

Abstract—In this paper we present a new approach for machine

learning (ML) task solution based on Monotone Systems Theory, an

inductive learning algorithm named by the authors as MONSIL

(MONotone Systems in Inductive Learning). It has some advantages

compared with several ML algorithms as rules overlapping, it can use

several pruning techniques etc. The algorithm MONSIL usually

produces more rules than other ML algorithms and it means that it

would be more work-consuming than others, but as our experiments

show, MONSIL works quite effectively.

In the paper we define also main terms of monotone systems

theory, describe how to create monotone system to the data table and

describe main advantages of the monotone systems approach. We

also prove that concept description found by MONSIL is complete

and consistent, explain algorithm’s main steps on examples and

discuss results of experiments comparing MONSIL effectiveness

with well-known ID3.

Keywords—Inductive learning, Machine learning, Machine

learning algorithm, Monotone systems theory.

I. INTRODUCTION

N the domain of inductive learning there are many different

algorithms in use (AQ, CN2, CART, ID3 and Assistant with

their derivatives etc). Such a variety of algorithms shows that

in the domain of inductive learning there are different

problems which are hard to solve by one specific algorithm.

In the inductive learning environment we have problem how

to manage large example sets with an unknown complicated

structure. From our experience we can say that monotone

systems algorithms have been very efficient in ordering large

data tables and for finding regularities from these [1]-[4]. We

try to use techniques that have been successful in data analysis

Manuscript received December 29, 2008. This work was supported in part

by the Estonian Information Technology Foundation under Grant 08-03-00-

36.

P. Roosmann was with the Department of Informatics, Tallinn University

of Technology, Estonia. He is now with the Bank of Estonia (e-mail:

peeter.roosmann@epbe.ee).

L. Võhandu is with the Department of Informatics, Tallinn University of

Technology, Raja 15, 12618 Tallinn, Estonia (e-mail: leov@cc.ttu.ee).

R. Kuusik is with the Department of Informatics, Tallinn University of

Technology, Raja 15, 12618 Tallinn, Estonia (e-mail: kuusik@cc.ttu.ee).

T. Treier is with the Department of Informatics, Tallinn University of

Technology, Raja 15, 12618 Tallinn, Estonia (e-mail:

tarvo.treier@gmail.com).

G. Lind is with the Department of Informatics, Tallinn University of

Technology, Raja 15, 12618 Tallinn, Estonia (corresponding author to

provide phone: +372 620 2306; fax: +372 620 2301; e-mail:

grete@staff.ttu.ee).

in the inductive learning field.

This paper describes very shortly the underlying theory and

describes also how to use monotone systems theory in

inductive learning. A new learning algorithm is presented and

discussed. In the end of paper we make a comparison of the

effectiveness of our algorithm with ID3 on the well-known

King-Rook-King task by D. Michie [5].

II. DEFINITIONS

We mainly originate from the notions of the article [6].

The set of objects X={x1,…,xN} can be described with

attributes t1,…, tM so that every object xi can be described as a

tuple

xi=(t1(xi),…,tM(xi))=(xi1,…,xiM).

For each attribute tj there exists a finite set of values Aj

(1≤j≤M). So the attribute value xij of the object xi belongs to

the set Aj

xij=tj(xi)∈Aj.

Classes C1,…,CK are subsets of X such that

C1∪…∪CK; ∀i∀j, i≠j : Ci∩Cj=∅.

The class value of the object x∈X is cj if xi∈Cj. Let us

denote the set of class values as

C={c1,…,cK}.

A learning example ei is a tuple created from an object xi

and its class value

ei=(xi,c)=((t1(xi),…,tM(xi)),c)=((xi1,…xiM),c).

Let us denote the set of examples E as

E={e1,…,en }.

Let us denote the set of examples of class Cj as

Ej={e|e=(x,cj), x∈Cj, Cj⊆X}.

The positive example ej+ of the class Cj is an example which

belongs to the set Ej, i.e.

ej+∈Ej⊆E.

The negative example ej- of the class Cj is an example

which does not belong to the set Ej i.e.

ej-∉Ej⊆E.

The majority class of set E is the class with the largest

number of examples.

Function d which does map according to every element of

the set X a class value cj is called a concept

 d:X→C; d(xi)=cj ⇔ xi∈Cj.

In inductive learning the learning system should on the base

of the learning examples find a concept description D which

Monotone Systems approach in Inductive

Learning

Peeter Roosmann, Leo Võhandu, Rein Kuusik, Tarvo Treier, and Grete Lind

I

Issue 2, Volume 2, 2008 47

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

maps a class value for any object of the set X (not only for

objects from the example set) D:X→C. Consequently the

inductive learning system should (in ideal case) find on the

base of learning examples such concept description D which

maps to every object the same class value as a concept d

∀x∈X, D(x)=d(x).

The (concept) description is the set of classification rules

D={r1,…,rS}.

A classification rule (decision rule) is an implication where

a condition part is a complex and a conclusion part is a class

name:

rj = “Comj => ck”

or

rj = “if Comj then ck”

or

rj=(Comj,ck).

Complex Comj is a tuple of selectors Seljk (k=1,…,M)

Comj=(Selj1,…,SeljM).

