
  
Abstract— The mathematical method for the time-domain 

analysis of power converters with periodic pulse width 
modulation (PWM) is developed .The method is based on mixed 
p-z description of linear periodically time-varying system. The 
mathematical model uses the Laplace and modified Z transforms. 
The solution is not dependent on the number of the pulses of the 
PWM pattern. Instead of solution of algebraic equations the 
change of switching instants is reflected in the solution only by a 
change in two values mk   and nk. All the results were visualized 
from the derived equations by the programme Mathcad. The 
derived equations are validated using a 3 kW three-phase inverter 
 

 
Keywords— Modified Z-transform, Laplace transform, 
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I. INTRODUCTION 

Several methods have been presented for the time analysis 
of linear circuits containing periodically operated switches 
in electronic opened-loop systems [1], [2] [3].However, the 
approach used in these methods depends heavily on matrix 
manipulations as they require matrix inversion as well as 
exponentiation. Besides, it requires solution of many 
algebraic equations. 
Many electronic systems such as the inverters with Pulse 
Width Modulation (PWM) can be modeled with 
periodically varying parameters. Recent developments in 
high switching frequency power devices, such as IGBT, 
offer the possibility of developing high frequency PWM 
control techniques. Voltage waveforms of such modulated 
inverters contain many pulses and gaps. It is important to 
known current response for such complicated voltage 
waveforms for a proper design. 

This paper brings a mathematical model which uses the 
Laplace and modified Z- transform (mixed p-z 
approach).The model enables one to determine both 
transient and steady state response in a relatively simple 
and lucid form. Method for finding the Laplace transform 
of the voltage vector is also presented. The solution is not 
dependent on the number of the pulses of the PWM pattern. 
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The change of the switching instants is reflected in the 
solution by a change in only two values that determines 
transport delay .If we compare the proposed method with 
existing techniques the main advantages can be found as 
follows: 
-The solution is in an analytical closed-form, which does 
not require matrix inversion and exponentiation. 
-An analytical solution, contains only one equation for the 
currents and equation for two values describing the solution 
in prepulse, inside-pulse and postpulse time, and does not 
require solving many algebraic equations as in existing 
methods. It means that for output PWM waveforms the 
model makes it applicable irrespective of the number of 
pulses per output waveform. 
-From the analytical equation we can easily derive the 
characteristic values of the inverter or of the motor, such as, 
the peak, mean and rms values, both in the transient steady 
states. 
As it was mentioned before, the model is applicable for the 
time response in opened-loop time-variable circuits, as it 
requires an explicit form of the output voltage of the 
converters. 

  

II. MATHEMATICAL MODEL 

The energy conversion of many power electronics 
converters is achieved by cyclically controlled switching 
topological configurations. Let us consider power 
electronic circuit with an output voltage of the form given 
by the equation (1).These voltage waveforms is typical for 
DC-DC converters.  

 
              Vdc  for     nT+TkA≤t< nT +TkB  

v(t)=   {                                                                     (1) 

               0     for      nT +TkB≤t< nT +T(k+1)A 

           
where k , and n are   integers , that means number of the 
pulse used inside of period, and 
number of period, respectively.   T is a period, TkA and TkB 
are start point setting time and end point setting time, 
respectively. 
Let us express time as  
 
t=(n+ε)T ,     n=0,1,2,...       , 0<ε≤1                           (2)  
  
then (1) can be expressed in per unit time 
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                Vdc  for     εkA≤ε<εkB 

{=)(tv                                                                      (3)     

                0   for    ε kB≤ε<1 

 

From the definition of the Laplace transform of the periodic 
signal, we can find the Laplace transform of the voltage 
v(t): 
 

pV( )= dt
T
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M is number of pulses per period T. 
But in a more complex circuits containing the period pulse 
width modulation (PWM) we can derive the Laplace 
transform from the relation between the Laplace and 
Modified Z-Transform as follows: 

V(p) = 

1
p(n )T

n 0 0

1
pT.

