
 

 

  

Abstract—In this paper we present a new approach for machine 

learning (ML) task solution based on Monotone Systems Theory, an 

inductive learning algorithm named by the authors as MONSIL 

(MONotone Systems in Inductive Learning). It has some advantages 

compared with several ML algorithms as rules overlapping, it can use 

several pruning techniques etc. The algorithm MONSIL usually 

produces more rules than other ML algorithms and it means that it 

would be more work-consuming than others, but as our experiments 

show, MONSIL works quite effectively. 

In the paper we define also main terms of monotone systems 

theory, describe how to create monotone system to the data table and 

describe main advantages of the monotone systems approach. We 

also prove that concept description found by MONSIL is complete 

and consistent, explain algorithm’s main steps on examples and 

discuss results of experiments comparing MONSIL effectiveness 

with well-known ID3. 

 

Keywords—Inductive learning, Machine learning, Machine 

learning algorithm, Monotone systems theory. 

I. INTRODUCTION 

N the domain of inductive learning there are many different 

algorithms in use (AQ, CN2, CART, ID3 and Assistant with 

their derivatives etc). Such a variety of algorithms shows that 

in the domain of inductive learning there are different 

problems which are hard to solve by one specific algorithm.  

In the inductive learning environment we have problem how 

to manage large example sets with an unknown complicated 

structure. From our experience we can say that monotone 

systems algorithms have been very efficient in ordering large 

data tables and for finding regularities from these [1]-[4]. We 

try to use techniques that have been successful in data analysis 
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in the inductive learning field. 

This paper describes very shortly the underlying theory and 

describes also how to use monotone systems theory in 

inductive learning. A new learning algorithm is presented and 

discussed. In the end of paper we make a comparison of the 

effectiveness of our algorithm with ID3 on the well-known 

King-Rook-King task by D. Michie [5]. 

II. DEFINITIONS 

We mainly originate from the notions of the article [6]. 

The set of objects X={x1,…,xN} can be described with 

attributes t1,…, tM so that every object xi can be described as a 

tuple 

xi=(t1(xi),…,tM(xi))=(xi1,…,xiM). 

For each attribute tj there exists a finite set of values Aj 

(1≤j≤M). So the attribute value xij of the object xi belongs to 

the set Aj 

xij=tj(xi)∈Aj. 

Classes C1,…,CK are subsets of X such that 

C1∪…∪CK; ∀i∀j, i≠j : Ci∩Cj=∅. 

The class value of the object x∈X is cj if xi∈Cj. Let us 

denote the set of class values as 

C={c1,…,cK}. 

A learning example ei is a tuple created from an object xi 

and its class value 

ei=(xi,c)=((t1(xi),…,tM(xi)),c)=((xi1,…xiM),c). 

Let us denote the set of examples E as 

E={e1,…,en }. 

Let us denote the set of examples of class Cj as 

Ej={e|e=(x,cj), x∈Cj, Cj⊆X}. 

The positive example ej+ of the class Cj is an example which 

belongs to the set Ej, i.e. 

ej+∈Ej⊆E. 

The negative example ej- of the class Cj is an example 

which does not belong to the set Ej i.e. 

ej-∉Ej⊆E. 

The majority class of set E is the class with the largest 

number of examples. 

Function d which does map according to every element of 

the set X a class value cj is called a concept 

 d:X→C; d(xi)=cj ⇔ xi∈Cj. 

 

In inductive learning the learning system should on the base 

of the learning examples find a concept description D which 
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maps a class value for any object of the set X (not only for 

objects from the example set) D:X→C. Consequently the 

inductive learning system should (in ideal case) find on the 

base of learning examples such concept description D which 

maps to every object the same class value as a concept d  

∀x∈X, D(x)=d(x). 

The (concept) description is the set of classification rules 

D={r1,…,rS}. 

A classification rule (decision rule) is an implication where 

a condition part is a complex and a conclusion part is a class 

name: 

rj = “Comj => ck” 

or 

rj = “if Comj then ck” 

or 

rj=(Comj,ck). 

Complex Comj is a tuple of selectors Seljk (k=1,…,M) 

Comj=(Selj1,…,SeljM). 

Selector Selj is a subset of the set of values of the attribute tj  

Selj⊆Aj. 

Description D maps a class value ck for an object xi if it 

contains a classification rule rj which maps a class value ck for 

the object xi  

∃rj∈D, rj(xi)=ck ⇒ D(xi)=ck. 

Rule rj=(Comj,ck) maps a class value ck for an object xi if 

its complex Comj covers the object xi 

rj=(Comj,ck), cover(Comj,xi) ⇒ rj(xi)=ck. 

Complex Comj covers an object xi if all its selectors Seljk 

cover this object 

∀k, 1≤k≤M, cover(Seljk,xi) ⇒ cover(Comj,xi). 