Selector Selj is a subset of the set of values of the attribute tj

Selj⊆Aj.

Description D maps a class value ck for an object xi if it

contains a classification rule rj which maps a class value ck for

the object xi

∃rj∈D, rj(xi)=ck ⇒ D(xi)=ck.

Rule rj=(Comj,ck) maps a class value ck for an object xi if

its complex Comj covers the object xi

rj=(Comj,ck), cover(Comj,xi) ⇒ rj(xi)=ck.

Complex Comj covers an object xi if all its selectors Seljk

cover this object

∀k, 1≤k≤M, cover(Seljk,xi) ⇒ cover(Comj,xi).

Selector Seljk covers an object xi if the value of the attribute

tk of the object xi is in the set Seljk

∀j, 1≤k≤M, xik∈Seljk ⇒ cover(Seljk,xi).

Description D is consistent on the set X’⊆X if all its rules

map the same class value for any object x∈X’

∀ri,rj∈D, x∈X’, X’⊆X, cover(Comi,x), cover(Comj,x) ⇒

ri(x)=rj(x).

Description D is complete on the set X’⊆X if for each

object x∈X’ there exists at least one rule so that its complex

covers this object

∀x∈X’, X’⊆X, ∃rj∈D, cover(Comj,x}

The inductive learning algorithms have to allow us to find

descriptions that are at the same time both consistent and

complete.

III. MONOTONE SYSTEMS BASED INDUCTIVE LEARNING

ALGORITHMS

A lot of initial data and complicated inner structures of

objects are common difficulties for data analysis, data mining,

graph theory etc. This is true also for learning from examples.

In the well-ordering of large and confused data sets the use of

the algorithms of theory of monotone systems has been very

successful and we try to use these ideas in the inductive

learning field as well.

In [7] L. Võhandu described a possibility for quick data

processing methodology, which uses the idea of building

weakly monotone systems on data tables, using empirical

frequencies of discrete attributes’ values. The main mechanism

of using algorithms of the theory of monotone systems is so

called frequency transformation. It means that frequencies of

every attribute value are calculated and values in the data table

(corresponding to the objects) are replaced with their

corresponding frequencies over the data table. Such a

transformation enables one to estimate the degree of

systematic conformity of objects on the set of learning

examples. Both, objects with high conformity (for finding

general rules) and objects with low conformity (for

discovering exceptions and noise) are substantial in inductive

learning.

Some of the attributes are more important in learning from

examples. The estimation of importance of attributes is easy to

do using the frequency transformation.

The frequency transformation and conformity measure

guarantees a simple way to estimate the typicality of objects.

The theory of monotone systems allows one to work with the

tables of frequencies instead of real data tables. The computing

with much smaller tables of frequencies is a lot quicker than

with full data tables, although all the important information for

learning is easily accessible.

A. Main concepts of theory of monotone system

We present the main concepts of the theory of monotone

systems by J. Mullat [8].

Let a finite set X={x1,…, xN} and a function πX on it which

maps to each element x∈X a certain nonnegative number

(weight) πX(x), be given. This function πX is called a weight

function if it is defined on any subset X'⊂X; the number πX'(x)

is called a weight of element x on X'.

A set X with a weight function πX is called a system and is

denoted by S=(X,πX).

The system S'=(X',πX') where X'⊂X is called a subsystem of

the system S=(X,πX).

The system S=(X,πX) is called monotone (more exactly

weakly monotone) if in the case of any x we have

∀X’⊆X; ∀x∈X\{y}, (y∈X): πX’\{y}(x)≤πX’(x).

Function Q that is mapping to every subset X'⊂X of a

monotone system S a nonnegative number Q(X')= min πX'(x) is

called an objective function.

The subsystem S’=(W, πW) of the monotone system

S=(X,πX) with the property that the objective function obtains

a maximal value Q(W)=max Q(X')=max min πX'(x) on it is

called a kernel of the monotone system S: respectively the

value Q(W) is called a measure of the kernel quality. For a

kernel the following relation is valid ∀X’⊆X: Q(X’)≤Q(W).

To use the method of monotone systems in practice we have

to fulfill two conditions:

1) There has to exist a weight function πX(x) which will give

a measure of influence for every element x∈X;

2) There have to be rules to recompute the weights of the

elements of the system S=(X,πX) in case there is a change

Issue 2, Volume 2, 2008 48

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

in the weight of one element x∈X.

These two conditions give a lot of freedom to choose the

weight functions and create formal rules of weight changes in

the system S=(X,πX). The only constraint we have to keep in

mind is that the rules and the weight function have to be

compatible in the sense that after eliminating all elements x

from the system S the final weights of x∈X must be equal to

zero.

Kernels of a monotone system built on the empirical system

create a nice picture of the inner structure of the given

empirical system. We just mention that in general case one

orders all objects of the system S=(X,πX) by eliminating in N

steps all objects using the weight minimality condition. On

every step we eliminate the object with minimal weight value

and recalculate weight of all other remaining objects.

B. Algorithm MONSA

To find all kernels of a monotone system a very effective

polynomial time algorithm named MONSA (MONotone

Systems Algorithm) was created [2], see also [3], [9].

