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Abstract—The linear process of design-engineering-

manufacturing is nowadays obsolete. Even DFX (Design For X) 

methodologies are often replaced by Simulation for XFD (X 

being also Design) approaches. Optimization is also often applied 

before design. For instance, engineering design optimization of 

mechanical structures is nowadays essential in the mechanical 

industry (automotive, aeronautics ...). But optimizing mechanical 

structures cannot be efficient without taking in account other 

phases of the design-manufacturing process. In some cases, 
optimization is only based on trade kwnowledge. 

Engineers must then design parts or assemblies that are a 

better compromise, between mechanical and functional 
performance, weight, manufacturing costs etc.  

In this paper, after giving an overview on the different 

disciplines in design optimization of mechanical structures, we 

propose some trends to take into account the trade knowledge in 

the optimization/design phases.  

We propose an integrated approach to optimization in a 

functional design process with a methodological point of view. 

We present three different industrial cases of optimization on 

three examples : one in mechanical structures optimization, on 

based only on trade knowledge and the third mixing calculus and 
knowledge.   

Keywords—engineering, design, optimization  

I.  INTRODUCTION  
The optimization of various processes involved in the 

product life cycle management becomes more and more 
crucial. [1] and [2] show that the first phases of design take 
over 5% of the design process, but involve more than 75% of 
the total cost of the product.  We can deduce that 
optimization in the design phase are essential  in the product 
life cycle. 

The research of the best compromise between economic, 
technological and mechanical parameters has always 

been the objective number one of the mechanical engineer. It 
has been for a long time based on a try / error approach. The 
development of techniques for solving mathematical problems 
and their implementation in algorithms change the context. It 
leads to new approaches and methodologies in the very first 
design phases. 

As we have illustrated in [3], the classical ("manual") 
stages of design (achievement of one or several CAD 
models from the experience of engineer which 
respect to functional specifications, and the general 
environment of the structure, followed by the implementation 
of various calculation models (static, vibration, 
dynamic etc.) that assess the various design criteria of the 
structure and several iterations to change the design in order 
to meet the specifications and optimize the structure) is more 
and more often replaced by an approach integrating an 
optimization phase, especially the optimization of mechanical 
structures.  

It is supposed to take into account  
design requirements and constraints (manufacturing 
constraints, constraints related to business processes, thermo 
mechanical performance, weight requirements and cost, etc.) 
 in agreement with all project stakeholders. The engineers can 
then automatically reproduce  through modeling and 
numerical optimization  software, the work that 
a designer achieved manually, by adding many advantages  : 

- scanning a wider design space,  
-  possibility to implement Design of Experiments (DOE) 

and thus create approximation functions if needed, 
- opportunity to reach an optimum by using more efficient 

algorithms. 
 For instance, these « automatic » 
methods can find optimal solutions for the optimization of 
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mechanical structures even if [4] think that, « in real 
life, identification of the optimum design of an industrial 
problem is often not possible because of the size of the 
problems and lack of knowledge». That's why in many cases 
just a part of the optimization problem is processed, for 
example, the design optimization of mechanical structures. 
In the "real life" it is very dangerous to leaving aside the 
influence of optimization on the manufacturing process.  
Obviously, the results of a mechanical structure can lead to a 
more costly product due to a complex manufacturing process, 
or even, the impossibility to manufacture. 
But optimization cannot only be considered for mechanical 
structure. We illustrate three cases of trade optimization, one 
on process optimization, one on mechanical structures and the 
last on a specific manufacturing process, additive 
manufacturing. 
After a brief presentation of methods and techniques used for 
solving optimization problems, we take the example of a heavy 
hook to show the mass gains. We do not look at the influence 
on manufacturing process in this kind of optimization as we 
have shown it in [3]. 
We then give just some ideas about the optimization of a 
process in the case of the forging process. 
And we explain the importance of taking into account the 
entire manufacturing process with an example about additive 
manufacturing. 