Selector Seljk covers an object xi if the value of the attribute 

tk of the object xi is in the set Seljk 

∀j, 1≤k≤M, xik∈Seljk ⇒ cover(Seljk,xi). 

Description D is consistent on the set X’⊆X if all its rules 

map the same class value for any object x∈X’ 

∀ri,rj∈D, x∈X’, X’⊆X, cover(Comi,x), cover(Comj,x) ⇒ 

ri(x)=rj(x). 

Description D is complete on the set X’⊆X if for each 

object x∈X’ there exists at least one rule so that its complex 

covers this object 

∀x∈X’, X’⊆X, ∃rj∈D, cover(Comj,x} 

The inductive learning algorithms have to allow us to find 

descriptions that are at the same time both consistent and 

complete. 

III. MONOTONE SYSTEMS BASED INDUCTIVE LEARNING 

ALGORITHMS 

A lot of initial data and complicated inner structures of 

objects are common difficulties for data analysis, data mining, 

graph theory etc. This is true also for learning from examples. 

In the well-ordering of large and confused data sets the use of 

the algorithms of theory of monotone systems has been very 

successful and we try to use these ideas in the inductive 

learning field as well. 

In [7] L. Võhandu described a possibility for quick data 

processing methodology, which uses the idea of building 

weakly monotone systems on data tables, using empirical 

frequencies of discrete attributes’ values. The main mechanism 

of using algorithms of the theory of monotone systems is so 

called frequency transformation. It means that frequencies of 

every attribute value are calculated and values in the data table 

(corresponding to the objects) are replaced with their 

corresponding frequencies over the data table. Such a 

transformation enables one to estimate the degree of 

systematic conformity of objects on the set of learning 

examples. Both, objects with high conformity (for finding 

general rules) and objects with low conformity (for 

discovering exceptions and noise) are substantial in inductive 

learning. 

Some of the attributes are more important in learning from 

examples. The estimation of importance of attributes is easy to 

do using the frequency transformation. 

The frequency transformation and conformity measure 

guarantees a simple way to estimate the typicality of objects. 

The theory of monotone systems allows one to work with the 

tables of frequencies instead of real data tables. The computing 

with much smaller tables of frequencies is a lot quicker than 

with full data tables, although all the important information for 

learning is easily accessible. 

A. Main concepts of theory of monotone system 

We present the main concepts of the theory of monotone 

systems by J. Mullat [8]. 

Let a finite set X={x1,…, xN} and a function πX on it which 

maps to each element x∈X a certain nonnegative number 

(weight) πX(x), be given. This function πX is called a weight 

function if it is defined on any subset X'⊂X; the number πX'(x) 

is called a weight of element x on X'. 

A set X with a weight function πX is called a system and is 

denoted by S=(X,πX). 

The system S'=(X',πX') where X'⊂X is called a subsystem of 

the system S=(X,πX). 

The system S=(X,πX) is called monotone (more exactly 

weakly monotone) if in the case of any x we have 

∀X’⊆X; ∀x∈X\{y}, (y∈X): πX’\{y}(x)≤πX’(x). 

Function Q that is mapping to every subset X'⊂X of a 

monotone system S a nonnegative number Q(X')= min πX'(x) is 

called an objective function. 

The subsystem S’=(W, πW) of the monotone system 

S=(X,πX) with the property that the objective function obtains 

a maximal value Q(W)=max Q(X')=max min πX'(x) on it is 

called a kernel of the monotone system S: respectively the 

value Q(W) is called a measure of the kernel quality. For a 

kernel the following relation is valid ∀X’⊆X: Q(X’)≤Q(W). 

To use the method of monotone systems in practice we have 

to fulfill two conditions: 

1) There has to exist a weight function πX(x) which will give 

a measure of influence for every element x∈X; 

2) There have to be rules to recompute the weights of the 

elements of the system S=(X,πX) in case there is a change 
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in the weight of one element x∈X. 

These two conditions give a lot of freedom to choose the 

weight functions and create formal rules of weight changes in 

the system S=(X,πX). The only constraint we have to keep in 

mind is that the rules and the weight function have to be 

compatible in the sense that after eliminating all elements x 

from the system S the final weights of x∈X must be equal to 

zero. 

Kernels of a monotone system built on the empirical system 

create a nice picture of the inner structure of the given 

empirical system. We just mention that in general case one 

orders all objects of the system S=(X,πX) by eliminating in N 

steps all objects using the weight minimality condition. On 

every step we eliminate the object with minimal weight value 

and recalculate weight of all other remaining objects. 

B. Algorithm MONSA 

To find all kernels of a monotone system a very effective 

polynomial time algorithm named MONSA (MONotone 

Systems Algorithm) was created [2], see also [3], [9].  

In order to describe that algorithm we use an additional 

concept of an intersection. 

The intersection H of the set X is any set of attribute values 

which belong simultaneously to all objects xi∈X  

H={xij|∀k∀i, k≠i, xij=xkj}. 

