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Abstract:- In this paper we consider the space of second order generalized time-invariant linear
systems, Eẍ = A1ẋ + A2x + Bu, where E, A1, A2 ∈ Mn(C), B ∈ Mn×m(C).

We study the controllability of second order generalized systems by means the rank of a
certain constant matrix that we will call “the controllability matrix” of second order generalized
linear systems. We use this matrix to study the geometry of the set of uncontrollable systems
and we explicit the subset contained in the set of standardizable ones.
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1 Introduction
Generalized linear systems have been

widely studied in recent years. First order
are commonly applied in engineering for ex-
ample they are used in modelling a three-link
planar manipulator by M. Hou [9]. Second or-
der generalized systems are applied in many
fields, such as vibration an structural analysis
spacecraft control, robotics control as well to
power systems (see [1] and [4] for example).

A second order generalized linear system
is described by the following state space equa-
tion

Eẍ = A1ẋ + A2x + Bu, (1)

where x ∈ Cn, u ∈ Cm are the state vector
and the control vector respectively, E, Ai are
n-square complex matrices and B a rectangu-
lar complex matrix of appropriate size. In cer-
tain applications the matrices E, A1, A2 are
called the mass matrix, the structural damp-
ing matrix and stiffness matrix respectively.
We denote this type of systems by quadruples

of matrices (E,A1, A2, B), and the space of all
quadruples by Mn,m:

Mn,m =
{(E, A1, A2, B) | E, A1, A2 ∈ Mn(C), B ∈ Mn×m(C)}.

When E = In the system is called standard.
One of the problems for a control the-

ory is to maintain stability and controllabil-
ity of the system. If the system is not sta-
ble and/or not controllable then ones would
like to choose the control variables u in such
a way that the resulting system is stable and
controllable. If the chosen control variables
are u = −F3ẍ + F1ẋ + F2 + v, then the sys-
tem becomes (E + BF3)ẍ = (A1 + BF1)ẋ +
(A2 +BF2)x+v. This system is called “close-
loop system” whereas the system (1) is called
“open-loop system”.

Controllability is a widely studied qualita-
tive property of second order linear dynamical
systems (see [6], [8], [10] for example).

It is well known the following result (see
[2], for example): a second order generalized
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linear system (E, A1, A2, B), is controllable if
and only if

i) rank
(
E B

)
= n

ii) rank
(
s2E − sA1 −A2 B

)
= n ∀s ∈ C.

We observe that the first of these condi-
tions ensures that there the is a second order
derivative feedback F such that E + BF is
regular. If the system is then premultiplied by
(E +BF )−1 the new system is standard. The
systems that verify this property are called
standardizable systems.

In this paper we present a necessary and
sufficient controllability condition for second
order generalized linear systems in terms of a
rank of a certain constant matrix that only
depends on the matrices E, A1, A2 and B.

This condition can be used to study the
geometry of the set of uncontrollable systems
in the open set of standardizable systems.

A standard approach to study controlla-
bility is to use the generalized first order real-
ization of equation (1)

EẊ = AX + Bu, (2)

where X =
(

x
ẋ

)
, E =

(
In 0
0 E

)
, A =

(
0 In

A2 A1

)

and B =
(

0
B

)
, we will call this system “re-

duced system”.
Note that controllability of the second or-

der generalized system (1) is equivalent to the
controllability of the reduced system (2):
i) rank

(
E B

)
= n + rank

(
E B

)
.

ii) rank
(
sE− A B

)
=

rank
(

s

(
I 0
0 E

)
−

(
0 I

A2 A1

) (
0
B

))
=

rank
(

0 I 0
s2E − sA1 −A2 0 B

)
=

n + rank
(
s2E − sA1 −A2 B

)
.

Therefore, in this case, we use the crite-
rion given in [3] and [6], for singular systems
based on the rank of a constant matrix.