In order to describe that algorithm we use an additional

concept of an intersection.

The intersection H of the set X is any set of attribute values

which belong simultaneously to all objects xi∈X

H={xij|∀k∀i, k≠i, xij=xkj}.

The intersection H describes on the set X a subset XH

XH={xi|∀j, xij∈H}, XH⊆X,

In [2] it is proved that the subset XH⊆X extracted by the

algorithm MONSA is a kernel S’=(XH, πX
H
) of the system

S(X,πX).

In order to use the monotone system method for inductive

learning we use a very simple weight function connected to the

frequencies of system element attribute values. To build a

monotone system on the set of discrete data X we first

calculate the frequency table F: F=||fjk||, j=1,…,M; k=1,…,|Aj|,

where fjk=|Zjk|, Zjk={xi|xij=k}.

After that we define the weight of the element xij on the set

X’ in the system S=(X’,πX’) as πX’(xij)=fjk.

The system with a weight function πX’(xij)=fjk is weakly

monotone since

∀i, ∀j, ∀k: |Zjk\{xi}|≤|Zjk|

i.e. in general, the elimination of an object can only lessen the

frequencies and weights of other objects in the system

S(X,πX).

It is easy to see that the concept of intersection is similar to

the concept of complex, so it would be useful for learning from

examples.

The algorithm for learning from examples built up on the

algorithm MONSA follows:

Initialize description D={}

FOR j=1 TO K (K - number of classes)

Let complex Com=(A1,…,AM) i.e. ∀Selj=Aj

Find Ej={ei|ei∈Cj}

Call procedure MONSA(Com,Cj,Ej)

NEXT j

PROCEDURE MONSA(Com, Class, X)

Find the frequency table F on the set X for

all attributes tj where Selj=Aj

Find the minimal value fmin=fj’k’ from the

frequency table F

Find the maximal value fmax=fj’’k’’ from the

frequency table F

IF fmin=fmax THEN

Add the rule r=(Com,Class) into the

description D

ELSE

WHILE fmax>fmin>0 DO

Let Selj’’=k’’

Call procedure MONSA(Com,Class,X)

Let fj’’k’’=0

END WHILE

END IF

END PROCEDURE

Description produced via such a simple algorithm is

complete, i.e. every example is covered by at least one

classification rule. All intersections are created only by the set

of examples Ej of the class Cj. So, it is possible, that there

exists another set Ei (i≠j), such that it has an identical

intersection with the one extracted from Ej. Consequently, we

cannot declare that the derived description is consistent. There

can exist an example which belongs to both classes Cj and Ci.

In the next section we describe a more powerful algorithm,

which generates complete and consistent concept descriptions.

C. New inductive learning algorithm MONSIL

In the algorithm presented in the section III.B the learning

examples are arranged into classes and all intersections

(complexes) are derived for every subset. Algorithm MONSIL

(MONotone Systems in Inductive Learning) presented in this

section works in a reverse direction, i.e. an intersection

(complex) is derived first using frequency tables and after that

one checks whether all examples covered by it belong to the

same class. If it is true, then the classification rule is added

into the concept description.

Algorithm MONSA presents a very comfortable mechanism

for extracting kernels of the data table. Using the frequency

table intersections are made. If the maximum value of the

weight function is equal to the minimum value of the weight

function, then a kernel can be extracted [2].

In the algorithm MONSIL we first build the frequency

tables in the same way, but the conditions for extracting rules

are different. If a complex Com which covers only examples of

one class Cj is found, then a classification rule r=(Com,cj) is

added into the concept description D.

Unlike in the algorithm MONSA the selectors (elements of

intersections) in MONSIL are chosen according to the minimal

values of the elements of frequency tables. There is no

contradiction with the theory of monotone systems, because

the condition of extracting a kernel remains the same - the

maximal value of the weight function has to be equal to the

Issue 2, Volume 2, 2008 49

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

minimum value of the weight function. Only the order of

extracting a kernel will be different.

In the following algorithm we use:

Com for complex;

Sel for selector.

The algorithm MONSIL:
Initialize the complex Com={& Selk }

Initialize the description D={}

Find the frequency table F on set of learning

examples E

Call procedure MONSIL(Com,F)

The main procedure of the algorithm follows:

PROCEDURE MONSIL(Com,F)

IF ∃j,∀i, cover(Com,xi): xi ∈Cj THEN (i.e.
if all examples covered by a complex

belong to the same class)

Add a rule r=(Com,cj) to the description

D

ELSE

Find the frequency table F’=||f’ij|| on

the set of learning examples E

If fij=0 then let f’ij=0

Find the minimal value f’min=f’j’k’ (over

all f’jk>0)

Find a new complex Com’ so that Selj’=k’

and the other selectors Selj (j≠j’)
are the same as in the complex Com

WHILE f’min>0 DO

Call procedure MONSIL(Com’,F’)

Let f’j’k’=0

Find the new minimal value f’min from

the frequency table F’ and a new

complex Com’

END WHILE

END IF

END PROCEDURE

Theorem 1. Concept description found by the algorithm

MONSIL is complete - every example is covered by at least

one rule.