II. OPTIMIZATION PROBLEMS 
In this section, we give an overview of two ways to optimize a 
product or a process. Before describing some approaches, we 
introduce a "global" vision of the design-manufacturing that 
we call "synthetic", based on the fact that local optimization 
are not always improving global performances. 
The main one in design is based on the mechanical structures 
optimization and for example deterministic and probabilistic 
methods or evolutionary algorithms. After presenting the main 
methods, we do not detail the knowledge methods that we 
illustrate in a next section on an example. 
 

A. A "synthetic" point of view 

 
Our research intends to define a global model which places the 
process module in the center of the DMU. Process module 
manages proceeds which modify the product. Our 
methodology is working on a hierarchical framework presented 
[5]. This framework allows a top-down approach by defining 
functions in a high abstraction level and refining them in a low 
abstraction level.  
The 4 ‘P’s are defined according to  

- Project module represents all the entities relating to the 
organization, the resources (human and equipment). Project 
module is defined in the Application Environment. 
- Product module represents all information which 
characterizes product contents in a systematic way. A product 
has different representations according to the predefined 
abstraction levels. 
- Proceed represents abstracted definitions related to a 
sequence of physical or virtual steps which lead to the 
modifications of the product. 
- Process represents a succession of tasks whose 
implementation contributes to the modification of the product.  
 

B. Optimization problems categories 

 
Different categories of optimization problems depending on the 
objective function (for example, minimize the mass) and the 
constraints (for example, to support forces) can be defined : 
- Linear programming problems which are optimization 
problems with only linear objective function and constraints. 
This is easy to solve according to the linearity of the 
functions used. 
- Quadratic programming problems are  optimization 
problems that have an objective with  quadratic terms. The 
constraints in this case are linear functions made by 
equalities or inequalities. 
- Non-linear optimization problems are optimization problems 
with objective functions  and / or constraints having all 
some non-linearity. 
- Stochastic optimization problems are optimization problem 
using random variables. 
 
We can also classify the optimization problems depending 
on the nature of the variables : discrete optimization 
method, continuous  optimization methods and mixed methods 
(discrete and continuous variables). 
We present in the following paragraphs the most commonly 
used methods  for several optimization problems. Fundamental 
and mathematics are not discussed here, details are 
available in the specialized literature [6,7,8]. 
 
Methods for solving optimization problems can be divided into 
two major groups: deterministic and stochastic methods. 
Deterministic methods are more efficient when the evaluation 
of the objective function is very fast or when the function 
is known. The most complex cases such as problems 
with many local optima (multi-modal problem), or the 
case of non-differentiable functions are 
 often managed by stochastic methods. 
 
The enumerative methods are used to find all solutions in a 
given domain, mainly for discrete variables. In some cases, 
methods are used to divide a continuous domain in order to 
apply enumerative methods. These methods have the advantage 
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 of reaching  the global optimum  only by calculating the 
objective function. They need a significant number 
 of calculations of the objective function so they are  often 
 used to refine the solutions of other optimization methods.  
 
The analytical methods are are called "sensitivity analysis" and  
need continuous and differentiable functions. Their advantage 
is to reach the global optimum for convex problems. The 
results are highly dependent on the initial choice (initial 
design). In non convex problems, analytical methods find most 
of the times a local optimum and other methods are used 
to approach  the global optimum. 
The probabilistic methods are used to solve  optimization 
problems with several local minima. Because of using random 
processes, several executions of the same program can give 
different solutions. These methods are numerous 
with several variants, we present here three of the most used. 
The evolutionary algorithms are based on evolution.  The 
principle of evolutionary algorithms is based on three 
operators: selection, crossover and mutation to find a 
 population of individuals with the best values for the objective 
function.. 
Simulated Annealing method is based on an analogy 
of the annealing procedure in metallurgy (slow cooling of 
the metal to obtain a  metal without default). In 
optimization, the annealing procedure defines  the objective 
function  as an energy which can reach a minimum (cooling 
process).  
For [9], the neural networks are like a computer simulation 
model, having the capacity for adaptation, learning and 
generalization  of information. Neural networks in optimization 
serve to interpolate between input data for learning and then 
generalize the knowledge. In more practical terms neural 
networks are non-linear statistical data modeling or decision 
making tools.  