The intersection H describes on the set X a subset XH 

XH={xi|∀j, xij∈H}, XH⊆X,  

In [2] it is proved that the subset XH⊆X extracted by the 

algorithm MONSA is a kernel S’=(XH, πX
H
) of the system 

S(X,πX). 

In order to use the monotone system method for inductive 

learning we use a very simple weight function connected to the 

frequencies of system element attribute values. To build a 

monotone system on the set of discrete data X we first 

calculate the frequency table F: F=||fjk||, j=1,…,M; k=1,…,|Aj|, 

where fjk=|Zjk|, Zjk={xi|xij=k}.  

After that we define the weight of the element xij on the set 

X’ in the system S=(X’,πX’) as πX’(xij)=fjk. 

The system with a weight function πX’(xij)=fjk is weakly 

monotone since  

∀i, ∀j, ∀k: |Zjk\{xi}|≤|Zjk| 

i.e. in general, the elimination of an object can only lessen the 

frequencies and weights of other objects in the system 

S(X,πX).  

It is easy to see that the concept of intersection is similar to 

the concept of complex, so it would be useful for learning from 

examples. 

The algorithm for learning from examples built up on the 

algorithm MONSA follows: 

       
Initialize description D={} 

FOR j=1 TO K (K - number of classes) 

Let complex Com=(A1,…,AM) i.e. ∀Selj=Aj 

Find Ej={ei|ei∈Cj} 

Call procedure MONSA(Com,Cj,Ej) 

NEXT j 

 

PROCEDURE MONSA(Com, Class, X) 

Find the frequency table F on the set X for 

all attributes tj where Selj=Aj  

Find the minimal value fmin=fj’k’ from the 

frequency table F 

Find the maximal value fmax=fj’’k’’ from the 

frequency table F 

IF fmin=fmax THEN  

Add the rule r=(Com,Class) into the 

description D 

ELSE 

WHILE fmax>fmin>0 DO 

Let Selj’’=k’’ 

Call procedure MONSA(Com,Class,X) 

Let fj’’k’’=0 

END WHILE 

END IF 

END PROCEDURE 

 

Description produced via such a simple algorithm is 

complete, i.e. every example is covered by at least one 

classification rule. All intersections are created only by the set 

of examples Ej of the class Cj. So, it is possible, that there 

exists another set Ei (i≠j), such that it has an identical 

intersection with the one extracted from Ej. Consequently, we 

cannot declare that the derived description is consistent. There 

can exist an example which belongs to both classes Cj and Ci. 

In the next section we describe a more powerful algorithm, 

which generates complete and consistent concept descriptions. 

C. New inductive learning algorithm MONSIL 

In the algorithm presented in the section III.B the learning 

examples are arranged into classes and all intersections 

(complexes) are derived for every subset. Algorithm MONSIL 

(MONotone Systems in Inductive Learning) presented in this 

section works in a reverse direction, i.e. an intersection 

(complex) is derived first using frequency tables and after that 

one checks whether all examples covered by it belong to the 

same class. If it is true, then the classification rule is added 

into the concept description. 

Algorithm MONSA presents a very comfortable mechanism 

for extracting kernels of the data table. Using the frequency 

table intersections are made. If the maximum value of the 

weight function is equal to the minimum value of the weight 

function, then a kernel can be extracted [2]. 

In the algorithm MONSIL we first build the frequency 

tables in the same way, but the conditions for extracting rules 

are different. If a complex Com which covers only examples of 

one class Cj is found, then a classification rule r=(Com,cj) is 

added into the concept description D. 

Unlike in the algorithm MONSA the selectors (elements of 

intersections) in MONSIL are chosen according to the minimal 

values of the elements of frequency tables. There is no 

contradiction with the theory of monotone systems, because 

the condition of extracting a kernel remains the same - the 

maximal value of the weight function has to be equal to the 
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minimum value of the weight function. Only the order of 

extracting a kernel will be different. 

In the following algorithm we use: 

Com for complex; 

Sel for selector. 

 

The algorithm MONSIL: 
Initialize the complex Com={& Selk }  

Initialize the description D={} 

Find the frequency table F on set of learning 

examples E 

Call procedure MONSIL(Com,F) 

 

The main procedure of the algorithm follows: 

 
PROCEDURE MONSIL(Com,F) 

IF ∃j,∀i, cover(Com,xi): xi ∈Cj THEN (i.e. 
if all examples covered by a complex 

belong to the same class) 

Add a rule r=(Com,cj) to the description 

D 

ELSE 

Find the frequency table F’=||f’ij|| on 

the set of learning examples E  

If fij=0 then let f’ij=0 

Find the minimal value f’min=f’j’k’ (over 

all f’jk>0)  

Find a new complex Com’ so that Selj’=k’ 

and the other selectors Selj (j≠j’) 
are the same as in the complex Com 

WHILE f’min>0 DO 

Call procedure MONSIL(Com’,F’) 

Let f’j’k’=0 

Find the new minimal value f’min from 

the frequency table F’ and a new 

complex Com’ 

END WHILE 

END IF 

END PROCEDURE 

 

Theorem 1. Concept description found by the algorithm 

MONSIL is complete - every example is covered by at least 

one rule. 