Proof: Minimal values from the frequency table are

searched by the algorithm as long as there are frequencies

greater than zero. The value of the element of the frequency

table is put to zero iff there exists a rule that corresponds to

this subset of examples.

Theorem 2: Concept description found by the algorithm

MONSIL is consistent - all its rules map the true class value

for any example.

Proof: A rule will be added into the description only if

examples covered by its complex belong to the same class.

This condition of algorithm excludes all rules, that cover also

examples belonging to some other class(es).

D. The first example

In order to demonstrate MONSIL in action the classic J.

R. Quinlan’s example set is used [10]. There are five examples

of class “-” and three examples of class “+”. All examples

have three attributes (see Table I):

A1=“Height” with values “short”, “tall”;

A2=“Hair” with values “dark”, “red”, “blond”;

A3=“Eyes” with values “blue”, “brown”.

Table I. The example set (from Quinlan)

 Height Hair Eyes Class

x1 short blond blue +

x2 tall blond brown -

x3 tall red blue +

x4 short dark blue -

x5 tall dark blue -

x6 tall blond blue +

x7 tall dark brown -

x8 short blond brown -

The concept description generated by ID3 (Quinlan [10])

contains four classification rules:

r1=((Hair=“dark”)=>(Class=“-”));

r2=((Hair=“red”)=>(Class=“+”));

r3=((Hair=“blond”&Eyes=“blue”)=>(Class=“+”));

r4=((Hair=“blond”&Eyes=“brown”)=>(Class=“-”)).

We describe now how MONSIL works on the example set.

We collect all attribute values into one table (Table II) and

count the corresponding frequencies of those values (Table

III).

Table II. The attribute values in the frequency table

 A1 A2 A3 C

v1 short dark blue -

v2 tall red brown +

v3 * blond * *

Table III. The frequency table F1

 A1 A2 A3 C

v1 3 3 5 5

v2 5 1 3 3

v3 * 4 * *

Step 1: We find the minimal value fmin=f22=1 from the

frequency table F1. Since there is only one example (x3)

covered by the complex (Hair=“red”) then the rule

r1=((Hair=“red”)=>(Class=“+”)) will be added into the

description. The value f22 in the frequency table F1 will be put

to zero.

Step 2: The new minimal value fmin=f11=3 will be found. If

there are many equal minimal values we take the first one. For

the three examples x1, x4, x8 covered by the complex

(Height=“short”) the new frequency table is F2 (see Table IV)

and from here for fmin=f21=1 a new rule r2=((Height=“short”&

Hair=“dark”) => (Class=“-”)) will be created. In the frequency

Issue 2, Volume 2, 2008 50

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

table F2 the value f21 will be put to zero.

Table IV. The frequency table F2 (Height=“short”)

 A2 A3 C

v1 1 2 2

v2 0 1 1

v3 2 * *

Step 3: A new fmin=f32=1 will be found. Consequently:

r3=((Height=“short”&Eyes=“brown”)=>(Class=“-”)). In the

frequency table F2 the value f32 will be put to zero.

Step 4: The new fmin=f23=2 will be found. For the examples

x1, x8 covered by the complex (Height=“short”&

Hair=“blond”) a new frequency table F3 (see Table V) will be

created. Here “1\0” means that in the frequency table F2 the

value f32 is already zero, consequently the corresponding

complex (Height=“short”&Hair=“blond”&Eyes=“brown”) is

unnecessary – it would be a specification of already found rule

r3. The minimal value fmin=f31=1 of the table F3 will create the

rule r4=((Height=“short”&Hair=“blond”&Eyes=“blue”)=>

(Class=“+”)). In the frequency table F2 the value f23 will be put

to zero.

Table V. The frequency table F3 (Height=“short”&Hair=“blond”)

 A3 C

v1 1 1

v2 1\0 1

v3 * *

Step 5: For the new fmin=f31=2 (examples x1, x4) in F2 the

frequency table F4 (see Table VI) will be created. “Bringing

zeros down” from F2 prevents finding complexes

(Height=“short”&Eyes=“blue”&Hair=“dark”) which is a

specification of already found rule r2 and (Height=“short”&

Eyes=“blue”&Hair=“blond”) which is a repetition of r4. In F4

there is no fmin≠0 therefore in the frequency table F2 the value

f31 will be put to zero and there is no new fmin≠0 neither. Now

we have exhausted all complexes created from the field f11 and

the value f11 in the frequency table F1 will be put to zero.

Table VI. The frequency table F4 (Height=“short”&Eyes=“blue”)

 A2 C

v1 1\0 1

v2 0 1

v3 1\0 *

Step 6: The new minimal value in F1 is fmin=f21=3, the new

complex is (Hair=“dark”), the new examples are x4, x5, x7 and

the corresponding frequency table is F5 (see Table VII). Here

f41=fmin=3 (f41 means the number of examples in the class “-”),

consequently r5=((Hair=“dark”)=>(Class=“-”)). The value f21

in the frequency table F1 will be put to zero.

