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Abstract—This  paper  concerns  a  task-oriented  dialogue 
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knowledge combining and intention detection.  The approach is 
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I.  INTRODUCTION

Human-machine dialogue management focuses on finding 
machine's  best response given an interaction history with the 
user.  Ranging  from simple  finite  state  machines  to  Markov 
decision  networks,  there  is  a  wide  collection  of  methods  to 
implement  a  dialogue  management.  Tightly  related  is  the 
dialogue  information  representation,  partially  constrained  by 
the  way  a dialogue  is  managed.  In  this  paper,  we  focus  on 
agent-based dialogue management that often uses some variant 
of Grosz and Sidner's work on collaborative dialogues [1] with 
information usually represented as a set of facts or a semantic 
network.  This  is  also  our  case  and  below  we  show  our 
approaches  to  dialogue  context  representation,  information 
combining, and intention extraction.

II. MODEL FOR INFORMATION REPRESENTATION

As mentioned above, our model infers from the Grosz and 
Sidner's  work  [1],  meaning  we  organize  information  in  a 
similar fashion,  e.g.  assign each information to an intention, 
however more on this later. Furthermore, for each information 
our model  exposes computed salience for further processing, 
e.g. by the agent during its deliberation. However, the Grosz 
and Sidner's work is limited by not providing or suggesting any 
clue  for  intention  detection,  neither  does  it  suggest  the  soft 
notion  of  handling  information  combining.  Thus  these  two 
aspects  were  in  our  focus  when  developing  the  information 
model.

The  information  model  allows  us  to  distinguish  two 
components contained in task-oriented dialogues – intentions 
and  passive  data.  Due  to  pragmatical  reasons  of  easing 
intention  detection,  we  prevent  intentions  from  sharing  the 
same information space with “data”. (Recall that we can keep 
them  separated  thanks  to  data  being  assigned  to  their 
corresponding  intentions  as  proposed  in  [1].)  We  call  the 

separate intention and data spaces layers. Thus our approach to 
dialogue context representation consists of two of them, simply 
called  the  “upper”  and  the  “lower”  layers  (Fig.  1).  Both of 
them serve a specific purpose – while the upper layer is to store 
information  on  user's  spoken  intentions,  the  lower  layer 
accommodates  known  data.  The  working-cycle  of  the 
information  model  is  then  simple.  First,  user's  semantics  is 
divided into two fragments carrying intention and data update. 
Then, the former fragment is anchored into the upper layer, and 
based on its  content,  eventual  new intention(s)  are detected. 
Finally, the “data fragment” is anchored into the lower layer.

Let us now focus on the working-cycle in detail. We then 
will demonstrate in Section 3.

A. Fragmenting User's Utterance Semantics

The first  issue  that  can be spotted is  the dividing  of  an 
utterance semantics. A user's single sentence may be a mixture 
of intention and data components, as in utterance U1 “I need to 
get to Utrecht” from Table 3 later on in Section 3. We therefore 
need to find a filtering mechanism that splits a semantics into a 
data fragment and intention fragment.

The key clue for finding a semantics best division is to take 
into account  that  a user  can refer  to already existing objects 
(e.g. utterance U8 “And the early bus” in Table 3). Hence, the 
approach we follow is to divide the semantics in such a way 
that the resulting two fragments are optimal in the sense of best 
matching  each  layer's  content.  More  specifically,  consider  a 
semantics  consists  of  a  single  piece  of  information  (e.g.  U4 

“About eleven”) – it then may be part of 1) data fragment only, 
2)  intention  fragment  only,  or  3)  both  fragments.  Thus  in 

This work was supported by grant SGS-2013-029, Advanced Computer and Information Systems.

upper layer
(intention detection)

lower layer
(data storage)

input semantics

I1

I2

I3

I4 +

Fig. 1. Information model of task-oriented dialogue context representation.
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general case the complexity of the problem is O(3N) where N is 
the  number  of  pieces  of  information  in  the  semantics.  To 
reduce the exponential expenses, we use a heuristics based on 
excluding  those  pieces of information whose  membership  in 
one of the fragments is certain. The heuristics can be formally 
described by introducing a level of cardinality:

• atomic information (e.g. a single time point “2p.m.”) – 
has zero cardinality since it is always certain,

• non-atomic  information (e.g.  a  time  span  “2p.m.  – 
3p.m.”) – has a non-zero cardinality since it tends to be 
uncertain (as it involves more options),

• empty information (e.g. an unknown time value hidden 
in the word “when”) – has infinite cardinality since it is 
uncertain.