Proof: Minimal values from the frequency table are 

searched by the algorithm as long as there are frequencies 

greater than zero. The value of the element of the frequency 

table is put to zero iff there exists a rule that corresponds to 

this subset of examples. 

Theorem 2: Concept description found by the algorithm 

MONSIL is consistent - all its rules map the true class value 

for any example. 

Proof: A rule will be added into the description only if 

examples covered by its complex belong to the same class. 

This condition of algorithm excludes all rules, that cover also 

examples belonging to some other class(es). 

D. The first example 

In order to demonstrate MONSIL in action the classic J. 

R. Quinlan’s example set is used [10]. There are five examples 

of class “-” and three examples of class “+”. All examples 

have three attributes (see Table I): 

A1=“Height” with values “short”, “tall”; 

A2=“Hair” with values “dark”, “red”, “blond”; 

A3=“Eyes” with values “blue”, “brown”. 

Table I. The example set (from Quinlan) 

 Height Hair Eyes Class 

x1 short blond blue + 

x2 tall blond brown - 

x3 tall red blue + 

x4 short dark blue - 

x5 tall dark blue - 

x6 tall blond blue + 

x7 tall dark brown - 

x8 short blond brown - 

 

The concept description generated by ID3 (Quinlan [10]) 

contains four classification rules: 

r1=((Hair=“dark”)=>(Class=“-”)); 

r2=((Hair=“red”)=>(Class=“+”)); 

r3=((Hair=“blond”&Eyes=“blue”)=>(Class=“+”)); 

r4=((Hair=“blond”&Eyes=“brown”)=>(Class=“-”)). 

We describe now how MONSIL works on the example set. 

We collect all attribute values into one table (Table II) and 

count the corresponding frequencies of those values (Table 

III). 

Table II. The attribute values in the frequency table 

 A1 A2 A3 C 

v1 short dark blue - 

v2 tall red brown + 

v3 * blond * * 

 

Table III. The frequency table F1 

 A1 A2 A3 C 

v1 3 3 5 5 

v2 5 1 3 3 

v3 * 4 * * 

 

Step 1: We find the minimal value fmin=f22=1 from the 

frequency table F1. Since there is only one example (x3) 

covered by the complex (Hair=“red”) then the rule 

r1=((Hair=“red”)=>(Class=“+”)) will be added into the 

description. The value f22 in the frequency table F1 will be put 

to zero. 

Step 2: The new minimal value fmin=f11=3 will be found. If 

there are many equal minimal values we take the first one. For 

the three examples x1, x4, x8 covered by the complex 

(Height=“short”) the new frequency table is F2 (see Table IV) 

and from here for fmin=f21=1 a new rule r2=((Height=“short”& 

Hair=“dark”) => (Class=“-”)) will be created. In the frequency 
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table F2 the value f21 will be put to zero. 

Table IV. The frequency table F2 (Height=“short”) 

 A2 A3 C 

v1 1 2 2 

v2 0 1 1 

v3 2 * * 

 

Step 3: A new fmin=f32=1 will be found. Consequently: 

r3=((Height=“short”&Eyes=“brown”)=>(Class=“-”)). In the 

frequency table F2 the value f32 will be put to zero. 

Step 4: The new fmin=f23=2 will be found. For the examples 

x1, x8 covered by the complex (Height=“short”& 

Hair=“blond”) a new frequency table F3 (see Table V) will be 

created. Here “1\0” means that in the frequency table F2 the 

value f32 is already zero, consequently the corresponding 

complex (Height=“short”&Hair=“blond”&Eyes=“brown”) is 

unnecessary – it would be a specification of already found rule 

r3. The minimal value fmin=f31=1 of the table F3 will create the 

rule r4=((Height=“short”&Hair=“blond”&Eyes=“blue”)=> 

(Class=“+”)). In the frequency table F2 the value f23 will be put 

to zero. 

Table V. The frequency table F3 (Height=“short”&Hair=“blond”) 

 A3 C 

v1 1 1 

v2 1\0 1 

v3 * * 

 

Step 5: For the new fmin=f31=2 (examples x1, x4) in F2 the 

frequency table F4 (see Table VI) will be created. “Bringing 

zeros down” from F2 prevents finding complexes 

(Height=“short”&Eyes=“blue”&Hair=“dark”) which is a 

specification of already found rule r2 and (Height=“short”& 

Eyes=“blue”&Hair=“blond”) which is a repetition of r4. In F4 

there is no fmin≠0 therefore in the frequency table F2 the value 

f31 will be put to zero and there is no new fmin≠0 neither. Now 

we have exhausted all complexes created from the field f11 and 

the value f11 in the frequency table F1 will be put to zero. 