This well-known controllability crite-
rion is difficult to use when the quadru-
ple of matrices depends on parameters
(E(λ), A1(λ), A2(λ), B(λ)) with the parame-
ter vector λ ∈ Ck. In this paper we generalize
the result for singular systems and present a

criterion that depends only on the matrices of
the quadruple so that the controllability anal-
ysis is simpler and more systematic.

We introduce an equivalence relation that
preserves the controllability character to ob-
tain a reduced form for standardizable sys-
tems that is canonical for one-input generic
case. This enables us to describe the set
of standardizable systems as a bundle over
Cn(n−1). Consequently, we can reduce the
study of geometry of the uncontrollability set
by analyzing the projection of the set over the
base of the bundle.

Knowing the geometric structure of the set
of uncontrollable systems, given a parametric
family of systems we can choose a change of
parameters in order to obtain a good control-
lable second order linear system.

2 Controllability
In this section we show how to study the

controllability character of a second order gen-
eralized linear system by computing the rank
of a certain matrix.

We consider the following 2n2 × ((2n −
2)n + 2nm)-matrix which we will call control-
lability matrix.

C=




−E 0 . . . 0
−A1 −E . . . 0
A2 −A1 . . . 0

. . .

0 0 . . . −E
0 0 . . . −A1

0 0 . . . A2︸ ︷︷ ︸
(2n−2)n

B 0 0 . . . 0 0 0
0 B 0 . . . 0 0 0
0 0 B . . . 0 0 0

. . .

0 0 0 . . . B 0 0
0 0 0 . . . 0 B 0
0 0 0 . . . 0 0 B




︸ ︷︷ ︸
2nm

Remark 1

i) If n = 1, C =
(

B
B

) ∈ M2×2m(C),

ii) If n = 2, C =

( −E 0 B 0 0 0
−A1 −E 0 B 0 0
A2 −A1 0 0 B 0
0 A2 0 0 0 B

)
∈

M8×(4+4m)(C),

iii) If m = 1, the matrix C is square.

The controllability of a system is related
to the rank of this matrix, as shown in the
following proposition.
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Proposition 1([5]) A second order gen-
eralized linear system (E,A1, A2, B) ∈Mn,m,
is controllable if and only if the controllability
matrix C, has full rank:

rank C = 2n2.

Proof.
It is sufficient to recall that a generalized

linear system is controllable if and only if the
generalized controllability matrix for general-
ized linear systems

M =




E B 0 0 0 0
A 0 E B 0 0
0 0 A 0 E B
0 0 0 0 A 0

. . .




∈ M4n2×(4n2−2n+2nm)(C)

has full rank, (see [6] for more details).
By making block-elementary row transfor-

mations to matrix M

rk




In 0 . . . 0 0 0 0 . . . 0 0
0 E . . . 0 0 B 0 . . . 0 0
0 In . . . 0 0 0 0 . . . 0 0

A2 A1 . . . 0 0 0 B . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0

. . .
. . .

0 0 . . . In 0 0 0 . . . 0 0
0 0 . . . 0 E 0 0 . . . B 0
0 0 . . . 0 In 0 0 . . . 0 0
0 0 . . . A2 A1 0 0 . . . 0 B




=

rk




I2n2

−E B

−A1

. . .

A2

. . .

−E B
−A1 B

A2 B




=

= 2n2 +rk




−E . . . 0 B 0 . . . 0

−A1 . . . 0
. . .

A2 . . . 0

. . .

0 . . . −E 0 . . .

0 . . . −A1 0 . . .
. . .

0 . . . A2 0 . . . B




= 4n2

if and only if

rk




−E . . . 0 B 0 . . . 0

−A1 . . . 0
. . .

A2 . . . 0

. . .

0 . . . −E 0 . . .

0 . . . −A1 0 . . .
. . .