Table VII. The frequency table F5 (Hair=“dark”)

 A1 A3 C

v1 1\0 2 3

v2 2 1 0

v3 * * *

Step 7: We will choose a new minimal nonzero in the table

F1 fmin=f32=3. The new complex is (Eyes=“brown”), the new

examples are x2, x7, x8 and the corresponding frequency table

is F6 (see Table VIII). Here f41=fmin=3, consequently

r6=((Eyes=“brown”)=>(Class=“-”)). The value f32 in the

frequency table F1 will be put to zero.

Table VIII. The frequency table F6 (Eyes=“brown”)

 A1 A2 C

v1 1\0 1\0 3

v2 2 0 0

v3 * 2 *

Step 8: The new minimal value in F1 is fmin=f23=4, the new

complex is (Hair=“blond”) and the new examples for learning

are x1, x2, x6, x8, the corresponding frequency table is F7 (see

Table IX).

Table IX. The frequency table F7 (Hair=“ blond”)

 A1 A3 C

v1 2\0 2 2

v2 2 2\0 2

v3 * * *

Step 9: The minimal value in F7 is fmin=f12=2, the

corresponding complex is (Hair=“blond” & Height=“tall”), the

frequency table is F8 (see Table X) and the new fmin=f31=1 in

F8. Consequently: r7 = ((Hair=“blond” & Height=“tall” &

Eyes=“blue”)=>(Class=“+”)). The value f31 in the frequency

table F8 and after that the value f12 in the frequency table F7

will be put to zero.

Table X. The frequency table F8 (Hair=“ blond”&Height=“tall”)

 A3 C

v1 1 1

v2 1\0 1

v3 * *

Step 10: The new minimal value in F7 is fmin=f31=2 and the

new frequency table is F9 (see Table XI). Here f42=fmin=2 and

consequently r8 = ((Hair=“blond” & Eyes=“blue”)=>

(Class=“+”)). The value f31 in the frequency table F7 will be

put to zero. In F7 there is no fmin≠0, so f23 in F1 will be put to

zero.

Issue 2, Volume 2, 2008 51

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Table XI. The frequency table F9 (Hair=“ blond”&Eyes=“blue”)

 A1 C

v1 1\0 0

v2 1\0 2

v3 * *

Step 11: The new minimal value in the frequency table F1 is

fmin=f12=5, the corresponding complex is (Height=“tall”), the

examples are x2, x3, x5, x6, x7 and the new frequency table is

F10 (see Table XII).

Table XII. The frequency table F10 (Height=“tall”)

 A2 A3 C

v1 2\0 3 3

v2 1\0 2\0 2

v3 2\0 * *

Step 12: The minimal value of F10 is fmin=f31=3. The new

complex (Height=“tall”& Eyes=“blue”) and the corresponding

frequency table F11 (see Table XIII) give no new rule.

Table XIII. The frequency table F11 (Height=“tall”&Eyes=“blue”)

 A2 C

v1 1\0 1

v2 1\0 2

v3 1\0 *

In the table F10 no new fmin≠0 can be found, therefore in F1

the value f12 will be put to zero.

Step 13: The complex (Eyes=“blue”) will be generated on

the base of fmin=f31=5 in F1. The corresponding frequency table

is F12 (see Table XIV). The examples belong to both of the

classes and the new minimal value can not be found.

Consequently the frequency f31 in F1 can be put to zero.

Table XIV. The frequency table F12 (Eyes=“blue”)

 A1 A2 C

v1 2\0 2\0 2

v2 3\0 1\0 3

v3 * 2\0 *

Now the concept description is ready because in the

frequency table F1 there is no minimal value different from

zero.

So altogether eight rules were generated by the algorithm

MONSIL:

r1=((Hair=“red”)=>(Class=“+”));

r2=((Height=“short”&Hair=“dark”)=>Class=“-”);

r3=((Height=“short”&Eyes=“brown”)=>(Class=“-”));

r4=((Height=“short”&Hair=“blond”&Eyes=“blue”)=>

(Class=“+”));

r5=((Hair=“dark”)=>(Class=“-”));

r6=((Eyes=“brown”)=>(Class=“-”));

r7=((Height=“tall”&Hair=“blond”&Eyes=“blue”)=>

(Class=“+”));

r8=((Hair=“blond”&Eyes=“blue”)=>(Class=“+”)).

Now we apply the second procedure for lessening a number

of rules. If there are two rules ri and rj in the description so

that: ri≠rj: Comi⊆Comj then the rule rj can be excluded from

the description. If any example is covered by such a rule rj then

it is also covered by the rule ri.

So for our example the rules r2, r3, r4 and r7 can be excluded

from our description:

rule r1 covers x3 of Class “+”;

rule r5 covers x4, x5 and x7 of Class “-”;

rule r6 covers x2, x7 and x8 of Class “-”;

rule r8 covers x1 and x6 of Class “+”.

The resulting description is complete and consistent.

It is easy to check that rules r1, r5, r8 correspond to the ID3

rules, but the rule r6=((Eyes=“brown”)=>(Class=“-”)) is

simpler than ID3 rule ((Hair=“blond”&Eyes=“brown”)=>

(Class=“-”)). It covers x7 which is already covered by rule r5

(overlapping). ID3 covers objects only once.