0
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Where 
z=epT ,  
 
V(z, )ε  is the modified Z transform of v(n, )ε  [7],[8] 

defined by: 
 

n

n 0

V(z, ) v(n, )z
∞

−

=

ε = ε∑                                               (6) 

 
For the voltage given by (3) we have  
 
v(n, ε )= 1n

k

f ( , k)ε∑                                                  (7)  

where f ( , k)ε  is a switching given as (3)   

 and the modified Z-transform of (7) is 

V(z, ε )= 
z

z 1+ k

f ( , k)ε∑                                            (8)  

Using (5) and (7) we can again derive the Laplace 
transform of the voltage as in (4). 
 
Now, we suppose that voltage with the Laplace transform 

)(pV  is feeding load with admittance: 
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ps are roots of the characteristic equation:  
 
B(p)=0                                                                   (10) 
 
Ls is a order of the polynomial B(p). 

Thus, using (4) and (9) the Laplace transform   of the load 
current can be expressed as: 
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where: 
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Q(p)= )(
)(
)( kBpTekApTe

M

1kpB

pA

p
dcV ε−−ε−∑

=
      (11b)  

 As can be seen from (11), the Laplace transform of the 
current consists of two multiplicative parts. One (R (epT)) is 
a function of epT -operator, the other (Q (p)) is a function of 
p-operator. To find original function of (11) we can use the 
residual theorem. 
But the inverse transform of (11) can not be carried out in 
direct way as it contains infinite number of poles given by  
 
epT-1=0.                                                                   (12)
 
From (11) it may be seen that both polynomials can be 
separated into two multiple parts and so we can transform 
(11) into the modified Z transform [8].If doing so, we get in 
the Z-space: 
 
I (z,ε)=R(z).Zm{Q(p)}                                             (13)  
   
with Zm{ } denoting the modified Z transform operator. 
In order to find Z transform of Q(p) we must use the 
translation theorem in Z transform which holds: 
 
Zm{e-p.a.F(p)} = z-x.F(z,ε-a+x)                                  (14)   
       where parameter x is given by : 
            1     for  0≤ε<a 

x =   {                                                                     (15)   

0 for  a≤ε<1      
 
If we want to express translation for k-th  pulse, with the 
beginning  εkA and the end εkB , 
(pulse-width ∆εk= εkB - εkA ) we can use two parameters, 
namely mk and nk to determine per unit time for 
prepulse,inside-pulse and postpulse,respectively. 
 
mk is a parameter that defines the beginning of k-the pulse 
εkA,   nk  is a parameter that defines the end of the k-pulse 
εkB .According to (15) we can write for mk and nk, 

respectively: 
 
 
          1    for 0≤ε<εkB                     1    for 0≤ε<εkA          
mk={                               nk={                                  (16)                         
         0    for εkA ≤ε<1             0   for  εkB ≤ε<1 
 
By means of these two parameters we can express per unit 
time for the three intervals: 
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a) 0<ε ≤εkA  prepulse per unit time. mk=1,nk=1 
 
b) εkA <ε ≤εkB  inside pulse per unit  
 time .mk=0,nk=1                                                             (17) 
                                              
c) εkB <ε ≤1  postpulse per unit time .mk=0,nk=0  
 
 
Thus, in the period nT, for per unit time 0<ε≤1, we obtain 
from (17) two parameters mk and nk, that will be used for 
solution in Z transform. 
 
Using (9) and Heaviside theorem in (11b): 
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we can find the original of (13) by the definition of the 
inverse Z transform: 

I( dz1nzzI
jπ2

1εn ∫ −ε= ),(),                                        (19) 

An integral (19) may be solved by means of the residual 
theorem   
 
 

III. THREE-PHASE VOLTAGE SOURCE INVERTER WITH 

SPACE-VECTOR PWM 
 

    In that section we   investigate the three-phase half-
bridge voltage source inverter feeding a balanced three-
phase Y-connected load.  
Generally, the three output voltage variables   v in(t), i=a,b,c 
can be projected into two variables, in the complex plane α 
and β using the following transformation: 