0 . . . A2 0 . . . B




= 2n2

¤

Example 1. Let (E, A1, A2, B) ∈Mn,m

be a two-parametric family of quadruples of
matrices where

E =




1 3 1
3 1 1
0 0 0


, A1 =




1 1 3
1 3 1
0 0 0


,

A2 =




λ 3λ λ
3λ + µ λ + µ λ + 3µ

0 0 0


, B =




0
0
1


.

The matrix C:



−E 0 0 0 B 0 0 0 0 0
−A1 −E 0 0 0 B 0 0 0 0
A2 −A1 −E 0 0 0 B 0 0 0
0 A2 −A1 −E 0 0 0 B 0 0
0 0 A2 −A1 0 0 0 0 B 0
0 0 0 A2 0 0 0 0 0 B




,

has full rank if and only if λ 6= 0. That is
to say, the quadruples of the given family are
controllable if and only if λ 6= 0.

Note that it is easier to compute rank C
than rank

(
s2E − sA1 −A2 B

)
for all s ∈ C.

Corollary 1 A necessary condition for
controllability is the system being standardiz-
able.

3 Equivalence relation in Mn,m
In order to determine the controllability

properties of the systems we can define an
equivalence relation that preserves controlla-
bility character permitting in this way, to con-
sider equivalent quadruples in a simpler form.

Taking into account that a system can only
be controllable if it standardizable, we can
consider the following definition.

Definition 1 Two second order
generalized linear systems (E,A1, A2, B),
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(E′, A′1, A
′
2, B

′) ∈ Mn,m are equivalent if and
only if the second system can be obtained from
the first by means one or more of the following
elementary transformations.

a) basis change in the state space:

(E′, A′1, A
′
2, B

′) = (EP,A1P, A2P, B),

b) basis change in the input space:

(E′, A′1, A
′
2, B

′) = (E, A1, A2, BR),

c) feedback:

(E′, A′1, A
′
2, B

′) = (E,A1, A2 + BF2, B),

d) derivative feedback:

(E′, A′1, A
′
2, B

′) = (E,A1 + BF1, A2, B),

e) second order derivative feedback:

(E′, A′1, A
′
2, B

′) = (E + BF3, A1, A2, B)

f) premultiplication by an invertible ma-
trix:

(E′, A′1, A
′
2, B

′) = (QE,QA1, QA2, QB).

where P,Q ∈ Gl(n;C), Fi ∈ Mm×n(C), R ∈
Gl(m;C).

This can be Written in matrix form as:
(
E′ A′1 A′2 B′) =

Q
(
E A1 A2 B

)



P
P

P
F3 F1 F2 R


 ,

(3)
for some P, Q ∈ Gl(n;C), Fi ∈ Mm×n(C),
R ∈ Gl(m;C).

It is straightforward that the relation is an
equivalence relation and we will therefore refer
to it as feedback equivalence.

Note that, all close-loop systems (E +
BF3, A1 + BF1, A2 + BF2, B) for all
F1, F2, F3 ∈ Mm×n(C), derived from a given
open-loop system (E,A1, A2, B) are in the
same equivalence class than (E, A1, A2, B).

We observe that if two systems
(E, A1, A2, B), (E′, A′1, A

′
2, B

′) ∈ Mn,m are
equivalent, then the first order realizations
are equivalent under feedback and derivative
feedback equivalence considered for linear sys-
tems: The equality (3) is verified if and only
if

(
In 0 0 In 0
0 E′ A′2 A′1 B′

)
=

Q ·
(

In 0 0 In 0
0 E A2 A1 B

)
·P

where

Q =
(

P−1

Q

)

and

P =




P
P

P
P

0 F3 F2 F1 R




.

Canonical forms under feedback equiva-
lence are only knowing for triples of matri-
ces corresponding to generalized linear sys-
tems Eẋ = Ax+Bu (see [12], [6] for example).
It remains difficult to obtain a canonical form
for quadruples of matrices or larger n-ples. We
present a reduced form for standardizable one
input systems. Notice that we could take the
canonical form for generalized linear systems
but we want to preserve the structure of the
second order generalized systems.