E. The second example

If we use initial data table with different order of attributes

(columns): A2 (Hair) – A3 (Eyes) – A1 (Height), then the

search tree traversed by the algorithm is different (stricken-

through text shows the places where zeros “brought down”

from upper frequency table prevent entering corresponding

(redundant) branches of the search tree):

Hair="red" (r1)

Hair="dark" (r2)

Eyes="brown" (r3)

Height="short"

&Hair="dark"

&Eyes="brown"

&Hair="blond"

&Eyes="brown"

&Eyes="blue" (r4)

&Eyes="blue"

&Hair="dark"

&Hair="blond"

Hair="blond"

&Eyes="brown"

&Height="short"

&Eyes="blue" (r5)

&Height="tall"

&Eyes="blue"

&Eyes="brown"

Eyes="blue"

&Hair="dark"

&Hair="red"

&Hair="blond"

&Height="short"

&Height="tall"

&Hair="dark"

Issue 2, Volume 2, 2008 52

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

&Hair="red"

&Hair="blond"

Height="tall"

&Hair="dark"

&Hair="red"

&Hair="blond"

&Eyes="blue"

&Eyes="brown"

As a result we get five rules:

r1=((Hair=“red”)=>(Class=“+”));

r2=((Hair=“dark”)=>(Class=“-”));

r3=((Eyes=“brown”)=>(Class=“-”));

r4=((Height=“short”&Hair=“blond”&Eyes=“blue”)=>

(Class=“+”));

r5=((Hair=“blond”&Eyes=“blue”)=>(Class=“+”)).

One of them is redundant: r4 is a specification of r5. The

example showed that the result of the algorithm MONSIL

depends on used order of attributes’ values. But after using the

second procedure for lessening the number of rules we always

get the same result. For our example it is four rules as in case

of previous example:

rule r1 covers x3 of Class “+”;

rule r2 covers x4, x5 and x7 of Class “-”;

rule r3 covers x2, x7 and x8 of Class “-”;

rule r5 covers x1 and x6 of Class “+”.

IV. EFFECTIVENESS OF MONSIL

D. Michie has described in [5] an experiment in the Turing

Institute comparing different algorithms of inductive learning.

We use a similar King-Rook-King task to compare the

effectiveness of the algorithms MONSIL and ID3.

D. Michie took a set of random positions with three pieces

on a chess-board - white king, white rook and black king as a

set of objects. The position of each piece on the board is

described by two attributes. In some positions white’s move is

allowed by chess laws, in some positions not. So, two classes

can be distinguished. The possible number of different

positions is 64
3
=262144.

In our experiment three similar training suites consist of five

sets of positions which were randomly generated as training

data examples and two test data suites consist of two sets of

examples which were randomly generated for testing. All sets

of positions are generated independently that means bigger

sets may not consist of smaller sets and the same size sets in

different suites are not the same.

We have split our test scenario into two stages. In both

stages we have several training data example sets and one

testing set. All rules found by both learning algorithms for

every training data example set are tested separately. The

speed of generating rules, the number of rules and the

exactness of predicting were estimated.

In the first stage we used two training data sets from each

(three) training suite, first one containing 1000 examples and

second one containing 2000 examples. All (2x3) found rule

sets from each training suite were tested with one set of 200

positions.

In the second stage we used the same two training data sets

from each training suite, which were used already in the first

stage. In addition, we used three training-data sets from each

training suite, where accordingly 3000, 4000 and 8000

examples were present. The size of the testing set was 400

positions.

In our experiment the test scenario was executed two times.

Only the test data suite was replaced on the second time. In

both cases the same training suites were used. In the first

execution, test data suite 1 was used and in the second run we

used test data suite 2.

The results of the experiments with both MONSIL and ID3

base algorithm are presented in the five following tables and

illustrated with four figures. Table XV holds the average speed

of generating rules, Tables XVI, XVII and XVIII hold the

average exactness of predictions and Table XIX holds the

average number of found rules. Figure 1 shows trends of

growth of both algorithms´ average execution times while the

learning examples were growing. Figure 2 shows the ratio

between MONSIL and ID3 algorithms´ average execution

times. Figure 3 shows trends of growth of both algorithms´

average number of rules while the learning examples were

growing. Figure 4 shows the ratio between MONSIL and ID3

algorithms´ average number of rules. (Both algorithms are

implemented in Java. The computer used in the experiment

was Pentium M 2,0GHz.)

We notice that the MONSIL algorithm is more exact in

classification and not very much slower than the ID3 algorithm

regardless of fact that it extracts much more rules.