C. Knowledge based optimization 

 
We also consider that to implement adapted CAE systems, we 
must take into account trade knowledge. It is by an integration 
of trade knowledge in the CAD system or in the specific 
developed software modules that we achieve our goal to 
improve the performance of the user. 
 
Many work have been done on knowledge management. We 
emphasize on two main points : 

 
- Ontologies : we think that it is very powerful to base the work 
on ontologies. This means that during the analysis phase of a 
new industrial problem, we use our internal tools (developed in 
EEP4LM project) to define the domain ontology. This ensure 
that the things are well defined between the end-user and us. 
We don’t develop this point in this paper. 
 

- - We also introduce the notion of Graphonumerical Numerical  
Parameter  (GNP). The computer representation is 
‘‘action_object(constraint/parameter)’’. A user can define a 

GNP like ‘‘create_hole(-through)(diameter)’’ which is the 
translation of ‘‘create a through hole with diameter’’ (a specific 
syntax has been developed for an intuitive use [10,11]). This 
GNP is linked to a scenario which defines this GNP. When a 
GNP is applied, the system constructs an implicit parameter 
which is the link between GNP and trade rules or constraints. 
For the precedent GNP, an implicit parameter called 
‘‘diameter_- hole’’ is created. A link is done with the SBC if a 
rule or a constraint has a similar parameter. The following 
section presents how a GNP is decomposed according to the 
hierarchical architecture. A GNP has a different representation 
in each level of the hierarchical architecture of the KBS.  

 
When a new application is taken into account, we use P4LM 
approach and specific tools. 
 
First, we study the different processes and define the ontology. 
Then we look at commercial tools used (or that could be used) 
and specific developments to do, according to our methodology 
and our tools. 
 
Even if we study the overall numerical chain, to be sure not to 
attain a local optimum which does not contribute to a global 
optimum, we are mainly interested in well closed steps of the 
design process in which the trade knowledge modeling can  
lead to important gains in quality, cost or delay. 
 
This kind of application, with a development effort between a 
few days and weeks, depending on the complexity of the 
product and data, produces significant benefits, including: 
quote achieving very quickly (virtually of instantaneously), 
reliability of choices (quote is validated by the entire chain, 
including simulation, and not just vaguely evaluated), if the 
contract is obtained, the design is "almost" already complete.  
As a consequence, the formalization process (P4LM, ontology) 
is very interesting for the company, even if the software itself 
is not implemented. Many examples show that the design / 
manufacturing  process, assumed perfectly controlled by the 
firm, is only very imperfectly known and often has different 
implementations based on operators or shadow areas. This 
preliminary study may make improvements, sometimes even 
without software development. It is important to remain 
attentive to the consistency of approach compared to the global 
numerical chain and developments to undergo software 
(changes in materials, new practices, standards...). 
In order to work with small and medium sized firms, we have 
developed a collaborative tool (Adhoc Collaboration). Its 
description is not a purpose of this paper, but it is interesting to 
know that this collaborative tool (asynchronous and 
synchronous …) has been immediately adopted without any 
problem even by very small firms. 
 
For example, CAD4SIM (CAD FOR SIMulation) [12] defines 
rules  in order to help industrial firms, to better design in order 
to better simulate products. So, we define rules, to be used 
during the design process (automatically or manually), that 
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ensure correct simulation. Let’s take a first simple industrial 
case. 
 
Figure 1 illustrates a zone which does not respect some of our 
rules (a patch must have 4 sides, two patches must not 
overlap). The finite elements model presents some bad 
elements and some equivalence problems that have to be 
solved by the simulation specialist. A consequence can be that 
new bad elements can be created. 

  

 
 

- Figure 1 : the initial design 
 

Figure 2 shows modification using CAD4SIM rules. The FEM 
model is clearly of better quality. 