)(tV = [ ])(.)(.)( tcnv2atbnvatanv
3

2
++ = 

Vα(t)+jVβ(t),             
2

j
3a e
π

= ,                                    (20)                                      
 
 The three-phase voltage source inverter has eight discrete 
voltage vectors in the complex plane as indicated in Fig.1, 
V1 through V6, with length   2Vdc/3  and two zero 
vectors,V0 and V7  (connecting all of the three-phase of the 
load to positive or negative rail of the DC bus). 
From the mathematical point of view both zero vectors 
have the same effect: 
 
V0= V7=0                                                                   (20a) 
  
By substituting the phase voltages for each switching state 
into (20), the following discrete space vectors are obtained: 

3jne
3
dcV2

n /)( π=V ,   n=0,1,2…….                     (21)                                 

 
These vectors thus form vertices of hexagon as shown in 
Fig.1. 
As was mentioned, more vectors within sampling period 
are utilized in case of modulation .At present, one of the 
most modern modulation method is Space Vector 
Pulsewidth Modulation. (SVM).As the synchronous SVM 

modulation is a periodical with T, the voltage vector can be 
expressed, in n-th sector, as 
 

  V(n,ε)= 3kjekf3nje
M

1k 3
dcV2 /)(),(/ παεπ∑

=
               (22) 

From (22) it can be seen, that all vectors are rotated in the 
next sector through π/3,and in each sector are vectors 
modulated with time dependency given by f(ε,k),  and  also 
with the angle dependency given by 

3/)k(je πα . 
M is number of the vectors, which are used within a sector 
period T. α(k) defines the sequence of the phase shift of the 
vectors, and for SVM with two adjacent vectors has value 1 
or 0 .As was mentioned, in the employed, synchronous 
sampling mode, the cycle of the output frequency in the 
vector space is divided into six 60o wide sectors and each 
sector into N1 segments representing individual sampling 
interval. In the SVM strategy, the inverter state is changed 
three times within each sampling interval. For instance, we 
can use sequence of the vectors in the first sector: 
V0,V1,V2 

It means, that α(0) =0, α(1) =1.Two adjacent vectors with 
the angles, are used:  
 
I)    zero vector V0   
ii) Vector V1 with angle: α(0)π/3=0, (real axis)   
iii) Vector V2 with angle: α(1)π/3=π/3. 
 
For practical purpose, the sequence of pulses and gaps 
defined for the sector T is stored in the microcomputer 
memory. Each sector is further divide into N1 segments, 
which form sampling interval. Duration of the individual 
states is determined from simple formulas. From the angle 
Point of view, the complex plane of the voltage vectors of 
the inverter is divided into six 600 wide sectors (00-600,600-
1200, etc.)In the subsequent sixth of the period the direction 
of the voltage vectors is rotated through π/3.It means, that 
this modulation is a periodical with a period T. Fig.1 
clearly  shows that in the first sector ,the mean value of the 

voltage vector AVV can be calculated using the relation: 

 
 

j 1 2
AV 1 2

T TT
e

T T T
ρ Δ ΔΔ

= +V V V              

1 2 0T T T TΔ = Δ + Δ + Δ                                                 (23) 
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Fig.1 Voltage space-vector representation in αβ complex plane 
 
where ΔT1 is dwell time of vector V1, ΔT2 is dwell time of 
vector V2, and ΔT0 is dwell time of vector V0, or V7. 
 
ΔT is a sampling interval. 
 
ΔT=T/N1                                                                       (24)    
 
 ρ is an angle that defines position of the reference vector  

AVV  with respect to real axis in complex αβ plane  

If we express vectors 21 VV ,  in stator co-ordinate system, 

we get: 

0je1V1 =V 0je
3
dcV2

=                                            (25a)   

060je
3
dcV2060je2V2 ==V                                    (25b) 

By substituting (25a) and (25b) into (23) and solving it for 
the real and imaginary axis we get:           
 
∆ε1=ΔΤ1/Τ =ε1B-ε1A =g sin(600−ρ)/ N1     

          
∆ε2=ΔΤ2/Τ= ε2B-ε2A  =g sinρ/ N1                                   (26)   
 
∆ε0=ΔΤ0/Τ=1/Ν1−g sin(600+ρ)/ N1  
      
ε1A and ε1B are respectively, the beginning and end of 
duration of vector V1, ε2A and ε2B are respectively, the 
beginning and end of duration of vector V2.   ε1,ε2 and ε0  
are respectively, per unit dwell times (duty ratios) of the 
applied vectors . 
  