Table VI. The frequency table F4 (Height=“short”&Eyes=“blue”) 

 A2 C 

v1 1\0 1 

v2 0 1 

v3 1\0 * 

 

Step 6: The new minimal value in F1 is fmin=f21=3, the new 

complex is (Hair=“dark”), the new examples are x4, x5, x7 and 

the corresponding frequency table is F5 (see Table VII). Here 

f41=fmin=3 (f41 means the number of examples in the class “-”), 

consequently r5=((Hair=“dark”)=>(Class=“-”)). The value f21 

in the frequency table F1 will be put to zero. 

Table VII. The frequency table F5 (Hair=“dark”) 

 A1 A3 C 

v1 1\0 2 3 

v2 2 1 0 

v3 * * * 

 

Step 7: We will choose a new minimal nonzero in the table 

F1 fmin=f32=3. The new complex is (Eyes=“brown”), the new 

examples are x2, x7, x8 and the corresponding frequency table 

is F6 (see Table VIII). Here f41=fmin=3, consequently 

r6=((Eyes=“brown”)=>(Class=“-”)). The value f32 in the 

frequency table F1 will be put to zero. 

Table VIII. The frequency table F6 (Eyes=“brown”) 

 A1 A2 C 

v1 1\0 1\0 3 

v2 2 0 0 

v3 * 2 * 

 

Step 8: The new minimal value in F1 is fmin=f23=4, the new 

complex is (Hair=“blond”) and the new examples for learning 

are x1, x2, x6, x8, the corresponding frequency table is F7 (see 

Table IX). 

Table IX. The frequency table F7 (Hair=“ blond”) 

 A1 A3 C 

v1 2\0 2 2 

v2 2 2\0 2 

v3 * * * 

 

Step 9: The minimal value in F7 is fmin=f12=2, the 

corresponding complex is (Hair=“blond” & Height=“tall”), the 

frequency table is F8 (see Table X) and the new fmin=f31=1 in 

F8. Consequently: r7 = ((Hair=“blond” & Height=“tall” & 

Eyes=“blue”)=>(Class=“+”)). The value f31 in the frequency 

table F8 and after that the value f12 in the frequency table F7 

will be put to zero. 

Table X. The frequency table F8 (Hair=“ blond”&Height=“tall”) 

 A3 C 

v1 1 1 

v2 1\0 1 

v3 * * 

 

Step 10: The new minimal value in F7 is fmin=f31=2 and the 

new frequency table is F9 (see Table XI). Here f42=fmin=2 and 

consequently r8 = ((Hair=“blond” & Eyes=“blue”)=> 

(Class=“+”)). The value f31 in the frequency table F7 will be 

put to zero. In F7 there is no fmin≠0, so f23 in F1 will be put to 

zero. 
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Table XI. The frequency table F9 (Hair=“ blond”&Eyes=“blue”) 

 A1 C 

v1 1\0 0 

v2 1\0 2 

v3 * * 

 

Step 11: The new minimal value in the frequency table F1 is 

fmin=f12=5, the corresponding complex is (Height=“tall”), the 

examples are x2, x3, x5, x6, x7 and the new frequency table is 

F10 (see Table XII).  

Table XII. The frequency table F10 (Height=“tall”) 

 A2 A3 C 

v1 2\0 3 3 

v2 1\0 2\0 2 

v3 2\0 * * 

 

Step 12: The minimal value of F10 is fmin=f31=3. The new 

complex (Height=“tall”& Eyes=“blue”) and the corresponding 

frequency table F11 (see Table XIII) give no new rule.  

Table XIII. The frequency table F11 (Height=“tall”&Eyes=“blue”) 

 A2 C 

v1 1\0 1 

v2 1\0 2 

v3 1\0 * 

 

In the table F10 no new fmin≠0 can be found, therefore in F1 

the value f12 will be put to zero.  

Step 13: The complex (Eyes=“blue”) will be generated on 

the base of fmin=f31=5 in F1. The corresponding frequency table 

is F12 (see Table XIV). The examples belong to both of the 

classes and the new minimal value can not be found. 

Consequently the frequency f31 in F1 can be put to zero.  

Table XIV. The frequency table F12 (Eyes=“blue”) 

 A1 A2 C 

v1 2\0 2\0 2 

v2 3\0 1\0 3 

v3 * 2\0 * 

 

Now the concept description is ready because in the 

frequency table F1 there is no minimal value different from 

zero. 