We observe that if (E, A1, A2, B) and
(E′, A′1, A

′
2, B

′) ∈ Mn,m are two equivalent
quadruples, the triple (E, A1, B) is feedback
equivalent to (E′, A′1, B

′):

(
E′ A′1 B′)=Q

(
E A1 B

)



P
P

F3 F1 R


 .

(Analogously (E,A2, B) is feedback equiva-
lent to the triple (E′, A′2, B

′)).
Therefore, we can reduce the quadru-

ple (E, A1, A2, B), to (E′, A′1, A
′
2, B

′), where
(E′, A′1, B

′) is the triple equivalent to
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(E,A1, B) in its canonical form (see [6] for de-
tails).

In particular, let (E, A1, A2, B) ∈ Mn,m

be a quadruple for which we suppose that
the first controllability condition is verified.
The quadruple can therefore be reduced to
(In, A1, A2, B), where (In, A1, B) is a triple in
its Kronecker canonical form (see [6]).

It is well known that the triple (E, A1, B)
is controllable in the most generic case. In the
most generic case, when m = 1, the quadruple
can be reduced to (In, A1, A2, B) where:

A1 =
(

0 In−1

0 0

)
,

A2 =




a11 . . . a1n
...

...
an−11 . . . an−1n

0 . . . 0


 B =




0
...
0
1


 .

(4)
The quadruple (In, A1, A2, B) is univo-

cally determined by the aij-numbers as shown
in the following proposition

Proposition 2 Let (E, A1, A2, B),
(E,A′1, A

′
2, B

′) ∈ Mn,1 be equivalent quadru-
ples where E = E′ = In, A1 = A′1 = A1,
B = B′ = B. Consequently, A2 = A′2 = A2.

In other words, a system (E, A1, A2, B)
∈Mn,1(C) in which (E, A1, B) is controllable
is univocally determined, by the collection of
n(n− 1) numbers aij .

Proof. Let (In, A1, A2, B), (In, A1, A
′
2, B)

∈ Mn,m be two equivalent quadruples, there-
fore Q−1 = P + QBF3, Q−1A1 = A1P + BF1,
Q−1A′2 = A2P + BF2, Q−1B = BR, and that
is only possible if P = αIn α 6= 0, R = αIm,
and Q−1 =

(
αIn−1 0

q1 q2

)
with (q1, q2) a row ma-

trix with last term being non-zero. Conse-
quently A′2 = A2 taking adequate feedback
matrices. ¤

The canonical reduced form is useful for to
study qualitative properties of the systems.

Transformations c), d) and e) are carried
out when the equivalence relation is applied,
ensure that the controllability is invariant un-
der equivalence considered. Therefore, we
have the following proposition.

Proposition 3 The rank of the matrix C
is invariant under equivalence relation consid-
ered.

Proof. Let (E, A1, A2, B), (E′, A′1, A
′
2, B

′) ∈
Mn,m be two equivalent quadruples, therefore
E′ = QEP + QBF3, A′1 = QA1P + QBF1,
A′2 = QA2P + QBF2, B′ = QBR. Conse-
quently,




−E′ . . . 0 B′ 0 . . . 0

−A′1 . . . 0
. . .

A′2 . . . 0
. . .

0 . . . −E′ 0 . . .

0 . . . −A′1 0 . . .
. . .

0 . . . A′2 0 . . . B′




=

Q




−E . . . 0 B 0 . . . 0

−A1 . . . 0
. . .

A2 . . . 0
. . .

0 . . . −E 0 . . .

0 . . . −A1 0 . . .
. . .

0 . . . A2 0 . . . B




P

where

Q =




Q
. . .

Q


 ,

and

P =




P
0 P
.
..

.

..
. . .

0 0 . . . P
−F3 0 . . . 0 R

−F1 −F3 . . . 0 0
. . .

F2 −F1 . . . 0

. . .
. . .