 AV

dc

3V
g

V
=                                                                    (27) 

G is the transformation (modulation) factor, 
                                                 
Vdc is the voltage of DC bus. 
 
With regard to SVM strategy mentioned, we get from (5) 
and (22) the Laplace transform for the stator voltage space-
vector: 
 

)(pV = 
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dc 1

p pT j / 3

M
pT pTj (k) / 3

k 1

2V e
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3 e e

e (e e )
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−

−∑
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where εkAT and εkBT are respectively, the beginning and the 
end of  application of k-th non-zero vector. 
Again, we suppose that voltage with the Laplace transform 

)(pV  is feeding load with admittance (9)       

Using (9) and (28) the Laplace transform of the space 
vector of the load current can be expressed as follows: 

 
I (epT,p)= V (p)Y(p)=R(epT)Q(p)                                    (29)   
  
Again, the Laplace transform of the current vector consists 
of two multiplicative parts.   One    (R(epT )) is a function of 
z-operator, the other (Q(p)) is  a function of p-operator . 
Comparing (29) with (11a) and (11b) one obtains:          

3jepTe

pTepTeR /)(
π−

=                                           (30)     
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=

πα   

           (31) 
By transforming (29) into modified z -space we get: 
 
I (z,ε)=R(z).Zm{Q(p)}                                             (32)  
 
with Zm{ } denoting the modified Z transform operator. 
Using   parameters mk,nk  in (17), and Heaviside theorem 
(11),we can express (32) in the modified Z-space as 
follows:   
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                                                                                    (33) 
 
Equation (33) has simple poles  ejπ/3, 1 ,ep

s
T.The inverse 

Z transform of (33) can be found using the residua theorem 
.If doing so, we can express the time dependency of the 
load current by the following formula: 
Equation (33) is the time dependency of the current space 
vector in the stator co-ordinate system .As can be seen, it is 
in closed-form. For concrete solution we must substitute 
into (33) only parameters of the load (A(p),B(p)) and 
parameters of the inverter (Vdc,εkA,εkB,α(k)).The solution 
contains two portions. 
Since ps includes a negative real part (we consider stable 
systems), the second portion of (33) consisting ep

s
T(n+ε) 

attenuates, for n→∞, forming the transient component of 
the current space vector iT(n,ε). 
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=iS(n,ε)+iT(n,ε)                                                               (34)   
 

The term 
 

ejπ(n+1)/3 =cosπ(n+1)/3+j.sinπ(n+1)/3                              (35)   
 
therefore, the first portion of  (34) is the steady-state 
component of the current space vector is(n,ε). 
As it was mentioned before we consider three-phase R,L 
series load. Equation (34) thus has only one simple root: 

L

R
1p

−
=                                                                         (36) 

 
By substituting 1p  into (34) we can write for the load 

current components: 
 

a) steady-state component 
 

iS(n,ε)
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b)              transient component 
 

iT(n,ε)

{

}

k

kA kB

M
j / 3 RT / Ldc

k 1

RT / L RT / L
RT(n ) / L
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e e

3 R

e e
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e e
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ε ε
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mk,nk are given by (16). 
 
As graphical examples, we can see in the following figures 
some analytical results. The graphical waveforms were 
visualized from the derived equations by the Programme 
MATCAD. 
The parameters for the examples are as follows:  
SVM - Number of segments N1=2, modulation factor 
g=0.2.Output frequency of the inverter is: f1=50Hz.  
A three-phase static inductive load has the parameters: 
R=623Ω ,ω1L=502Ω. 

Fig.2 shows the phase A voltage given by real part of 
(22).The voltages in other phases are shifted by the angles 
±2π/3, respectively. 