So altogether eight rules were generated by the algorithm 

MONSIL: 

r1=((Hair=“red”)=>(Class=“+”)); 

r2=((Height=“short”&Hair=“dark”)=>Class=“-”); 

r3=((Height=“short”&Eyes=“brown”)=>(Class=“-”)); 

r4=((Height=“short”&Hair=“blond”&Eyes=“blue”)=> 

(Class=“+”)); 

r5=((Hair=“dark”)=>(Class=“-”)); 

r6=((Eyes=“brown”)=>(Class=“-”)); 

r7=((Height=“tall”&Hair=“blond”&Eyes=“blue”)=> 

(Class=“+”)); 

r8=((Hair=“blond”&Eyes=“blue”)=>(Class=“+”)). 

 

Now we apply the second procedure for lessening a number 

of rules. If there are two rules ri and rj in the description so 

that: ri≠rj: Comi⊆Comj then the rule rj can be excluded from 

the description. If any example is covered by such a rule rj then 

it is also covered by the rule ri.  

So for our example the rules r2, r3, r4 and r7 can be excluded 

from our description: 

rule r1 covers x3 of Class “+”; 

rule r5 covers x4, x5 and x7 of Class “-”; 

rule r6 covers x2, x7 and x8 of Class “-”; 

rule r8 covers x1 and x6 of Class “+”.  

The resulting description is complete and consistent.  

It is easy to check that rules r1, r5, r8 correspond to the ID3 

rules, but the rule r6=((Eyes=“brown”)=>(Class=“-”)) is 

simpler than ID3 rule ((Hair=“blond”&Eyes=“brown”)=> 

(Class=“-”)). It covers x7 which is already covered by rule r5 

(overlapping). ID3 covers objects only once. 

E. The second example 

If we use initial data table with different order of attributes 

(columns): A2 (Hair) – A3 (Eyes) – A1 (Height), then the 

search tree traversed by the algorithm is different (stricken-

through text shows the places where zeros “brought down” 

from upper frequency table prevent entering corresponding 

(redundant) branches of the search tree): 

 

Hair="red" (r1) 

Hair="dark" (r2) 

Eyes="brown" (r3) 

Height="short" 

&Hair="dark" 

&Eyes="brown" 

&Hair="blond" 

&Eyes="brown" 

&Eyes="blue" (r4) 

&Eyes="blue" 

&Hair="dark"  

&Hair="blond" 

Hair="blond" 

&Eyes="brown" 

&Height="short" 

&Eyes="blue" (r5) 

&Height="tall" 

&Eyes="blue" 

&Eyes="brown" 

Eyes="blue" 

&Hair="dark" 

&Hair="red" 

&Hair="blond" 

&Height="short" 

&Height="tall" 

&Hair="dark" 
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&Hair="red" 

&Hair="blond" 

Height="tall" 

&Hair="dark" 

&Hair="red" 

&Hair="blond" 

&Eyes="blue" 

&Eyes="brown" 

 

As a result we get five rules: 

r1=((Hair=“red”)=>(Class=“+”)); 

r2=((Hair=“dark”)=>(Class=“-”)); 

r3=((Eyes=“brown”)=>(Class=“-”)); 

r4=((Height=“short”&Hair=“blond”&Eyes=“blue”)=> 

(Class=“+”)); 

r5=((Hair=“blond”&Eyes=“blue”)=>(Class=“+”)). 

One of them is redundant: r4 is a specification of r5. The 

example showed that the result of the algorithm MONSIL 

depends on used order of attributes’ values. But after using the 

second procedure for lessening the number of rules we always 

get the same result. For our example it is four rules as in case 

of previous example: 

rule r1 covers x3 of Class “+”; 

rule r2 covers x4, x5 and x7 of Class “-”; 

rule r3 covers x2, x7 and x8 of Class “-”; 

rule r5 covers x1 and x6 of Class “+”.  

IV. EFFECTIVENESS OF MONSIL 

D. Michie has described in [5] an experiment in the Turing 

Institute comparing different algorithms of inductive learning. 

We use a similar King-Rook-King task to compare the 

effectiveness of the algorithms MONSIL and ID3. 

D. Michie took a set of random positions with three pieces 

on a chess-board - white king, white rook and black king as a 

set of objects. The position of each piece on the board is 

described by two attributes. In some positions white’s move is 

allowed by chess laws, in some positions not. So, two classes 

can be distinguished. The possible number of different 

positions is 64
3
=262144.  

In our experiment three similar training suites consist of five 

sets of positions which were randomly generated as training 

data examples and two test data suites consist of two sets of 

examples which were randomly generated for testing. All sets 

of positions are generated independently that means bigger 

sets may not consist of smaller sets and the same size sets in 

different suites are not the same. 

We have split our test scenario into two stages. In both 

stages we have several training data example sets and one 

testing set. All rules found by both learning algorithms for 

every training data example set are tested separately. The 

speed of generating rules, the number of rules and the 

exactness of predicting were estimated. 