0 0 −F3 0 . . .
0 0 −F1 0 . . .
0 0 F2 0 . . . R




¤
Therefore, we can consider an equivalent

quadruple in a simpler form in order to com-
pute the controllability condition.
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Example 2 The family of quadruples
given in example 1 can be reduced to E = In,

A1 =




0 1 0
0 0 1
0 0 0


 , A2 =




λ 0 µ
0 λ 0
0 0 0


 , B =




0
0
1


 .

It is easier to compute rank C in this form
than the initial one.

4 Geometry of uncontrollable
set

As stated at the introduction, we are
interested in the geometry of the set of
non-controllable quadruples in the open and
dense set An,m of quadruples where (E, A1, B)
is controllable: An,m = {(E, A1, A2, B) ∈
Mn,m | (E,A1, B) controllable}. The other
non-controllable quadruples constitutes a set
of higher codimension contained in the fron-
tier FAn,m ⊂Mn,m.

Firstly, we observe that An,m is closed by
the equivalence relation considered.

Proposition 4 Let (E,A1, A2, B) ∈
An,m be a quadruple. Thus, for all
quadruples (E′, A′1, A

′
2, B

′) equivalent to it, is
(E′, A′1, A

′
2, B

′) ∈ An,m.
Proof. It suffices to observe that the con-

trollability character of generalized linear sys-
tems is invariant under feedback equivalence.
¤

The equivalence relation defined in §3, can
be seen as an action α by a Lie group G =
GL(n;C)×GL(n;C)×GL(m;C)×Mm×n(C)×
Mm×n(C) × Mm×n(C) acting over Mn,m in
this form, let g = (P, Q,R, F1, F2, F3) ∈ G and
x = (E, A1, A2, B) ∈ Mn,m, then α(g, x) =
(QEP + QBF3, QA1P + QBF1, QA2P +
QBF2, QBR). Therefore, Mn,m is a G-space
provided because the map α verifies:

α(g1g2, x) = α(g1, α(g2x))
α(e, x) = x

where e ∈ G is the unit element. (See [11] for
more details about bundles).

We now consider the projection π :
Mn,m −→ Mn,m/G, which describes Mn,m

as a G-bundle ξ = (Mn,m, π,Mn,m/G).

Remember that a G-bundle is a bundle
with an additional structure derived from the
action of a topological (differentiable in our
case) group on the fibres.

The existence of a canonical form for
quadruples in An,m with m = 1, induces us to
study the uncontrollable set of systems con-
tained in the set An,1 = {(E, A1, A2, B) ∈
Mn,1 | (E,A1, B) controllable}. At the se-
quel we consider m = 1 and if confusion is not
possible we will write the set simply A.

Proposition before, shows that (A, π,A/G)
is a G-subbundle of ξ, in fact we have the fol-
lowing theorem. Denoting Ã = A/G.

Theorem 1 A is a G-bundle
(A, π,Cn(n−1)), over Cn(n−1).

Proof. It is sufficient to prove that there
exists a bijection:

ϕ : Ã −→ Cn(n−1)

Let x be an element in Ã. Proposition 2 en-
sures that this element is univocally deter-
mined by (a1,1, . . . , an−1,n) ∈ Cn(n−1). We
therefore define ϕ(x) = (a1,1, . . . , an−1,n).
This map is obviously, a bijection. ¤

A global section σ : Cn(n−1) −→ A can be
defined as σ(x1, . . . , xn(n−1)) = (In, A1, A2, B)
with (In, A1, A2, B) as (4). Specifically,

A2 =




x1 ... xn

...
...

x(n−1)2 ... xn(n−1)

0 ... 0




The G-bundle (A, π,Cn(n−1)), can be used
to determine the set of non controllable
quadruples in A. We will denote this set by
unC ⊂ A.

Proposition 5 The set of no controllable
quadruples in A is unC = σ(Λ)×G where Λ is
the differentiable manifold in codimension one
determined by the set of zeros of a polynomial
with n(n− 1)-variables.