Given  the  information  cardinality,  we  can  infer  that:  1) 
atomic information cannot contribute to intention shift as there 
is nothing to discuss about it – therefore it is always a part of 
the  data  fragment  only,  and  2)  an empty  information  never 
brings data to the dialogue and is thus guaranteed to be added 
to the intention fragment (it is a non-exclusive membership – 
e.g.  utterance  U7 “When  does  the  train  arrive?”  in  Table 3, 
semantically  shown  in  Fig. 4c,  contains  only  one  empty 
information which grants it for the upper layer, however, at the 
same  time  refers  to  one  of  previous  trains  from  agent's  S7 

contained in the lower layer – we will return to this example 
later in Section 3). Finally,  the membership of a non-atomic 
information  cannot  be  determined  by  any  other  way  than 
passing it through the exponential fragmentation process.

Each generated intention and data fragments pair must be 
evaluated with respect to the current state of the context. Note 
that  due to a dialogue being an interactive  environment,  the 
context is changed (evolved along with a task) not only by the 
user, but also by the agent. The evaluation therefore conceives 
a set of rules concerning different context situations. Each rule 
penalizes the  corresponding  fragment  if  it  does  not  fit  the 
particular  situation.  The  final  sum  of  penalties  of  both  of 
fragments,  let  us  denote  it  P,  then  indicates  how  well  the 
fragments  fit  the  context  (e.g.  how  well  they  meet  system 
expectation). The pair that yield the lowest compound penalty, 
P*, is then considered optimal and used further in the working 
cycle.

The building block of the evaluation rules is salience [1], a 
number  that  expresses  how recent  an information is.  Let  us 
define it as the higher the number, the older the information 
(i.e. the lower the salience), and vice versa. In the following, 
evaluation rules currently in use are listed. The rules assume 
the input semantics to be organized hierarchically, as shown in 
Fig. 4, with ~Root object on the top.

Rule 1 describes the most obvious situation – a user referring to 
an  object.  We  want  to  address  the  most  salient  object  that 
matches  user's  description,  therefore  we  add  each  object's 
salience to the penalty sum (recall that the higher the salience, 
the  lower  the  penalty).  Formally:  Let  there  be  a  path  from 
~Root to leaf information L in the Fragment (to spare on space 

we  will  abbreviate  as  < ~Root ← L > ∈ Fragment)  that  is 

completely unifiable1 with a layer content. Then for each object 
on the path add its salience to the total penalty P.

Rule 2 describes  a  situation  in  which  user  introduces  new 
information (e.g. when no object matches user's reference). In 
this case, we add the minimal penalty for the user changing the 
layer's  content.  Formally:  Let  < ~Root ← L >.  Let 

< ~Root ← E > ⊆ < ~Root ← L > be maximum length subpath 
unifiable with the layer content.  Then for each object whose 
distance is greater than E add minimal penalty  Pm to  P. (This 
rule can be considered a special case of Rule 1.)

Rule 3 dictates that an addressed object should fully match a 
given reference, otherwise it cannot be considered resolving it. 

Formally:  Let  < ~Root ← L > ∈ Fragment be  completely 

unifiable with a layer content.  Let  E ∈ < ~Root ← L > be an 
object for which Rule 2 applies. Then for each object on the 
path add its salience to P.

Rule 4 demands  objects  to  be  maximally  described  by  the 
semantics  provided  (e.g.  it  is  wrong  to  not  consider  all 
information from semantics that matches an addressed object 
during  reference  resolving).  Formally:  Let 

< ~Root ← L > ∉ Fragment be  completely  unifiable  with  a 
layer content.  Then for each object on the path add twice its 
salience to P.

Rule 5 requires  objects  that  user  disagrees  with  to  exist. 