In the first stage we used two training data sets from each 

(three) training suite, first one containing 1000 examples and 

second one containing 2000 examples. All (2x3) found rule 

sets from each training suite were tested with one set of 200 

positions. 

In the second stage we used the same two training data sets 

from each training suite, which were used already in the first 

stage. In addition, we used three training-data sets from each 

training suite, where accordingly 3000, 4000 and 8000 

examples were present. The size of the testing set was 400 

positions. 

In our experiment the test scenario was executed two times. 

Only the test data suite was replaced on the second time. In 

both cases the same training suites were used. In the first 

execution, test data suite 1 was used and in the second run we 

used test data suite 2. 

The results of the experiments with both MONSIL and ID3 

base algorithm are presented in the five following tables and 

illustrated with four figures. Table XV holds the average speed 

of generating rules, Tables XVI, XVII and XVIII hold the 

average exactness of predictions and Table XIX holds the 

average number of found rules. Figure 1 shows trends of 

growth of both algorithms´ average execution times while the 

learning examples were growing. Figure 2 shows the ratio 

between MONSIL and ID3 algorithms´ average execution 

times. Figure 3 shows trends of growth of both algorithms´ 

average number of rules while the learning examples were 

growing. Figure 4 shows the ratio between MONSIL and ID3 

algorithms´ average number of rules. (Both algorithms are 

implemented in Java. The computer used in the experiment 

was Pentium M 2,0GHz.)  

We notice that the MONSIL algorithm is more exact in 

classification and not very much slower than the ID3 algorithm 

regardless of fact that it extracts much more rules.  

Table XV. Algorithms’ average execution times (s) 

Learning 

examples 

1000 2000 3000 4000 8000 

ID3 0,06 0,12 0,17 0,22 0,44 

MONSIL 0,16 0,28 0,34 0,54 0,69 

Ratio 2,7 2,3 2,0 2,5 1,6 
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Fig. 1. Algorithm’s average execution times 
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Fig. 2. Ratio of execution times 

Table XVI. Algorithms’ average exactness of predictions (%) on test 

suite 1 

 

Table XVII. Algorithms’ average exactness of predictions (%) on test 

suite 2 

 

Table XVIII. Average exactness (%) 

 

Table XIX. Average number of rules 

Number of 

examples 

1000 2000 3000 4000 8000 

ID3 579 1126 1685 2160 4334 

MONSIL* 8966 15709 22284 28488 43600 

Ratio 15,5 14,0 13,2 13,2 10,1 

 

* In the Table XIX procedure for lessening a number of 

rules was not used. 
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Fig. 3. Average number of rules 

 

  Learning 

examples 

ID3 

% 

MONSIL 

% 

1000 58,67 64,00 First 

stage 2000 59,00 64,00 

1000 53,75 62,00 

2000 58,58 64,75 

3000 55,75 65,75 

4000 58,83 67,75 

Second 

stage 

8000 58,08 69,75 

T
e
st
 s
u
it
e
 1
 

 Average 57,52 65,43 

  Learning 

examples 

ID3 

% 

MONSIL 

% 

1000 55,67 62,00 First 

2000 62,33 67,00 

1000 56,58 63,00 

2000 57,17 65,75 

3000 55,42 66,75 

4000 58,83 69,50 

Second 

8000 59,17 71,25 

s u

 Average 57,88 66,46 

Test set ID3 MONSIL 

Average of test suite 1 57,52 65,43 

Average of test suite 2 57,88 66,46 

Total average 57,70 65,95 
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Fig. 4. Ratio of number of rules 

V. ADVANTAGES AND DISADVANTAGES OF MONSIL 

We saw in chapter III.D that it can be happen that two or 

more rules cover the same object. Such a situation is called an 

overlapping.  

“Classical” algorithms do not take this situation into 

account. If a rule is added to the description, then 

corresponding examples will not be taken into consideration 

during generating next rules.  

The use of frequency table technique allows to overcome 

this disadvantage. So, in case of overlapping the rule will be 

generated on the basis of larger set of examples than 

“classical” algorithms do. In the example of the section III.D 

the learning example x7 is covered by complexes of the rules r6 

and r5. 

It is easy to discover the contradictory examples in 

MONSIL i.e. the situation where the objects with identical 

descriptions (complexes) belong to different classes. It is done 

as follows: if we have reached to such node of a search tree, 

where it is not possible to make the next extract (all the 

attributes are used already, but objects still belong to different 

classes), then we can say that these examples are 

contradictory.  

In the case of large sets of examples algorithm MONSIL is 

quite quick (as we could see in the previous section). Most of 

its speed comes thanks to the circumstance that a frequency 

table allows to estimate the conformity of attributes in a very 

simple way. Using the frequency table method allows to 

reduce necessary memory space dramatically in real 

applications as well. 

The other difficult problem - noise - can be taken into 

account by different pruning techniques. Those techniques 

allow to choose different parameters and values of them. In 

our examples and experiments presented in the paper we did 

not use any pruning techniques. 

MONSIL extracts a lot of classification rules. The exclusion 

of excessive rules from the description takes some additional 

time proportional to the square of the rules number. 

VI. POSSIBLE MODIFICATIONS OF MONSIL USING PRE-

PRUNING TECHNIQUES 

The completeness and consistency of a description are very 

important in the algorithm MONSIL, but it is much more 

important in the practical systems of learning from examples 

that as many as possible objects will be classified exactly. 

Usually, learning examples presented to the system form only 

a small part from whole possible example set and there is often 

different level of noise in them. A consistent and complete 

description found for the set of examples does not have to be 

the best one. Giving up those strict requirements we can often 

find rules that guarantee exact classification on many more 

objects from the same expert field. 

The main technique to facilitate work with noisy and large 

sets of examples is pruning. It can reduce the size of the 

decision tree or of the set of examples, making at the same 

time the prediction more exact. If by generating the concept 

description the requirements of consistency and completeness 

are given up, then we are dealing with pre-pruning. If changes 

affecting completeness and consistency are made in an already 

generated description, then such a technique is called post-

pruning. Pre-pruning techniques are unique for different 

algorithms while post-pruning techniques are similar.  

In the following we present some pre-pruning techniques 

one can use in our algorithm MONSIL. There are six different 

techniques of pre-pruning based on following indicators: 

1) Class frequency, 

2) Rule weight, 

3) Frequency threshold, 

4) Deviation, 

5) Rule length, 

6) Common rule. 

 

Class frequency. Class frequency Pf the indicates 

percentage of examples of the current majority class in the 

subset of examples 

P
N

Nf

m
= ∗100%  

where Nm=max |Ej| - number of examples in the majority class. 

Class frequency threshold P'f sets a condition, that a 

classification rule is only then added to the description if 

Pf>P’f. Using the threshold of class frequencies reduces the 

risk of over-specification created by the noise. It is also 

possible that the size of description and time spent to create it 

on the computer diminishes, because the rules are more 

general and not so many fractured frequency tables have to be 

calculated. If pruning is not necessary, then P’f =100%. 

Rule weight. Rule weight Pw indicates a percentage of 

examples covered by complex Comj in whole set of examples 

P
N

NW

Com j

= ∗100%  

If the weight Pw for a complex is less than a threshold P’W, 

then all corresponding elements of the frequency table will be 
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put to zero. It means also that this rule will not be added to the 

description D. If P’W=0, then no pruning takes place. 

Frequency threshold. If elements of the frequency table are 

less than the frequency threshold P’S then there will be no 

search for new complexes. It means that after creating the 

frequency table the command “IF fjk<P’S THEN Let fjk=0” 

would be executed. If P’S=1, then no pruning takes place. 

Deviation. Deviation PD indicates the number of examples 

that are covered by complex but do not belong to the 

corresponding majority class. If the deviation in a set of 

examples extracted by the complex Com is less than the 

deviation threshold P’D, then a rule r=(Com,c) can be added 

into description D. If the deviation threshold is P’D=0, then 

rules will not be pruned. 

Rule length. Rule length PL is the number of selectors Selj 

not equal to the set of values of the attribute tj. If the rule 

length is less than the threshold of the minimal rule length 

PLmin then the rule will not be added into the description D. 

Using the minimal rule length threshold allows to reduce the 

risk of overgeneralization caused by the small size of the set of 

examples or by the lack of negative examples. If PLmin =0, then 

no pruning takes place. 

If the rule length increases over the threshold of the 

maximal rule length PLmax then the corresponding rule will not 

be added to the description D and new frequency table will not 

be calculated. Using the maximal rule length threshold allows 

to reduce the risk of overspecification. If PLmax=M, then all 

possible rules will be generated. 

Common rule. All rules which map to the majority class Cm 

will not be produced by generating the concept description. 

Instead of it a rule r=(Com,Cm) will be added, where 

Com=(A1,…,AM). If no rule exists that covers object that 

ought to be classified then it will be classified as an object 

which belongs to the majority class. So, using the common 

rule we assume that an unknown object belongs most probably 

to the majority class.  

VII. CONCLUSION 

This paper described a monotone system approach for 

inductive learning. A new learning algorithm that rests on the 

theory of monotone systems is presented and discussed. A 

comparison of the effectiveness of the algorithm with ID3 on 

the well-known King-Rook-King task by D. Michie was 

presented. It showed that the base algorithm MONSIL 

produces much more rules than ID3, but it is more exact in 

classification and at the same time it is not very much slower 

than ID3. We can say also that using several pruning 

techniques described in the paper we can do it more effective. 

The main goal of the paper was presentation of monotone 

systems approach for inductive learning, a base algorithm 

MONSA and its development - the algorithm MONSIL. 
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