fragment consists of the < ~Root ← City > path only, as
according to Rule 7 the empty Time object cannot be anchored

TABLE II. INFORMATION COMBINING BEHAVIOR FOR DIFFERENT MUTUAL
RELATIONSHIPS; ⊕ IS THE COMBINING OPERATOR, D DENOTES A DISAGREEMENT
ADOPTED BY THE AGENT.

Rule (Condition → white-list [attributes] ; black-list [attributes])

(Old ⊕ New) = ∅ → (Old) ; —

Old and New information do not have anything in common – they will

exists in parallel as they cannot be combined.

(Old ⊕ New) = Old → (Old) ; —

New information is fully contained in Old information.

(Old ⊕ New) ≠ ∅ → (Old ⊕ New) ; —

General combination of agreed Old and New information.

(Old ⊕ ¬New) = ∅ → (Old)D ; —

Disagreed ¬New object completely contradicts Old object, hence Old is
necessary to be marked as disagreed.

(Old ⊕ ¬New) = Old → (Old) ; —

Non-disagreed portion of New supports Old.

(Old ⊕ ¬New) ≠ ∅ → (Old ⊕ ¬New) , (Old ⊕ New)D ; —

General combination of disagreed ¬New with white-listed Old information.

(¬Old ⊕ New) = ∅ → — ; (¬(Old ⊕ ¬New)) , (¬New)D

New partially contradicts with ¬Old.

(¬Old ⊕ New) = ¬Old → — ; (¬(Old ⊕ ¬New)) , (¬New)D

New partially contradicts with ¬Old.

(¬Old ⊕ New) ≠ ∅ → — ; (¬(Old ⊕ ¬New)) , (¬(Old ⊕ New))D

General combination of agreed New with blacklisted ¬Old information.

(¬Old ⊕ ¬New) = ∅ → — ; (¬Old)

Disagreed ¬New information does not contradict with blacklisted ¬Old, i.e.

both can exist in parallel.

(¬Old ⊕ ¬New) = ¬Old → — ; (¬Old)

Disagreed ¬New is a superset of blacklisted ¬Old, i.e. both can exist in

parallel resulting in a union of disagreements).

(¬Old ⊕ ¬New) ≠ ∅ → — ; (¬Old)

General combination of disagreements is replaced by both of them

coexisting in parallel, resulting in a union of disagreements.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2020.14.12 Volume 14, 2020

ISSN: 2074-1278 73

into the lower layer. Hence, after anchoring U1, the upper and
lower layers contain the < ~Root ← Time > and
< ~Root ← City > information only, respectively.

Utterance U2 is anchored into the lower layer only as there
is only a single object < ~Root ← Criterion > with zero
cardinality recognized and neither of Rules 11 or 12 triggers. In
U3 (Fig. 4b), interrogative act triggers Rule 11. The intention
fragment then consists of both of transportation means only
(heuristics prevents the atomic Criterion object from the
intention fragment). The data fragment has two possibilities,

however: 1) complete semantics with penalty P = 2·Pm +
2·Sal(Criterion) (as Rule 2 yields minimal penalty Pm for Bus
and Train, and Rule 1 yields the penalty of the
< ~Root ← Criterion > path salience), or 2) Criterion object
only with penalty P = 2·Pm + 4·Sal(Criterion) (Rule 2 yields
minimal penalty Pm for Bus and Train, and Rule 4 twice
penalizes the < ~Root ← Criterion > path for being not part of
the fragment). The latter option is not evaluated as better than
the former one, hence the non-atomic Bus and Train objects are
contained in both of the fragments. The following utterance U4

is of trivial nature similarly as U2, i.e. no fragmentation is
needed and the semantics updates the lower layer only.

Utterances U6 and U7 are spoken in similar dialogue states
(the common aspects are agent performing RequestElicitation
move and user responding with an interrogation), hence let us
proceed to U7 we already referred to earlier. Rule 11 makes U7

a subject of fragmentation. The intention fragment is created by
Rule 8 and consists of < ~Root ← Time > path. There are two
options for the data fragment: 1) < ~Root ← Time > which, by
Rule 1, is treated as a reference to the Train object introduced
by the agent in S7, and the option gains penalty P = Sal(Train),
or 2) empty which is penalized by Rule 4 (Train object could
be used to resolve a reference, however, the semantics current
split does not allow for it), and gains penalty P = 2·Sal(Train).
For completeness sake, let us note that the agent applies object
passing on the referred Train, transmitting it to the “arrival-
time” submissive intention for further handling. The rest of the
dialogue is then processed similarly.