Formally:  Let  < ~Root ← L > ∈ Fragment be  partially 

unifiable with a layer content.  Let  E ∈ < ~Root ← L > be an 
object marked as disagreed. Then for each object on the path 
add thrice its salience to P.

Rule 6 defines  that  infinite  cardinality  objects  are  more 
“valuable”  for  intention  detection  than  non-zero  cardinality 
objects. Formally: If an intention fragment contains at least one 
leaf  with  infinite  cardinality,  then  all  paths  from  fragment 
~Root to  leaves  with  non-zero cardinality  must  be unifiable 
with  the  upper  layer  content,  otherwise  assign  P infinite 
penalty.

Rule 7 fobids information that most probably regards intention 
detection to be anchored into the lower layer.  Formally: In a 
data  fragment,  all  paths  from  ~Root to  leaves  with  infinite 
cardinality  must  be  unifiable  with  the  lower  layer  content, 
otherwise assign P infinite penalty.

Rule 8 forces  intention  fragment  to  always  exist  if  the 
semantics content indicates a possible intention shift. Formally: 
Let  semantics  contain  a  non-zero  or  infinite  cardinality 
information. If intention fragment is empty,  assign  P infinite 
penalty.

Rule 9 advantages objects currently in the system's focus over 
those that are not, i.e. defines an implicit arbitration for cases in 
which interpretation of the semantics in ambiguous. Formally: 

Let  < ~Root ← L > ∈ Fragment.  Let  < ~Root ← E > ⊆ 
< ~Root ← L > be the maximum length subpath unifiable with 
system  focus  < ~Root ← F >.  Then  for  each  object  whose 
distance is greater than E add maximum penalty PM to P.

1 Object X is said to be unifiable with object Y if parents of X are subset 

of parents of Y and one of the following holds: 1) values of both objects are 

equal, or 2) at least one of the objects has empty (undefined) value.
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Rule 10 advantages objects either expected by the agent  (e.g. 
required to solve a task) or used by the agent (e.g. in some of 
planned steps) over objects that are useless in the scope of the 

given task.  Formally:  Let < ~Root ← L > ∈ Fragment be  not 
completely  unifiable  with  any  system  expectation 
< ~Root ← Xi >.  Then  for  each  object  on  the  path  add 
maximum object penalty PM to P.

As it can be seen, the set of rules spans across a variety of 
situations  in  the  context  and  the  current  state  of  the  agent. 
However, in a dialogue there are situations in which we need to 
override the  flat  behaviour  of  the  above  rules  to  precise  or 
bypass  the  intention  detection.  The  following  are  additional 
rules we use to control the fragmentation process.

Rule 11 If  user's  utterance  dialogue  act  type  is  declarative, 
bypass  the  fragmentation  process  by  setting  intentional 
fragment as empty and data fragment as input semantics. The 
fragmentation  process  is  triggered  only  if  dialogue  act  is 
determined as imperative or interrogative [2].

Rule 12 If the system performed a RequestElicitation as its last 
dialogue move (e.g. the initial “How may I help you” prompt), 
then even if the user replies with a declarative sentence, the 
answer  should  be  considered  an  interrogative  response  and 
fragmentation process triggered.

In this section, we showed how an input semantics can be 
broken  down  into  two  fragments  which  represent  the  two 
updates the semantics is to make in the layers. Let us now have 
a look at the process of carrying out the updates.

B. Fragment Anchoring Process (FAP), and Information 

Combining

Each layer is a container of objects and relations (Fig. 2) 
which we formally can describe by a set of nine-tuple facts

FACT ( object1 , object2 , participant, intention, collection, cs, 
firstOccurence, lastUpdate, salience ) .

Each fact describes either an object or a relation between 
objects (the  object{1,2} parameters – if they are equal,  the fact 
describes an object). Each fact has been introduced by one of 
the  participants (user  or  system)  when  discussing  one  of 
intentions.  Furthermore,  objects  can  be  grouped  into 
collections,  e.g.  Train,  Bus,  and  Airplane are  all 
Transportation Means (see domain data model in Fig. 5). Each 

fact is assigned a confidence score (cs)  ∈ < 0 ; 100 > gained 
from  the  Automatic  Speech  Recognition  module  (ASR). 
Finally, the  firstOccurence,  lastUpdate, and  salience are time 
stamps that allow us to process corrections (“I didn't say train 
but plain”) and/or references (“the previous train”).