Proof. We consider matrix C associated
with σ(x1, . . . , xn(n−1)), therefore

Λ = {(x1, . . . , xn(n−1)) ∈ Cn(n−1) | det C = 0}
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(Note that det C is not identically zero). ¤
Let now consider the 2n-square matrix C:

(
0 B A1B · · · Xi . . . X2n

B 0 A2B · · · Yi . . . Y2n

)

constructed inductively in the following man-
ner, the i-column denoted by

(
Xi
Yi

)
, the i+1-

column is
(

Yi+A1Xi
A2Xi

)
=

(
Xi+1

Yi+1

)
.

Corollary 2

Λ = {(x1, . . . , xn(n−1)) ∈ Cn(n−1) |
Pn(n−1)(x1, . . . , xn(n−1)) = 0}

where Pn(n−1)(x1, . . . , xn(n−1)) = det C is a
n(n − 1)-degree polynomial with n(n − 1)-
variables.

Proof. Let (E,A1, A2, B) a quadruple in
A, we can use the equivalent quadruple in
a reduced form and now it suffices to make
the elementary block row transformations in
the controllability matrix corresponding to the
reduced form, obtaining the following rank-
equivalent matrix:




I2n(n−1)

0 B A1B · · · Xi . . . X2n

B 0 A2B · · · Yi . . . Y2n


 .

So,

rk C = 2n(n− 1)+

rk
(

0 B A1B · · · Xi . . . X2n

B 0 A2B · · · Yi . . . Y2n

)
,

and rank C = 2n2 if and only if

det
(

0 B A1B · · · Xi . . . X2n

B 0 A2B · · · Yi . . . Y2n

)
6= 0

¤
We describe the specific case of the uncontrol-
lable set for n = 2 and n = 3.
For n = 2, we have

Example 3 The uncontrollability set
unC = σ(Λ) × G, is determined by the fol-
lowing differentiable 1-manifold

Λ = {(x1, x2) ∈ C2 | P2(x1, x2) = x1−x2
2 = 0}.

For n = 3, we have,

Example 4 The uncontrollability set
unC = σ(Λ) × G, is determined by the fol-
lowing differentiable manifold

Λ = {(x1, x2, x3, x4, x5, x6) ∈ C6 |
P6(x1, x2, x3, x4, x5, x6) =
−2x1x3x4x2 + 4x1x3x4x6 + 3x2x5x4x3+
3x2x5x4x

2
3 − 4x3x

2
2x6x4 − x3x2x

2
6x4+

2x3x1x
2
6x5 − x2x1x

2
3x4 + x4x3x5x6−

x4x
2
3x5x6 + 5x6x1x

2
3x4 − 2x1x3x

2
5

−x2
2x6x4 − x1x4x2 + x1x4x6 − x1x

2
6x5

+x4x
3
2 − 2x1x

2
3x

2
5 + x2

2x
2
6x5 − x5x1x

2
2

+x5x
2
1x

2
3 + 2x5x3x

2
1 + 2x3x1x2x5x6+

x5x
2
1 − 3x2

4x
2
3 − x2

4x3 − 3x2
4x

3
3 − x2

3x
2
5x

2
6

−x3x4x
3
6 − x2

6x
2
1x

2
3 + x2

6x1x
2
2 − 2x2

6x3x
2
1+

2x2
3x2x

2
6x4 + 2x2

3x1x
2
6x5 − 2x4x

3
3x5x6+

2x6x1x
3
3x4 − 2x3x2x6x

2
5 + 2x3x2x

3
6x5−

2x1x3x2x
3
6 + x2

3x
3
5

−x2
4x

4
3 + x1x

4
6 − x2

6x
2
1 − x2

2x
4
6 = 0}.

5 Conclusion
In this paper a geometric study of set of

non-controllable second order generalized lin-
ear systems is presented. The used method is
to see the set of one input second order gen-
eralized systems as a bundle.
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