Note that the set of rules proposed in Section 2A is derived
from our corpora of 76 recorded human-human interactions
focused on timetable information retrieval, nonetheless, not
each of the rules triggered in our example. The approach of
encoding meta-knowledge into rules is, however, beneficial for
further extending of the information model.

Let us now compare the information model with the
McGlashan's Semantic Interface Language (SIL) [5], one of the
well known methodologies for representing and manipulating
dialogue context information. Table 4 gives a structured
overview of mandatory features of these two approaches. The
main difference is in the way user’s input utterances are dealt
with. While the Semantic Interface Language attempts to store
a whole dialogue in its raw form (implying continuous
reevaluation of the whole dialogue), our approach attempts to
decompose each utterance and store extracted intentions and
data at separate places (thus avoiding any time consuming

TABLE III. DIALOGUE BETWEEN THE SYSTEM (S) AND A USER (U). ERRORS
INTRODUCED DURING USER'S UTTERANCE PROCESSING (ASR + PARSER) ARE
ITALICIZED. THE LAYER COLUMN INDICATES WHICH LAYERS THE UTTERANCE
UPDATES.

Agent Utterance Layer

S1 Welcome in the Simple Timetable System.

How can I help you?

–

U1 I need to get to Utrecht. U, L

S2 Please say me more. –

U2 I need a cheap connection about eleven. (Input: Cheap) L

S3 Which transportation means do you prefer? –

U3 Cheap, so bus or train? U, L

S4 What time approximately would you like to depart? –

U4 About eleven. L

S5 I understood you want from Delft to Utrecht by the
cheapest bus or train departing at eleven. Please confirm

this or say your correct request.

–

U5 Yes. –

S6 The next cheapest bus from Delft to Utrecht leaves at

3:30pm, train at 1pm, and bus at 1:30pm. Can I help you

any further? Do you want to order a ticket now?

L

U6 What are the prices? U, L

S7 The ticket for bus departing at 3:30pm from Delft to

Utrecht costs 10 coins, train at 1pm 11 coins, and bus at

1:30pm 11 coins. Can I help you any further? Do you
want to order a ticket now?

L

U7 No. When does the train arrive? U, L

S8 The train departing from Delft at 1pm arrives in Utrecht
at 2pm. Can I help you any further? Do you want to

order a ticket now?

L

U8 And the early bus? (Input: Bus) U, L

S9 The bus departing from Delft at 3:30pm arrives in
Utrecht at 4pm, and 1:30pm at 2pm. Can I help you any

further? Do you want to order a ticket now?

L

U9 Yes. –

S10 Ticket ordering.

Uhu.

–

U10 [Timeout.] –

S11 How many persons will be traveling? –

U11 One. L

S12 Do you have any discounts? –

U12 No. –

S13 Do you want to order a full prized bus ticket for one
person leaving Delft at 1:30pm, arriving Utrecht at

2pm? The total price is 11 coins.

–

U13 Yes. –

S14 Thank you for your order.

How can I help you?

–

Task 1. Try to find the cheapest connection (bus, train, and/or airplane)
that goes to Utrecht at 11 o'clock. If you cannot find an exact match, try

to find the one with the closest departure time. Please write down the

exact departure time of the connection you found.

Task 2. For connections of your choice from Task 1, try to find their

total travel time. You might need to use your math skills to find out.
Please write down the exact time you have found.

Task 3. Try to buy a ticket for you. Remember you are on buying the

cheapest one. Please write down the total price you have been told by
the system.

Fig. 3. Tasks scenario each user had to complete.

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2020.14.12 Volume 14, 2020

ISSN: 2074-1278 74

projecting unlike in the Semantic Interface Language when
constructing a map of salient objects). These different
backgrounds imply differences in other key features like the
way both approaches can treat corrections or the way intentions
can be detected in a dialogue.