The FAP itself is used without modification by both of the 
layers to update their content. The algorithm assumes a shared 
space in which both participants may create and delete objects 

(however, this feature is used by the lower layer only – the 
system  does  not  contribute  to  the  upper  layer  with  any 
information,  whereas  uses  the  lower  layer,  for  instance,  to 
introduce results from a database). The FAP can be split into 
two  phases,  forward  and  backward  ones.  The  forward  
processing phase derives new objects from the already existing 
ones and changes them in accordance with the underlying input 
fragment. For example, if the existing original object is a Train 
departing from Delft (see Fig. 2) and the fragment updates this 
city to Rotterdam, then the forward processing derives a new 
Train object which shares the same subobjects, and recurrently 
traverses to the corresponding  City:Delft object to replace it. 
Afterwards, it clears the layer of redundant objects (i.e. those 
no longer in use), moving them to dialogue history or deleting 
them  permanently.  The  backward  processing  phase then 
merges equal objects. This is an important phase to cut down 
time costs of agent's deliberation.

Let us now focus on how values for newly derived objects 
are  determined  during  the  forward  processing  phase.  In  the 
general  case,  an object  value  is  an information type-specific 
result [3] – a new object can replace, extend, or generally infer 
from  an  old  object  (e.g.  we  can  replace  the  number  of 
passengers,  merge  ticket  discounts,  and  evolve  time  by 
combining  two  Time objects).  Therefore,  the  information 
model does not provide any “combinatorial pattern” but instead 
passes  this  responsibility  to  external  sources,  e.g.  libraries 
containing  data  types  definitions  (Table  1).  However,  two 
pieces of information can be in different mutual relationships. 
We distinguish three cases: 1) both pieces of information do 
not  have  anything  in  common,  2)  are  equal,  or  3)  overlap. 
Table 2 shows these relationships and their results for different 
types of updates a fragment can do in a layer. Finally, let us 
note  that  due  to  efficiency  reasons  the  information  model 

Train 2

Train 1

Departure City:"Delft". . .

Fig. 2. A layer content example - two trains departing from Delft.

TABLE I. TYPE DEFINITION.

Function synopsis

void *Create ( char *description )
Creates information based on its description.

int GetCardinality ( void *inf )
Returns the cardinality of the specified information.

bool Equal ( void *inf1 , *inf2 )
Returns true if both pieces of information are equal.

bool IsCombinable ( void **inf1 ; int nInf1 ; void *inf2 )

Returns true if inf2 can be combined with inf1 .

void *Combine ( void *inf1 , *inf2 )

Returns the result of combining inf2 with inf1 .

void *Negate ( void *inf )

Returns the negation of the specified information.

bool IsInstantiable ( void *inf )

Returns true if the specified information is instantiable.

bool IsContainedIn ( void *inf1 , *inf2 )

Returns true if inf2 is fully contained in inf1 .

bool IsUndefined ( void *inf )

Returns true if the specified information does not contain value.

char *ToText ( void *inf )

Returns TTS module processable form of the specified information.

void Destroy ( void *inf )

Destroys specified information.
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provides some common “built-in” types (String, Integer, and 
Float).

Remark (objects passing/overriding). FAP allows particular 
objects  to  be  transmitted  from  one  intention  to  another 
(passing) and eventually changed there (overriding). According 
to the fact definition, each object belongs to an intention. To 
pass/override an object (e.g. in a nested query), we need to 1) 
detect user's intention shift, 2) update the dialogue stack (see 
below), and 3) assign each newly created object in the lower 
layer to the intention on the top of the stack. This approach is 
in coherence with Grosz and Sidner's work [1].