Table XV. Algorithms’ average execution times (s)

Learning

examples

1000 2000 3000 4000 8000

ID3 0,06 0,12 0,17 0,22 0,44

MONSIL 0,16 0,28 0,34 0,54 0,69

Ratio 2,7 2,3 2,0 2,5 1,6

Issue 2, Volume 2, 2008 53

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Algorithms’ average execution times

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1000 2000 3000 4000 8000

Learning examples

T
im

e
 (

s
)

ID3 MONSIL

Fig. 1. Algorithm’s average execution times

Ratio of execution times

0,0

0,5

1,0

1,5

2,0

2,5

3,0

1000 2000 3000 4000 8000

Learning examples

ra
ti

o
 (

M
O

N
S

IL
/I
D

3
)

Fig. 2. Ratio of execution times

Table XVI. Algorithms’ average exactness of predictions (%) on test

suite 1

Table XVII. Algorithms’ average exactness of predictions (%) on test

suite 2

Table XVIII. Average exactness (%)

Table XIX. Average number of rules

Number of

examples

1000 2000 3000 4000 8000

ID3 579 1126 1685 2160 4334

MONSIL* 8966 15709 22284 28488 43600

Ratio 15,5 14,0 13,2 13,2 10,1

* In the Table XIX procedure for lessening a number of

rules was not used.

Average number of rules

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1000 2000 3000 4000 8000

Learning examples

N
u

m
b

e
r

o
f

ru
le

s

ID3 MONSIL

Fig. 3. Average number of rules

 Learning

examples

ID3

%

MONSIL

%

1000 58,67 64,00 First

stage 2000 59,00 64,00

1000 53,75 62,00

2000 58,58 64,75

3000 55,75 65,75

4000 58,83 67,75

Second

stage

8000 58,08 69,75

T
e
st
 s
u
it
e
 1

 Average 57,52 65,43

 Learning

examples

ID3

%

MONSIL

%

1000 55,67 62,00 First

2000 62,33 67,00

1000 56,58 63,00

2000 57,17 65,75

3000 55,42 66,75

4000 58,83 69,50

Second

8000 59,17 71,25

s u

 Average 57,88 66,46

Test set ID3 MONSIL

Average of test suite 1 57,52 65,43

Average of test suite 2 57,88 66,46

Total average 57,70 65,95

Issue 2, Volume 2, 2008 54

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

Ratio of numbers of rules

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

1000 2000 3000 4000 8000

Learning examples

ra
ti

o
 (

M
O

N
S

IL
/I
D

3
)

Fig. 4. Ratio of number of rules

V. ADVANTAGES AND DISADVANTAGES OF MONSIL

We saw in chapter III.D that it can be happen that two or

more rules cover the same object. Such a situation is called an

overlapping.

“Classical” algorithms do not take this situation into

account. If a rule is added to the description, then

corresponding examples will not be taken into consideration

during generating next rules.

The use of frequency table technique allows to overcome

this disadvantage. So, in case of overlapping the rule will be

generated on the basis of larger set of examples than

“classical” algorithms do. In the example of the section III.D

the learning example x7 is covered by complexes of the rules r6

and r5.

It is easy to discover the contradictory examples in

MONSIL i.e. the situation where the objects with identical

descriptions (complexes) belong to different classes. It is done

as follows: if we have reached to such node of a search tree,

where it is not possible to make the next extract (all the

attributes are used already, but objects still belong to different

classes), then we can say that these examples are

contradictory.

In the case of large sets of examples algorithm MONSIL is

quite quick (as we could see in the previous section). Most of

its speed comes thanks to the circumstance that a frequency

table allows to estimate the conformity of attributes in a very

simple way. Using the frequency table method allows to

reduce necessary memory space dramatically in real

applications as well.

The other difficult problem - noise - can be taken into

account by different pruning techniques. Those techniques

allow to choose different parameters and values of them. In

our examples and experiments presented in the paper we did

not use any pruning techniques.

MONSIL extracts a lot of classification rules. The exclusion

of excessive rules from the description takes some additional

time proportional to the square of the rules number.

VI. POSSIBLE MODIFICATIONS OF MONSIL USING PRE-

PRUNING TECHNIQUES

The completeness and consistency of a description are very

important in the algorithm MONSIL, but it is much more

important in the practical systems of learning from examples

that as many as possible objects will be classified exactly.

Usually, learning examples presented to the system form only

a small part from whole possible example set and there is often

different level of noise in them. A consistent and complete

description found for the set of examples does not have to be

the best one. Giving up those strict requirements we can often

find rules that guarantee exact classification on many more

objects from the same expert field.

The main technique to facilitate work with noisy and large

sets of examples is pruning. It can reduce the size of the

decision tree or of the set of examples, making at the same

time the prediction more exact. If by generating the concept

description the requirements of consistency and completeness

are given up, then we are dealing with pre-pruning. If changes

affecting completeness and consistency are made in an already

generated description, then such a technique is called post-

pruning. Pre-pruning techniques are unique for different

algorithms while post-pruning techniques are similar.

In the following we present some pre-pruning techniques

one can use in our algorithm MONSIL. There are six different

techniques of pre-pruning based on following indicators:

1) Class frequency,

2) Rule weight,

3) Frequency threshold,

4) Deviation,

5) Rule length,

6) Common rule.

Class frequency. Class frequency Pf the indicates

percentage of examples of the current majority class in the

subset of examples

P
N

Nf

m
= ∗100%

where Nm=max |Ej| - number of examples in the majority class.

Class frequency threshold P'f sets a condition, that a

classification rule is only then added to the description if

Pf>P’f. Using the threshold of class frequencies reduces the

risk of over-specification created by the noise. It is also

possible that the size of description and time spent to create it

on the computer diminishes, because the rules are more

general and not so many fractured frequency tables have to be

calculated. If pruning is not necessary, then P’f =100%.