IV. CONCLUSION

This paper aimed to describe and demonstrate our approach
to collaborative dialogue information representation based on
Grosz and Sidner's work on task-oriented dialogues. We

presented a set of general rules for splitting and evaluating an
input semantics. Splitting a semantics into two fragments
facilitates intention detection. Furthermore, we also showed
our approach to information combining – a similar approach
can be found in RawenClaw dialogue manager [6], however its
combinatorial capabilities are limited by not assuming two
pieces of information can be partially combinable. (Another
difference is in its custom types being bound with the
framework.) Last but not least, we demonstrated our approach
and compared it with the SIL.

REFERENCES

[1] B. Grosz and C. Sidner, “Attention, Intentions, and the Structure of
Discourse,” Computational Linguistics, vol. 12, pp.175-204, Sep. 1986.

[2] A. Nguyen and W. Wobcke, “An Agent-Based Approach to Dialogue
Management in Personal Assistants,” ACM International Conference on
Intelligent User Interfaces (IUI 05), pp. 137-144, Jan. 2005.

[3] J. Gustafson, Developing Multimodal Spoken Dialogue Systems –
Empirical Studies of Spoken Human-Computer Interaction. KTH,
Department of Speech, Music and Hearing, Stockholm, 2002.

[4] C. Rich, C. Sidner, and N. Lesh, “COLLAGEN: Applying Collaborative
Discourse Theory to Human-computer Interaction,” AI Magazine, vol.
22, pp. 15-25, Dec. 2001.

[5] S. McGlashan, “Towards Multimodal Dialogue Management,” Twente
Workshop on Language Technology (TWL 96), pp. 1-10, 1996.

[6] D. Bohus and A. Rudnicky, “The RavenClaw dialog management
framework: Architecture and systems,” Journal of Computer Speech and
Language, vol. 23, pp. 332-361, Jul. 2009.

TransportationMeans

Bus: –

Time-table

Time-table: –

Ticket

Ticket: –
TransportationMeans

Airplane: –

TransportationMeans

Train: –

PersonCount

PersonCount:Int

Discount

Discount: Enum

Criterion

Criterion: Enum

Arrival

Arrival: –

Price

Price: Int

Departure

Departure: –
City

City: String

Time

Time: Set
~root

~root: –

1

1

1

N

1

N

1

N

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

Fig. 5. Timetable domain data model.

Fig. 4. Utterance semantics processed by the information model.

TABLE IV. COMPARISON WITH MCGLASHAN'S SEMANTIC INTERFACE LANGUAGE.

Feature Semantic Interface Language approach Two-layered approach

Processing technique Absolute – with each utterance, the whole interaction history is
projected onto a temporal working space of beliefs to extract

what the objectives in a dialogue are.

Incremental – each utterance immediately updates the current
state of beliefs, held permanently throughout a session in two

parallel layers.

Corrections Native feature of the framework. Once the user indicates

incorrect information, previously correct alternative becomes

salient.

Native feature of the framework. Once the user disagrees with

some information, this information is removed from either of the

layers without any equivalent becoming salient.

Intentions recognition None – passed to additional processing units. Native feature of the framework.

Information detail

level

Information represented using nested structures. Does not

recognize collections in a native way, however is able to collect
data based on their close salience.

Information represented using nested (semantic network-like)

structures. Natively recognizes and represents each information
as a collection of objects.

Capability to represent
negative information

Not supported in a native way. Supported in a native way.

Applicability Task-oriented dialogues. Task-oriented dialogues.

__Declaration__ (

 ~Root (

 Time-table (

 Departure (

 Time : —

) ,

 Arrival (

 City : “Utrecht“

)

)

)

)

(a) I need to get to

Utrecht.

__Interrogation__ (

 ~Root (

 Criterion : “cheap” ,

 Bus ,

 Train

)

)

(b) Cheap, so bus or

train?

__Interrogation__ (

 ~Root (

 __Disagreement__ ,

 Train (

 Arrival (

 Time : —

)

)

)

)

(c) No. When does the

train arrive?

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS
DOI: 10.46300/91014.2020.14.12 Volume 14, 2020

ISSN: 2074-1278 75