C. Intentions Detection and Management

Following the working cycle, once the intention fragment 
has updated the upper layer, the most recent intention is to be 
recognized.  We  use  a  simple  template  matching  approach 
where each intention has its own pattern. It is assumed each 
two  patterns  are  mutually  non-interchangeable  (although  not 
necessarily disjunctive). Thus for each pattern in our set we try 
if it entirely matches the content of the upper layer (i.e., if the 
pattern injectively  projects  itself  onto the upper layer).2 If  it 

2 Thus, we do not compare the patterns merely with the user's last 
utterance but with the whole upper layer. Its content evolved by user's 

intention fragments observed in a dialogue. This way user's intention shift is 

recognized even if spanning across multiple utterances (turns).

does, we compute its score of match as a sum of saliences of 
objects involved. The extreme cases are handled as follows.

• If  no  pattern  matches,  it  implies  user's  intention  is 
unknown yet. The agent's behaviour then depends on 
the content of the layers – if they are empty, the agent 
narrows the  HowMayIHelpYou prompt,  otherwise  it 
starts  to process  what  is  contained  in  the layers  by 
following its deliberation processes.

• If more than one pattern match, it is chosen the one 
with the best score of match. As we do not consider 
that user's utterance may contain more dialogue acts 
(e.g. request to find a connection  and buy a ticket), 
this determination is sufficient – the agent sticks to the 
most salient intention detected in the upper layer.

However, before pushing any newly detected intention onto 
the top of the stack, we check if the currently topped intention 
dominates it [1], i.e. if the intention on top of the stack,  ITop, 
“needs” the current intention I to get itself solved:

( ITop DOM I )  →  push ( I ) .

If  the  domination  relation  is  not  met,  it  indicates  a 
permanent change in user's intention state resulting in popping 
the top-positioned intention out of the stack and retesting the 
domination.

( ITop ¬DOM I )  →  pop ( ITop ) ∧ re-test dominance .

Finally,  if  the  agent  decides  to  return  to  a  dominating 
intention,  e.g.  because  the  top-positioned  one  has  been 
satisfied, it only refocuses itself without popping the intention 
out of the stack. It is popped out if the user does not reopen it 
by his next utterance [4].

III. EXAMPLE, RESULTS AND COMPARISON

The  agent  with  the  information  model  described  was 
applied in a timetable domain (Fig. 5). There were N = 12 users 
interacting with the agent (Fig. 3). Before a session, each user 
read through on-line instructions on how to use the system and 
then called it by phone. One of the sessions is transcribed in 
Table  3  and  we  will  use  it  to  demonstrate  the  information 
model.  Furthermore,  Fig.  4  shows  some  of  non-trivial 
semantics processed by the information model. Let us note that 
“__Disagreement__”  is a directive to indicate either a yes-no 
response  (if  as  leaf  in  a  semantics)  or  delimit  a  disagreed 
portion of a semantics.

Let  us  now  focus  on  the  session  in  Table  3.  After 
welcoming  the  user,  both  of  the  layers  are  empty  and  the 
system  performs  a  RequestElicitation move  by  uttering  the 
open-ended  “How may  I  help  you”.  The  user  formulates  a 
declaration of wanting to get to Utrecht, semantically shown in 
Fig. 4a. The utterance consists of an empty  Time and atomic 
City objects. Rule 12 forces semantics to be split, and Rule 8 
requires the intention fragment to exist. It particularly consists 
of < ~Root ← Time > path only, as according to our heuristics 
the atomic City object cannot update the upper layer. The data 
fragment  consists  of  the  < ~Root ← City >  path  only,  as 
according to Rule 7 the empty Time object cannot be anchored 

TABLE II. INFORMATION COMBINING BEHAVIOR FOR DIFFERENT MUTUAL 
RELATIONSHIPS;  ⊕ IS THE COMBINING OPERATOR,  D DENOTES A DISAGREEMENT 
ADOPTED BY THE AGENT.

Rule (Condition → white-list [attributes] ; black-list [attributes] )

( Old ⊕ New ) =  ∅ →    ( Old ) ; —

Old and  New information  do not  have anything in common – they will 

exists in parallel as they cannot be combined.

( Old ⊕ New ) = Old →    ( Old ) ; —

New information is fully contained in Old information.

( Old ⊕ New ) ≠  ∅ →    ( Old ⊕ New ) ; —

General combination of agreed Old and New information.

( Old ⊕ ¬New ) =  ∅ →    ( Old )D ; —

Disagreed  ¬New object  completely  contradicts  Old object,  hence  Old is 
necessary to be marked as disagreed.

( Old ⊕ ¬New ) =  Old →    ( Old ) ; —

Non-disagreed portion of New supports Old.

( Old ⊕ ¬New ) ≠  ∅ →    ( Old ⊕ ¬New ) , ( Old ⊕ New )D ; —

General combination of disagreed ¬New with white-listed Old information.

( ¬Old ⊕ New ) =  ∅ →    — ; ( ¬(Old ⊕ ¬New) ) , ( ¬New )D

New partially contradicts with ¬Old.

( ¬Old ⊕ New ) = ¬Old →    — ; ( ¬(Old ⊕ ¬New) ) , ( ¬New )D

New partially contradicts with ¬Old.

( ¬Old ⊕ New ) ≠  ∅ →    — ; ( ¬(Old ⊕ ¬New) ) , ( ¬(Old ⊕ New) )D

General combination of agreed New with blacklisted ¬Old information.

( ¬Old ⊕ ¬New ) = ∅ →    — ; ( ¬Old )

Disagreed ¬New information does not contradict with blacklisted ¬Old, i.e. 

both can exist in parallel.

( ¬Old ⊕ ¬New ) = ¬Old →    — ; ( ¬Old )

Disagreed  ¬New is  a  superset  of  blacklisted  ¬Old,  i.e.  both can exist  in 

parallel resulting in a union of disagreements).

( ¬Old ⊕ ¬New ) ≠  ∅ →    — ; ( ¬Old )

General  combination  of  disagreements  is  replaced  by  both  of  them 

coexisting in parallel, resulting in a union of disagreements.
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into the lower layer. Hence, after anchoring U1, the upper and 
lower  layers  contain  the  < ~Root ← Time >  and 
< ~Root ← City > information only, respectively.

Utterance U2 is anchored into the lower layer only as there 
is  only  a  single  object  < ~Root ← Criterion >  with  zero 
cardinality recognized and neither of Rules 11 or 12 triggers. In 
U3 (Fig. 4b), interrogative act triggers Rule 11. The intention 
fragment  then consists  of  both of transportation means  only 
(heuristics  prevents  the  atomic  Criterion object  from  the 
intention fragment).  The data fragment  has two possibilities, 

however:  1)  complete  semantics  with  penalty  P =  2·Pm + 
2·Sal(Criterion) (as Rule 2 yields minimal penalty Pm for Bus 
and  Train,  and  Rule  1  yields  the  penalty  of  the 
< ~Root ← Criterion > path salience),  or 2)  Criterion object 
only with penalty  P = 2·Pm + 4·Sal(Criterion) (Rule 2 yields 
minimal  penalty  Pm for  Bus and  Train,  and  Rule  4  twice 
penalizes the < ~Root ← Criterion > path for being not part of 
the fragment). The latter option is not evaluated as better than 
the former one, hence the non-atomic Bus and Train objects are 
contained in both of the fragments. The following utterance U4 

is  of  trivial  nature  similarly  as  U2,  i.e.  no  fragmentation  is 
needed and the semantics updates the lower layer only.

Utterances U6 and U7 are spoken in similar dialogue states 
(the common aspects are agent performing  RequestElicitation 
move and user responding with an interrogation), hence let us 
proceed to U7 we already referred to earlier. Rule 11 makes U7 

a subject of fragmentation. The intention fragment is created by 
Rule 8 and consists of < ~Root ← Time > path. There are two 
options for the data fragment: 1) < ~Root ← Time > which, by 
Rule 1, is treated as a reference to the Train object introduced 
by the agent in S7, and the option gains penalty P = Sal(Train), 
or 2) empty which is penalized by Rule 4 (Train object could 
be used to resolve a reference, however, the semantics current 
split does not allow for it), and gains penalty P = 2·Sal(Train). 
For completeness sake, let us note that the agent applies object 
passing on the referred  Train,  transmitting it  to the “arrival-
time” submissive intention for further handling. The rest of the 
dialogue is then processed similarly.

Note that the set of rules proposed in Section 2A is derived 
from our  corpora  of  76  recorded  human-human  interactions 
focused  on  timetable  information  retrieval,  nonetheless,  not 
each of the rules triggered in our example.  The approach of 
encoding meta-knowledge into rules is, however, beneficial for 
further extending of the information model.

Let  us  now  compare  the  information  model  with  the 
McGlashan's Semantic Interface Language (SIL) [5], one of the 
well known methodologies for representing and manipulating 
dialogue  context  information.  Table  4  gives  a  structured 
overview of mandatory features of these two approaches. The 
main difference is in the way user’s input utterances are dealt 
with. While the Semantic Interface Language attempts to store 
a  whole  dialogue  in  its  raw  form  (implying  continuous 
reevaluation of the whole dialogue), our approach attempts to 
decompose each utterance and store extracted intentions  and 
data  at  separate  places  (thus  avoiding  any  time  consuming 

TABLE III. DIALOGUE BETWEEN THE SYSTEM (S)  AND A USER (U). ERRORS 
INTRODUCED DURING USER'S UTTERANCE PROCESSING (ASR  +  PARSER)  ARE 
ITALICIZED.  THE LAYER COLUMN INDICATES WHICH LAYERS THE UTTERANCE 
UPDATES.

Agent Utterance Layer

S1 Welcome in the Simple Timetable System.

How can I help you?

–

U1 I need to get to Utrecht. U, L

S2 Please say me more. –

U2 I need a cheap connection about eleven. (Input: Cheap) L

S3 Which transportation means do you prefer? –

U3 Cheap, so bus or train? U, L

S4 What time approximately would you like to depart? –

U4 About eleven. L

S5 I  understood  you  want  from Delft  to  Utrecht  by  the 
cheapest bus or train departing at eleven. Please confirm 

this or say your correct request.

–

U5 Yes. –

S6 The next cheapest bus from Delft to Utrecht leaves at 

3:30pm, train at 1pm, and bus at 1:30pm. Can I help you 

any further? Do you want to order a ticket now?

L

U6 What are the prices? U, L

S7 The ticket  for  bus departing at  3:30pm from Delft  to 

Utrecht costs 10 coins, train at 1pm 11 coins, and bus at 

1:30pm 11 coins. Can I help you any further? Do you 
want to order a ticket now?

L

U7 No. When does the train arrive? U, L

S8 The train departing from Delft at 1pm arrives in Utrecht 
at  2pm. Can I help you any further? Do you want to 

order a ticket now?

L

U8 And the early bus? (Input: Bus) U, L

S9 The  bus  departing  from  Delft  at  3:30pm  arrives  in 
Utrecht at 4pm, and 1:30pm at 2pm. Can I help you any 

further? Do you want to order a ticket now?

L

U9 Yes. –

S10 Ticket ordering.

Uhu.

–

U10 [ Timeout. ] –

S11 How many persons will be traveling? –

U11 One. L

S12 Do you have any discounts? –

U12 No. –

S13 Do you want to order  a full  prized bus ticket for one 
person  leaving  Delft  at  1:30pm,  arriving  Utrecht  at 

2pm? The total price is 11 coins.

–

U13 Yes. –

S14 Thank you for your order.

How can I help you?

–

Task 1. Try to find the cheapest connection (bus, train, and/or airplane) 
that goes to Utrecht at 11 o'clock. If you cannot find an exact match, try 

to find the one with the closest departure time. Please write down the 

exact departure time of the connection you found.

Task 2.  For connections of your choice from Task 1, try to find their 

total travel time. You might need to use your math skills to find out. 
Please write down the exact time you have found.

Task 3.  Try to buy a ticket for  you. Remember you are on buying the 

cheapest one. Please write down the total price you have been told by 
the system.

Fig. 3. Tasks scenario each user had to complete.
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projecting unlike in the Semantic Interface Language when 
constructing  a  map  of  salient  objects).  These  different 
backgrounds imply differences in other key features  like the 
way both approaches can treat corrections or the way intentions 
can be detected in a dialogue.