             
Fig.2 Load voltage in phase A 
               
 
 
 
Fig.3a shows trajectory of the steady-state current vector in 
complex plane. This trajectory is given by (36).Fig.3b 
shows the phase A steady-state current given by the real 
part of previous Figure .Fig.4 shows the phase A transient 
current, given by the real part of (37), and Fig.5 shows 
trajectory of the overall load current again in the phase A, 
for the same parameters .Again, currents in other phases are 
shifted by ±2π/3, .respectively. From (36) we can derive 
easily the solution for six-step waveform (without 
modulation). 
 
 

 
 
 
Fig.3a Stator steady-state current trajectory in αβ complex plane 
 
 
 

 
 
 

Fig.3b. Stator steady-state current in phase A 
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Fig.4 .Transient current in phase A 
 

 
Six-Step waveforms: 
 
    In Eq (36), which is valid for the steady-state, we 
substitute: 
M=1 (one pulse per sector)  ε1A=0,ε1B=1,m1=0,n1=1. 
By substituting these values into (36) we obtain for the 
steady-state vector current of the RL load very simple 
equation:: 
 

iS(n,ε)=   

⎥
⎥
⎥
⎥
⎥
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⎢
⎢
⎢
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e3

j

e

13

j

eL
RT

e13
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e
R3
dcV2

           (38)        

 

      
 
        Fig.5 Overall current waveform in phase A 
    
Putting n=0 and 0<ε≤1, we get solution for the first sixth of 
the period, for n=1 and 0<ε≤1, we get solution for the 
second sixth of the period, etc. 
The A-phase current is given by real part of (38) 
 
iA(n,ε)=Re{ iS(n,ε)}                                                      (39)  
 
and is shown in Fig.6 
For the voltage vector with six-step waveform we can 
write: 

jn
3

dcV(n, ) 2 / 3V e V(n)
π

ε = =                                                 (40) 

              
 For example A phase voltage is given by a real part: 
     

vA (n,ε)=vA(n) = Re{V(n,ε)}= 
 
2/3(Vdc.cosπ.n/3)                                                     (41) 
     
and is also shown in Fig.6 (dashed line) 
 
                                 

 
 
       Fig.6 Six-step voltage and current waveform 
 
To validate the performance of the mathematical model, the 
steady-state waveforms in [9] were obtained by numerically 
integrating the differential equations of the system starting 
from zero initial values of the currents. After the steady-
state current waveforms are reached, the results obtained 
from the numerical solution are then compared with the 
waveforms of the current obtained from the analytical 
solution. The results from the numerical solution are 
identical with the results obtained from the analytical 
solution presented in [9] and also are presented in the 
paper. 
 
 

IV.   FREQUENCY-DOMAIN ANALYSIS 

A. Fourier series for the stator voltage vectors  
        
We shall calculate the Fourier series of the periodic 
variation of the stator voltage space vector [6]: 

[ ]ε)T(n(jkωe
k

kε)(n, 1 +∑
∞

−∞=
= CV                  (42)                    

where 1ω =2π/T1  is the angular frequency of the 

fundamental harmonic. From (42) , the phase voltages can 
be expressed as: 
 

1(n, ) C )
An

j (n )Tv Re ( e
-

∞⎧ ⎫⎪ ⎪νω + εε = ∑⎨ ⎬ν⎪ ⎪ν = ∞⎩ ⎭
            (43a)                     

 

v j4 / 3 1
Bn (n, ) e C )

j (n )TRe ( e
-

π
∞⎧ ⎫⎪ ⎪νω + εε = ∑⎨ ⎬ν⎪ ⎪ν = ∞⎩ ⎭

        

(43b)                                                                                                        

j2 / 3 1
Cn (n, ) e C )

j (n )Tv Re ( e
-

π
∞⎧ ⎫⎪ ⎪νω + εε = ∑⎨ ⎬ν⎪ ⎪ν = ∞⎩ ⎭

       (43c)                   

To derive the coefficients of the Fourier series, we can use 
the relationship between the Laplace transform of the 
periodic waveform and Fourier coefficients: 
 