 
 
 

 

 

 
- Figure 2 : after the application of rules 

 

 
 
 
 
 
 

III. MASS OPTIMIZATION EXAMPLE 
 If we consider mechanical engineering, we can 
consider three major kind of design optimization : Parametric, 
Geometric, Topological. 
 

A. Parametric design optimization (Size)  

Shapes are parameterized by variables like sections, 
thicknesses, diameters, length etc. This optimization does not 
give the possibility to explore new forms but it is only used to 
size the existing forms.  
The optimization problem is for example to minimize the 
structural mass of a beam allowing a limited vertical deflection 
of the loading end.  The displacement is limited to 2.0mm. All 
thickness variables have a lower bound of 1mm and an upper 
bound of 3mm. 

B. Geometric design optimization 

Geometric design optimization is used to vary the boundaries 
of an original form without changing its topology. Changing 
the boundaries of the geometry requires updating the mesh. 
This remeshing is produced in the optimization process. 
The optimization problem is for example to maximize the 
stiffness of a plate by changing the shape of a curve. The 
thickness of the plate remains fixed. We want also to have the 
X displacement of the application’s point of the force below 
0,1mm and the Y displacement below 0,08mm.  

C. Topology optimization 

The variable is the topology of the part. In this kind of 
optimization it may have appearance or disappearance of holes, 
reinforcement or changes in connections between elements.  
Topology optimization  is  an appropriate method for the 
early design phase of a new project because  it allows 
exploring new design concepts for structures. 
 
 
D. Industrial example : a hook topology optimization 

 
This example is easy to understand (we have illustrated more 
complex examples in [3])but it is very interesting because it 
comes from a heavy hook (8 kgs) to an optimized hook (5 kgs) 
without influencing too much the manufacturing process 
(foundry). 
The examples below show the hook in its "real life", the 
optimization process (topology) and the physical test which 
concludes to the respect of the conditions. 
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- Figure 3 : the example of the hook 
 
 
 
 
 
 
 
 

IV. FIRTS PHASES OF FORGING OPTTIMIZATION 
 

In this part, we present a knowledge-based optimization 
dedicated to hot forging [14].  

Hot forging is a multiple stages plastic deformation of metal 
starting from an initial part - named billet.  
The main difficulty of this process is to get each intermediate 
metal part - named "preform" - that is actually defined by 
blacksmiths thanks to forging rules and know-how. Our 
application supplies automatically the entire process: it reduces 
the 3D desired forged part into some appropriate slices thanks 
to morphological and geometrical criteria. For each slice, it 
extracts trade features and deforms the slice according to 
forging rules. Finally, it creates the preform by assembling the 
deformed slices. The application may iterate on this preform if 
necessary.  
 
This study is mainly based on trade knowledge rules whose 
some examples (rules 1 to 3) are given below. 
 
rule 1 :  
while (slope < 12%) : 
 Improve the slope ;  
 Maintain the area ;  
End while 
 
rule 2 :  
while (rayon < 10 mm)  
 Improve radius ;  
 Maintain the area;  
end while 
 
rule 3 : 
while  (Modification) 
 if (preform hight < raw hight)  then improve hight 
 if (preform width > raw width) then reduce width  
 Maintain the area ;  
end while 

 
 
 
 
 
 
 
 
 

Application of rule 2 
 
 
 
 
 
 
 
 
 

Application of rule 3 
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Forging raw (left) - optimized preform (right) 
 

Figure 4 : preprocessing forging 
 

It is a fact that giving the operator the opportunity to be helped 
by a dedicated software, ensuring that the trade rules are 
respected, will lead to optimized solutions. 

 

We have extended this approach to take into account the 
possibility to "disrupt" certain parameters around the values 
given by an expert. It is based on the idea that parameters 
provided by experts or in guides give a "good" solution, but 
probably not the best solution. 

So, it is easy by a parameter optimization (not on mechanical 
structures here) to propose new solutions.  

In the foundry domain, we have then obtained new solutions 
for the filling system that are better (in term of lost material) of 
more than 40% compared to the solution given by the expert. It 
is done just by simulating small displacements of the parts. 

