
 
 Abstract—The Growth of a non- constant analytic function of 
several complex variables is a very classical concept, but   for a finite 
domain it is a recent concept initiated by Juneja and Kapoor[1],and 
later on substantiated by Sinha[2]. A Unit Polydisc is the most 
fundamental example of a Compact Riemann Surface, there is an 
upsurge in the area as being reflected in[4,5]. This is a very important 
concept and its applications can  also be seen in Complex Analytical 
Dynamics. However in this present article we shall be concentrating 
on the growth parameter “type” for such functions and also describe 
its Geometrical Properties.We have investigated upon some finer 
results on the growth of slowly varying functions. 
The above concept of Growth can also be utilized in Computer aided 
Tomography[7]. 
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1. INTRODUCTION 
n this section we first define a class )(βE  where 

.0L∈β The class of such functions 0L  was defined by 
Juneja  Kapoor[1] and Sinha in [2]. Such classes of functions 
were initiated by Seremeta [6]  and then has been used 
extensively by Sinha[3]. To study the functions having fast or 
slow growths  an important concept of (p,q) order and type 
was studied by many authors in the past. In the present paper 
we have introduced the concept of (q,1) order and type for 
Functions having fast growth.  The above results can also be 
used in Computer Aided Tomography as, by the famous 
Riemann- Mapping Theorem any simply connected domain 
can be conformally mapped onto Unit- Disc,so we can project 
the three dimensional Tumour in a two dim.plane and study its 
growth through the above methods and then we can apply 
inverse transform to study its Growth[7]. Work in this 
direction is in progress.  
Let nCD ⊂  be a domain. 
 
Definition 1: 
 Let )(βE  be a class of functions )(Rϕ  satisfying the 
following 
Properties, 
1. )(Rϕ  is upper semi-continuous on .D  

2. )(Rϕ  is monotone, nondecreasing in each of the 

variables .,..., 21 nRRR  
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3. )(Rϕ  is pluriconvex in the variables, 

))1(log()),...1(log()),1(log( 21 nRRR −−−−−− βββ , 
that is to say for every  
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 Upon substituting xx =)(β , the identity function the class  

reduces to the class of functions )(Rϕ  defined by Juneja and 
Kapoor[1]. 
Definition 2: Let 10),(max),( <<=

⊂
tRtM

nDR
D ϕϕ  be the 

maximum modulus of the function )(Rϕ , and D is the Unit 
Polydisc. 
The generalized order for )(Rϕ  is defined as, 
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 here .0Land ∈Δ∈ βα  
 
Example: 

[ ]))1(log())1(log(),( 21
1

21 RRRR −−−−= − ββαϕ .It 
can be easily 
seen that the above function has generalized order  2. 
Definition 3: Let Δ∈α   and   ∞<< ρ0   be the 
generalized type of  

)~(Zf  is defined as, )(βE  
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Definition 4: For Δ∈α   and 0L∈β , the generalized type 
with respect to one of the variables keeping the others fixed is 
defined as  
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 Definition 5: Let 0Land ∈Δ∈ βα  and let 

)()( βϕ ER ∈  be a function of finite generalized type. Let   
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Properties of σB  

1.The set σB  is octant- like. 

2. the boundary points of the set )(ϕσB  form a certain 

hypersurface )(ϕσσ SS =  which divides the hyperoctant 
nR+  into 

Two parts, one in which the inequality (1.5) is true and the 
other 
In which it is false.Thus we call it the hypersurface of 
generalized associated typesof the plurisubharmonic function 
in the class )(βE , and any system of numbers 

∈),...,( 21 nσσσ )(ϕσS  
will be called a system of generalized associated types of the 
function. 
Remark: Considering 

),(log)()(,log)( fRMRandxxandxx === ϕβα  
where 

)~(max),( ZffRM
ii Rz =

= , for every i, the above definition 

coincides with that of Juneja and Kapoor[1]. 
Definition 6: For a function )~(Zf  analytic in a unit polydisc 
D we define, 
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Definition 7:For a function ∞<< Df ρ0, ; 
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Definition 8: Let 0Land ∈Δ∈ βα , then the generalized 
order of )()( βϕ ER ∈ with respect to the 

variable iR (keeping the others ji ≠ fixed) is defined 

as, 
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II .MAIN RESULTS 
 

Theorem 2.1: The generalized order can be obtained from the 
Definition of Generalized  Type. 
Proof: From the definition of limit superior we have for any 

,0>ε  
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By the properties of Δ∈α  we can easily obtain, 
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Combining Eqns. (2.2)  and  (2.3) we arrive at our result. 
Theorem 2.2:  Let )~(Zf  be an analytic function having 
generalized  order  
ρ  and type σ  then ,σδ ≤  where; 
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δσ ≤ , hence  ,δσ =  provided the growth of the function 

[ ]Rlog1 ρα −  is slower than the growth of 
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[ ].)1log(1 R−−− ρα  
Proof: The proof  follows from the definitions of limit 
superior as well as careful use of Cauchy’s Inequality.  
Remark: The above Theorem holds true for analytic functions 
having positive order only. 
Theorem 2.2: Let 0Land ∈Δ∈ βα  then   nσ  is a 

Convex Function of  ).1log(),...1log( 11 −−− nRR ββ  
Proof: Choosing, 

RstandniforRsRt nniiii ==−=′== ),1...(2,1,  
and putting in Eqn.(1.1) we get, 
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Proving the assertion. 
Theorem 2.3:  Let  )()( βϕ ER ∈  and  0

σB  be the domain 
consisting of the interior points of the corresponding set 

.σB Then the image of the domain .σB under the map  

ibb ii ∀−=′− ))1(log()1( β  is  a convex domain provided 

.
2
1 ibi ∀<  

Proof: Exploiting the inequality(1.1)  with the following 
values of ii sandt   as, 
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But )1log()1()1log( iii Rst −=−+− βμβλβ  
 Therefore the result is obtained upon substituting the above 
values of ).1.1(insandt ii  
 Remark:  The above Theorem is significantly different from 
what has been obtained in [1]. 
Lemma 2.1: Let .Δ∈α  then the necessary condition for a 
point ( ) n

n Rbbb +∈,..., 21  to lie in the interior of the set 

))((log RMB fσ  is  
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From Cauchy’s Inequality, 
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And choosing iR  to be the root of the equation, 
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Where from the result follows upon taking limit superior. 
Theorem 2.4:For the analytic function )~(Zf  
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Proof: (if part) 
We consider the function ),~( wZϕ  of (n+1) 
complex variables and write  it as 
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Which upon majorising under limit superior results in  
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is analytic in D. Now upon using Definition 6 
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Theorem 2.4: For a function )~(Zf , analytic in D 
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Proof: The proof follows the same pattern 
of the proof of Theorem 2.5 and hence is omitted. 
 
Theorem 2.5: Let  Δ∈α  and is of the form 

))1(log()( xx −=λα , then for any 0>λ  and 
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and  using the inequality (1.1) with the 
above values, and upon solving the nonlinear 
equation ))1(log()( xx −=λα  for x  we 
arrive at our result by using the definition of limit 
superior. 
 

III. CONCLUSION 
 

(a)  The Growth of a Class of plurisubharmonic functions are 
extensively used in  the Value Distribution Theory of  
functions of Several Complex Variables. 
(b)  Plurisubharmonic functions are the higher dimensional 
generalization of sub harmonic functions. 

(c) In complex analysis, plurisubharmonic functions are used 
to describe pseudo convex domains, domains of holomorphy 
and Stein manifolds. 
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