[ 1

1

pT
k p k

1

1
C 1 (e ) V(p)

T j
−

= ω= −                                (44)                    

V(p) is given by (28). 
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By substituting (28) into (44) we obtain the Fourier 
coefficients as follows:                                                                             

νC = (1 6 )C + ν =                                                

[

]

k

k

M ( (1 6 )( (k)/3)dc 3

k 1

( (1 6 )
3

2V
e e

3 j(1 6 )

e

A

B

jj

j

π
− + ν επα

=

π
− + ν ε

=
π + ν

−

∑
                            (45)  

 
where 

0, 1, 2,..ν = ± ±                                                   (46)                                                                                                                          
                       
B.    Fourier series for the phase voltages 
 
From voltage-space expression (45) we obtain the phase 
voltages as a real part of the complex equation (45) as: 
 

[
]

M
dc

k
k 1

An 1 kA kB

2V
sin (1 6 )

3(1 6 ) 6

v (n, ) (n )T ( )
6sin (1 6 )

(k)
2 /3

3

=
∞

ν=−∞

⎡ π ⎤⎡ ⎤+ υΔε⎢ ⎥⎢ ⎥π + ν ⎣ ⎦⎢ ⎥
⎢ ⎥π⎡ ⎤ε = ω +ε − ε +ε +⎢ ⎥⎢ ⎥
⎢ ⎥+ ν ⎢ ⎥

πα⎢ ⎥⎢ ⎥− π⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∑

∑               (47)                    

 
As an example we can see from Fig.7 the Fourier 
approximation of the voltage space-vector with space-
vector modulation. We take into account first 10 harmonics 
 

 

 
 
 
Fig.7 Fourier series approximation of the voltage space vector 

  
Fig.8 Voltage space vectors and harmonic spectrum.  g=0.3,N1=4 
(fSW=1200 Hz) ,f1=50 Hz. Top: Fourier series approximation of 
voltage space vectors for ν=20.Middle: Ideal voltage space 
vectors. Bottom: Harmonic voltage spectrum. 
 
From Fig.8 we can see the Fourier series approximation of 
the voltage space-vector (upper trace); ideal trajectory 
(middle trace) and Fourier spectrum (bottom trace) again 
for the space-vector PWM modulated voltage. 
 

V. EXPERIMENTAL VERIFICATION 
  
     Validation of the derived analytical equations was also 
carried out using measurements with a 3 kW three-phase 
inverter supplying 2.7 kW cage-rotor induction motor 
380V, 7.6A, and 1475 r/min. An IGBT inverter utilized 
Space Vector PWM with sampling intervals N1=7, 
modulation factor g=0, 4, and with a fundamental 
frequency of the output voltage of 50 Hz. 
Fig.8 shows experimental waveforms of the phase A 
steady-state load current (upper trace) and the phase A load 
voltage (lower trace).The corresponding theoretical phase 
A steady-state current given from (33) and phase voltage 
given from (25) are shown in Fig.9.As can be seen, there is 
very good agreement between measured and theoretical 
results, with correlation being better than 5% over most of 
the load range. 

 
 
      Fig.8 Experimental waveform of the stator voltage and current 
in phase  
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          Fig.9 Analytical calculated waveform of the voltage and 
current in phase A.  

   
 

VI  CONCLUSION 
 
     An approach for the analysis of linear system containing 
periodically operated switches is described. The approach 
was demonstrated for DC-DC converter, three-phase 
voltage source   inverter with Space Vector PWM and 
single-phase voltage source inverter, but it is applicable for 
all types of converters with explicitly determined output 
voltage. The mathematical model uses the Laplace and 
modified Z transforms. The steady -state and transient 
components of the load current are determined in a simple 
and lucid form that it avoids involved matrix inversion as 
well as exponentiation. All the results were visualized from 
the derived equations by the programme Mathcad. 
Experimental results prove the feasibility of the proposed 
mathematical model as compared with the conventional 
methods. Correlation between measurements and 
calculations is very good. 
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