Rule weight. Rule weight Pw indicates a percentage of

examples covered by complex Comj in whole set of examples

P
N

NW

Com j

= ∗100%

If the weight Pw for a complex is less than a threshold P’W,

then all corresponding elements of the frequency table will be

Issue 2, Volume 2, 2008 55

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

put to zero. It means also that this rule will not be added to the

description D. If P’W=0, then no pruning takes place.

Frequency threshold. If elements of the frequency table are

less than the frequency threshold P’S then there will be no

search for new complexes. It means that after creating the

frequency table the command “IF fjk<P’S THEN Let fjk=0”

would be executed. If P’S=1, then no pruning takes place.

Deviation. Deviation PD indicates the number of examples

that are covered by complex but do not belong to the

corresponding majority class. If the deviation in a set of

examples extracted by the complex Com is less than the

deviation threshold P’D, then a rule r=(Com,c) can be added

into description D. If the deviation threshold is P’D=0, then

rules will not be pruned.

Rule length. Rule length PL is the number of selectors Selj

not equal to the set of values of the attribute tj. If the rule

length is less than the threshold of the minimal rule length

PLmin then the rule will not be added into the description D.

Using the minimal rule length threshold allows to reduce the

risk of overgeneralization caused by the small size of the set of

examples or by the lack of negative examples. If PLmin =0, then

no pruning takes place.

If the rule length increases over the threshold of the

maximal rule length PLmax then the corresponding rule will not

be added to the description D and new frequency table will not

be calculated. Using the maximal rule length threshold allows

to reduce the risk of overspecification. If PLmax=M, then all

possible rules will be generated.

Common rule. All rules which map to the majority class Cm

will not be produced by generating the concept description.

Instead of it a rule r=(Com,Cm) will be added, where

Com=(A1,…,AM). If no rule exists that covers object that

ought to be classified then it will be classified as an object

which belongs to the majority class. So, using the common

rule we assume that an unknown object belongs most probably

to the majority class.

VII. CONCLUSION

This paper described a monotone system approach for

inductive learning. A new learning algorithm that rests on the

theory of monotone systems is presented and discussed. A

comparison of the effectiveness of the algorithm with ID3 on

the well-known King-Rook-King task by D. Michie was

presented. It showed that the base algorithm MONSIL

produces much more rules than ID3, but it is more exact in

classification and at the same time it is not very much slower

than ID3. We can say also that using several pruning

techniques described in the paper we can do it more effective.

The main goal of the paper was presentation of monotone

systems approach for inductive learning, a base algorithm

MONSA and its development - the algorithm MONSIL.

REFERENCES

[1] L. Võhandu, “Fast Methods in Exploratory Data Analysis,” in

Transactions of Tallinn Technical University, No 705, 1989, pp. 3-13.

[2] R. Kuusik, “The Super-Fast Algorithm of Hierarchical Clustering and

the Theory of Monotone Systems,” in Transactions of Tallinn Technical

University, 734, 1993, pp. 37-62.

[3] L. Võhandu, R. Kuusik, A. Torim, E. Aab, G. Lind, “Some Monotone

Systems Algorithms for Data Mining,” in WSEAS Transactions on

Information Science and Applications, Issue 4, Vol. 3, April 2006, pp.

802-809.

[4] I. Liiv, R. Kuusik, L. Võhandu, “Analytical CRM with conformity

analysis,” in WSEAS Transactions on Systems and Control, 2(2), 2007,

pp. 155-161.

[5] S. Muggleton, M. Bain, J. Hayes-Michie, D. Michie, “An Experimental

Comparison of Human and Machine Learning Formalisms,” in

Proceedings of the Sixth International Workshop on Machine Learning,

Ithaca, NY: Morgan Kaufmann, 1989, pp. 113-118.

[6] M. Gams, N. Lavrac, “Review of Five Empirical Learning Systems

within a Proposed Schemata,” in I. Bratko, N. Lavrac (Eds.), Progress

in Machine Learning, Proceedings of EWSL 87: 2nd European Working

Session on Learning, Bled, Yugoslavia, May 1987. Sigma Press,

Wilmslow, 1987, pp. 46-66.

[7] L. Võhandu, “Express Methods of Data Analysis,” in Transactions of

Tallinn Technical University, No. 464, 1979, pp. 21-37 (in Russian).

[8] I. Mullat, “Extremal Monotone Systems,” in Automation and Remote

Control, No 5, pp. 130-139, 1976 (in Russian).

[9] R. Kuusik, G. Lind. Algorithm MONSA for All Closed Sets Finding:

basic concepts and new pruning techniques. WSEAS Transactions on

Information Science and Applications, 5(5), May 2008, pp. 599-611.

[10] J. R. Quinlan, “Learning efficient classification procedures and their

application to chess end games,” in J. G. Carbonell, R. S. Michalski, T.

M. Mitchell (Eds.), Machine Learning. An Artificial Intelligence

Approach, Springer-Verlag, 1984, pp. 463-482.

Issue 2, Volume 2, 2008 56

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS

