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Abstract—This paper deals with describing of mathematical
model of heat transfer through the wall and simulations, which
were obtained by MATLAB Simulink. Model is a part of complex
model of heating system. During our model design research we
solve partial differential equation system and problem with
inverse Laplace transform occurs, because of function of real
argument from image function of complex argument is not
define.
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L INTRODUCTION

The goals of the sustainable development in the field of
heat production and supply can only be achieved by automatic
process control using digital controllers and others control
devices, which perform advanced control algorithms base on
the intelligent control methods.

The classical verified approach to the heating process
control is using of outdoor temperature compensation, which
provides for the optimal temperature of supply water to heating
bodies according to outdoor temperature. To achieve this
requirement, it is necessary to find a equilibrium between the
supplied heat output and heat losses, i. e. to ensure optimum
temperature of heating water. This is realized by such methods
to the water temperature in the heating system was controlled
by so-called equithermic curves. [1, 2] For that reason it is
necessary to design partial models of heating system, including
model of heat transfer through the wall, model of heating body
and equithermic curves. Sub-models implemented into the
complex model will be the basis for heating control and
different controller can be implemented and compared.

The model of heat transfer dynamics through the wall was
designed on the base of mathematical describing of the energy
balance for the elementary layer of plane wall and problem of
solving system of partial differential equations by Laplace
transform occured.

II.  THE BASIS FOR MODEL DESIGN

A. Heat transfer dynamic throught the wall

For design of the heat transfer dynamic model through the
wall we consider a plane wall, where the wall is considered as
continuum with continuously distributed thermal resistance and
capacity. We choose elementary layer with thickness dy in the

E-ISSN: 2074-1278

plane wall with thickness d,, at distance y from the heated
surface (Fig. 1).

Let’s temperature of the heated wall surface is 6,4,
temperature of the refrigerated wall surface is 6,, and
temperature of elementary layer is 6,. The heat flow supplied
into heated wall surface is @, and the heat flow taken away
from refrigerated wall surface is @,. The heat flow @ inputs
into unit surface of layer dy and the heat flow @ + d @ outputs
from it.

B. Mathematical description of energy balance

According to [3] the heat energy doesn’t originate
either doesn’t dissolve in considering elementary layer of the
wall. Then difference of input heat and output heat in the layer
has to be equal to the time variation of the energy in layer.
Let‘s c is specific heat capacity (specific heat) and p is volume
weight of the wall material, then:

O-(@+dD)=Z(cp-0, ). )

Considering that heat flow d@is:

do = a—@dy ) 2)
oy

A

O] O+dd ()

w1 w w2

Fig. 1. Plane wall
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If specific heat capacity and volume weight of the wall
material are constant, then:

0@ a8,

——=c-p-—x, 3
o P 3)

According to Fourier’s law the heat flow is directly
proportional to the temperature gradient

D=-1"2w, )

where A is heat conductivity coefficient of the wall
material.

Partial differential equations (3) and (4) with relevant initial
and border conditions completely describe non-stationary one-
dimensional heat flow.

It is considerable for automatic control the dynamic
dependence of the control deviation according to changes of
variables which have effect on the deviation. For that reason,
we express dependent variables by their values and their
increments as:

D =D+ AD, 6,=0,,+A46,. (5)

By substitution (5) to (3) and (4) we get:

040,

_%_M_@:c.p(%Jr%j:c — (6)
oy oy ot ot ot
Dy +AD =—1- O, 046, (7)
d
For initial steady-state is valid:
%, ®)
oy

Q)O =1 aawO =1 9‘4720 _ ewlo =1 ewlo _ HWZO , (9)
oy d, d,

and then by substitution (8) to (6) and subtraction (9) from
(7) we get partial differential equation system of heat transfer
dynamic through the wall:

_GA@:c_p.GAHW’ (10)
Oy ot
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A = -3 %40 (11)

oy

To simplify computation, we express each of dependences
in non-dimensional form (relative changes of variables, i. e.
changes compared with initial values of variables):

x¢:A¢, xW:A;OW. (12)
Dy 10 = Oa0

W

Then equations (10) and (11) will be:

_ax_d7:c‘p.(0w10_9w20)axw , (13)
Xp=—A (ewlo - HWZO) gy . (14)
D, o

According (9) it is possible to express:

9W10 _HWZO :d_w (15)
@, A’
and then
ajc_@Jrc.p.ﬂ%:o) (16)
oy A ot
xp+d, Zor _g. (17)
dy

C. Laplace transform

By the Laplace transform of partial differential equations
(16) and (17) and the other mathematical operations it is
possible to get a system of equations, which describes
dependence of non-dimensional variables for heat flows @;, @,
and temperatures 6,,, 6,o. [4]

We substitute d,, and 7T, as thickness 7 and time 7 for
exclusion of constants:

n==-, (18)

(19)
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Let system of partial differential equations (16) and (17) is
system of partial differential equations of variables 7, =

Ky | Oy _ (20)

on or

xg + 2500 @1
on

Using Laplace transform defined with complex argument p:

X(.p)=[x(n.pre "dz (22)
0

we find image of function of real argument 7 with initial
condition xg, (77,0) =0 (see substitution (19)) and we get:

dx, -
—2+p.Xp(p)=0
dn

= dX
X (p)+ 0 =
dn
Secondly we use Laplace transform defined as

X(g.p)= [ X(n.pyedny (23)
0

of real_ argument 77 and c_omplex argument ¢, initial
condition X, (0, p)= X,1(p), Xo(0,p)= Xg(p):

4 Xp—Xp +p.)_(,9w =0

Laplace transform image of partial differential equations
system is :
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According to inverse Laplace transform (23) complex
argument g we get:

X, :cosh\/;.)?q,l —\/;.sinh\/;.)?gwl

= sinh — —
Xoy=— \/;.X¢l+cosh\/;.)(gwl,

N

Let denote )?(b = )?4,2 and X, =Xg,. And
simultaneously due to the fact that the unknown is heat flow
taken away from refrigerated wall surface @, and temperature

of the heated wall surface 6,,, we express Xp,a Xy, . We

get:

_ 1 _ _

Xpr=——=Xgp—~/p1ghp.X,, 24
@2 cosh\/; @1 \/;g\/; w2 (24

— tgh\/_ - 1 -

Xy = Xgp + X, 25
owl x/; o1 coshp w2 25
If we denote:

Gi(p)=——. 26)
cosh+/(p)
Gy(p)=+(p)-1ehy(p) 27)

Gg(p)=—tghg- (%)

Equations (24) and (25) will be: [3, 5]:

Xo2(P)=Gi(p) Xan(p)-Go(p) Xpa(p) (29

Xou(p)=Gi(p) X0 (p)-Gi(p) Xpo(p)  (30)

Next problem is to find function which correspond to (29)
and (30) using inverse Laplace transform with complex
argument p. View of the fact, that transfers function (26) - (28)
are not as images defined we have to use Taylor series:

3 xS x’/

sinhx=x+—+—+—...,
3 5 7!
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2 4
X X6

coshx=1+—+—+—..,
2/ 4/ 6!

and we get transfer functions:

Gi(p)e— L= 1 _ 24
S eoshyp [p2 [yt 2412pep?]
T
Jr’
sinh\/; {\/;4- 6 4.(6p+p2)
Gz(P):\/_ =

p p = =,
cosh+[p 1+\/?+\/§ 24+12p+p

2

2

P P

G3pzsinh\/; 1 (P)'l+6+120:
coshyp /() lp)" |, P, P
2" 24

_120420.p+p°
La+12.p+p2)5

Using substitution according (19) p =T,.s

24
G- (31)
12 24 +12T,5 + T,
2
Gy(p)=_ 4l6Ts+T5?) , (32)
24 +12T,s + T,s*
120 +20.7,5 + T,
G = £ T, 33
(e) (4+12.75+ 7,575 ¢
2
where T :%is constant depended on wall
properties.

III.  APPLICATION OF SOLUTION OF PARTIAL DIFFERENTIAL
EQUATIONS FOR SIMULATION MODEL

Relations expressed by system of partial differential
equations (29) and (30) can be shows as a block diagram in fig.
2.[3,7]:

Equations (16) - (17) or (20) - (21) still need to be
supplemented by the equations of heat transfer on both sides of
the wall surfaces.
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In dimensionless form for internal surface area of the
equation:

X
Xp1 = Xp1 — K1 Xgy1» (34

where x4, includes external conditions on heat flow
a,d,,
A

For external surface area will be valid equation

changes and x| =

;
Xp2 = Xpo T KaXgys (€R)

where xq, includes external conditions on heat flow
a,.d,
A

Finally, simulation model of heat transfer dynamic through
the wall was created based on the block diagrams in fig. 2 and
3. in Matlab Simulink. Problem of transfer functions (31), (32),
(33) specifying was to system (29) - (30) was stable. If we used
more terms of Taylor series system was unstable. Transfer
function in the forms (31) - (33) have roots negative and
therefore is stable. [7, 8, 9,10]

Block diagram in fig. 2 will be extended using (34), (35) to
ensure impact of heat flow supplied into heated wall surface @,
and @, and impact of external conditions.

changes and «, =

G,(s)

S
xW
e—k—(i)e G () f—A—e"

Fig. 2. Block diagram based on the (31) - (33)

X X
- G.(s) e(? 2
=
QDN
x*d,2
G,(s) o 1/x,

Fig. 3. Block diagram with xp,, xp,
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Fig. 4. Simulation model heat transfer dynamic through the wall.
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Fig. 5. Simulation results: internal temperature (9w10 , external temperature HWZO , temperature of the heated wall surface O,

wall surface sz with input conditions parameters ¢, p, d,,.

IV. DISCUSION AND RESULTS

Next we can present some results of simulations. For the
simulation model in Matlab (see Fig. 4) were used the
following real parameter values measured on typical wall of
building: wall thickness d,,=0,52 m, where wall consists of
internal plaster with thickness 0,015 m, external plaster with
thickness 0,015 m, internal isolation 0,15 m and external
isolation 0,05 m and finally thickness of brick 0,29 m. Volume
of wall material p=1400 kg/m’ and specific heat capacity
¢ =840 J/(kg.K). Thermal conductivity is 4 = 0,2 W/(m.K) and
also consists of thermal conductivities of individual wall layers.
Outdoor temperature is simulated as sine wave with frequency
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1000 1200 1400 1600 1800x 10EZ

w1 » temperature of the refrigerated

2n/86400 rad/s and amplitude 5°C. Internal requested
temperature is constant 20°C. Fig. 5 captures 2 days, i. e.
172800 sec. Behavior of temperatures corresponds to simulated
sine wave, but internal wall layer is refrigerated by about 3
degrees of Celsius.

In Fig. 6 is similar situation, but wall consist of wood layer
without isolation layers. As we can see of heat losses appeared.
Refrigerated wall surface has higher temperature due to higher
heat transfer through the wall. And on the other hand, heated
wall surface has lower temperature as requested internal
temperature is.
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Fig. 6. Simulation results: internal temperature leo , external temperature szo , temperature of the heated wall surface 6,

wall surface sz with input conditions parameters ¢, p, d,,.

CONCLUSION

To summarize, the first part of paper deals with solving of
partial differential equations system, where problem of solution
inverse Laplace transform appears, because transfers function
(26) - (28) are not as images defined. To solve this problem we
have to find Taylor series of image function as a result of first
inverse Laplace transform. These results are in the used in
second part of paper where were used as transfer functions for
simulation model. Next problem was to find such number of
terms of Taylor series to system was stable.

There is described creation of model by Matlab Simulink
and there are presented obtained simulation results. Basic
model in Fig. 3 had to be extended by for example
standardization of input temperature variables or unit
conversion from Celsius to Kelvin scale, etc.

The designed model of heat transfer dynamic through the
wall together with model of heating body and with model of
equithermic curves will be implemented into control system,
will be tested and will be compared with real heating system in
future work.
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