 

V. ADDITIVE MANUFACTURING OPTIMIZATION 
 

Rapid Prototyping (RP) and more generally Additive 
Manufacturing (AM) enable the manufacture of complex 
geometries which are very difficult to build with classical 
production. There are numerous technologies which are using 
different kind of material. For each of these, there at least two 
materials: the production material and the support one. Support 
material is, in most cases, cleaned and become a manufacturing 
residue. Improving the material volume and the global mass of 
the product is an essential aim surrounding the integration of 
simulation in additive manufacturing process. Moreover the 
layer by layer technology of additive manufacturing allows the 
design of innovative objects and the use of topological 
optimization in this context can create a very interesting 
combination.  
 
We illustrate in this part how to take advantage of topological 
optimization for the preparation of model for RP and AM. 

 
In topology optimisation design variable are element densities 
and are managed in our work by SIMP method. Specific 
techniques need to be introduced to penalize intermediate 
densities and to force final design to be represented by 
densities of 0 or 1 for each element. This particular adjustment 
is really important for the knowledge management. The 

penalization technique used is the power law representation of 
elasticity properties which can be expressed as shown on 
equation below  where  is the penalized stiffness matrix, K 
the real stiffness matrix,  the density  and P the penalization 
factor which has to be superior to 1. 

 
  

 
 
This penalized factor will have a very relevant impact on our 
problem. Indeed, in the case or AM, we have to manage the 
minimum length which represent the thickness of the different 
walls. Belong to the machine process, this value is determined 
by experiment data. A simple example is shown on figure 5: on 
a simple C-CLIP optimisation, the penalization factor 
management allows a bad or a good management of knowledge 
[14]. 
 
 
 

 
 
 
 

Figure 5 : penalization influence [14] 
 
Our approach involves the study of three very important factors 
for the topological optimisation: 

- The minimum thickness printable and cleanable 
without part deterioration. We seek to maximize the 
minimum thickness of the wire cloth (final material) 
without loss of geometric and morphological qualities 
of the part 

- The minimum diameter printable and cleanable 
without mechanical cleaning: the objective is to size 
the best channels dimensions for cleaning the internal 
structure of the piece (allow the powder evacuation) 

- The maximum height, in fact the ratio between the 
projected length and height of the part which may 
cause a falling down of the matter 

 
We developed DOE (Design Of Experiment) for different tests: 
test of the laser temperature impact, test thickness and height 
allowed (with cleaning process), test of the manufacturing 
orientation, test of the plate placement ... 
To validate our methodology and prepare the software 
integration, we first verified our assertion with commercial 
software. We developed in Rhinoceros3D an interface which 
helps the designer to prepare the CAD model and launch in 
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background Optistruct solver. The program is developed in 
python. We study a prosthetic implant used in a hip 
replacement surgical procedure studied for one of our client (a 
simplify one with regard to the confidentiality). There are a 
large number of hip implant devices on the market. Many 
different shapes exist but each styles falls into one of four basic 
material categories metal on plastic, metal on metal, ceramic on 
plastic and ceramic on ceramic. Due to the history of our 
region (large of foundry and forge industrial impact), we are 
interested in the metal on metal material and more particularly 
on titanium. This kind of prosthesis is built with forge process 
in titanium material. 

 
Previous work enabled us to integrate knowledge to CAD 
model. The modelling is based on a specific methodology 
briefly presented before that covers the knowledge 
capitalisation and modelling using scripts. The program which 
support the methodology is developed in python and is 
dedicated to the preparation of optimisation model [14]. 
 

 

 
 

Figure 6 : optimization example for additive manufacturing 
 
 
 

VI. CONCLUSION 
 

The goal of this paper was to illustrate the fact that local 
optimization cannot be considered without taking into account 
the entire process. Based on a "synthetic" approach and 
industrial examples, we have shown that many factors, from 
different points of views, are important. By carefully looking 
at them following a "synthetic" methodology it is possible to 

hugely improve the product and the process by using 
mathematical models linked with the trade knowledge. 
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