IV. CONCLUSION

This paper aimed to describe and demonstrate our approach 
to collaborative dialogue information representation based on 
Grosz  and  Sidner's  work  on  task-oriented  dialogues.  We 

presented a set of general rules for splitting and evaluating an 
input  semantics.  Splitting  a  semantics  into  two  fragments 
facilitates  intention  detection.  Furthermore,  we  also  showed 
our approach to information combining – a similar approach 
can be found in RawenClaw dialogue manager [6], however its 
combinatorial  capabilities  are  limited  by  not  assuming  two 
pieces  of  information  can be partially  combinable.  (Another 
difference  is  in  its  custom  types  being  bound  with  the 
framework.) Last but not least, we demonstrated our approach 
and compared it with the SIL.

REFERENCES

[1] B.  Grosz  and  C.  Sidner,  “Attention,  Intentions,  and  the Structure  of 
Discourse,” Computational Linguistics, vol. 12, pp.175-204, Sep. 1986.

[2] A. Nguyen and W. Wobcke, “An Agent-Based Approach to Dialogue 
Management in Personal Assistants,” ACM International Conference on 
Intelligent User Interfaces (IUI 05), pp. 137-144, Jan. 2005.

[3] J.  Gustafson,  Developing  Multimodal  Spoken  Dialogue  Systems  – 
Empirical  Studies  of  Spoken  Human-Computer  Interaction.  KTH, 
Department of Speech, Music and Hearing, Stockholm, 2002.

[4] C. Rich, C. Sidner, and N. Lesh, “COLLAGEN: Applying Collaborative 
Discourse Theory to Human-computer Interaction,” AI Magazine, vol. 
22, pp. 15-25, Dec. 2001.

[5] S. McGlashan, “Towards Multimodal Dialogue Management,” Twente 
Workshop on Language Technology (TWL 96), pp. 1-10, 1996.

[6] D.  Bohus  and  A.  Rudnicky,  “The  RavenClaw  dialog  management 
framework: Architecture and systems,” Journal of Computer Speech and 
Language, vol. 23, pp. 332-361, Jul. 2009.

TransportationMeans

Bus: –

Time-table

Time-table: –

Ticket

Ticket: –
TransportationMeans

Airplane: –

TransportationMeans

Train: –

PersonCount

PersonCount:Int

Discount

Discount: Enum

Criterion

Criterion: Enum

Arrival

Arrival: –

Price

Price: Int

Departure

Departure: –
City

City: String

Time

Time: Set
~root

~root: –

1

1

1

N

1

N

1

N

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

Fig. 5. Timetable domain data model.

Fig. 4. Utterance semantics processed by the information model.

TABLE IV. COMPARISON WITH MCGLASHAN'S SEMANTIC INTERFACE LANGUAGE.

Feature Semantic Interface Language approach Two-layered approach

Processing technique Absolute – with each utterance, the whole interaction history is 
projected  onto  a  temporal  working space  of  beliefs  to  extract 

what the objectives in a dialogue are.

Incremental  –  each  utterance  immediately  updates  the  current 
state of  beliefs,  held  permanently  throughout  a  session  in two 

parallel layers.

Corrections Native  feature  of  the  framework.  Once  the  user  indicates 

incorrect  information,  previously  correct  alternative  becomes 

salient.

Native feature of the framework. Once the user disagrees  with 

some information, this information is removed from either of the 

layers without any equivalent becoming salient.

Intentions recognition None – passed to additional processing units. Native feature of the framework.

Information detail 

level

Information  represented  using  nested  structures.  Does  not 

recognize collections in a native way, however is able to collect 
data based on their close salience.

Information  represented  using  nested  (semantic  network-like) 

structures.  Natively recognizes  and represents each information 
as a collection of objects.

Capability to represent 
negative information

Not supported in a native way. Supported in a native way.

Applicability Task-oriented dialogues. Task-oriented dialogues.

__Declaration__ (

    ~Root (

        Time-table (

            Departure (

                Time : —

            ) ,

            Arrival (

                City : “Utrecht“

            )

        )

    )

)

(a) I need to get to 

Utrecht.

__Interrogation__ (

    ~Root (

        Criterion : “cheap” ,

        Bus ,

        Train

    )

)

(b) Cheap, so bus or 

train?

__Interrogation__ (

    ~Root (

        __Disagreement__  ,

        Train (

            Arrival (

                Time : —

            )

        )

    )

)

(c) No. When does the 

train arrive?
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