
 

 

  
Abstract—Some properties of near-Toeplitz tridiagonal matrices 

with specific perturbations in the first and last main diagonal entries 
are considered. Applying the relation between the determinant and 
Chebyshev polynomial of the second kind, we first give the explicit 
expressions of determinant and characteristic polynomial, then 
eigenvalues are shown by finding the roots of the characteristic 
polynomial, which is due to the zeros of Chebyshev polynomial of the 
first kind, and the eigenvectors are obtained by solving symmetric 
tridiagonal linear systems in terms of Chebyshev polynomial of the 
third kind or the fourth kind. By constructing the inverse of the 
transformation matrices, we give the spectral decomposition of this 
kind of tridiagonal matrices.  Furthermore, the inverse (if the matrix is 
invertible), powers and a square root are also determined. 
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I. INTRODUCTION 
RIDIAGONAL matrices arise frequently in many areas of 
mathematics and engineering [1]-[2]. In some problems in 

numerical analysis one is faced with solving a linear system of 
equations in which the matrix of the linear system is tridiagonal 
and Toeplitz, except for elements at the corners. For example, 
for the homogeneous difference system  
  (1) 
Where  is a nonsingular constant matrix and  is the set of all 
integers including zero, the general solution can be written as 

, , where  is an arbitrary constant vector [3]. 
Thus, to obtain the general solution of the above homogeneous 
difference system, we need to give the general expression for 

. 
J. Rimas computed arbitrary positive integer powers for 
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in [4]-[5] and presented , here  

  

 is the eigenvalue of the matrix ,  is the 
order of the matrix . Moreover, even order matrix  is 
nonsingular and the above expression can be applied for 
computing negative powers of . Taking , he got the 
following expression for elements of the inverse matrix : 

  

But odd order matrix  is singular and its inverse and negative 
powers do not exist. 

J.  Gutiérrez-Gutiérrez [6] studied the entries of positive 
integer powers of an  complex tridiagonal Toeplitz 
(constant diagonals) matrix 

  

where . He gave the following result: 
Consider ,  and . Let 

,  and 

 for every . Then  

The spectral decomposition of near-Toeplitz 
tridiagonal matrices 
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for all  and , where  denotes the largest 
integer less than or equal to . 

In this paper, we consider the near-Toeplitz tridiagonal 
matrices of order  with specific perturbations 
in the first and last main diagonal entries as follows: 

  (2) 

where , and , . 
If , then  is  symmetric. For a general real symmetric 

matrix is orthogonally equivalent to a symmetric tridiagonal 
matrix, so solving the spectral decomposition problem of the 
symmetric tridiagonal matrices makes a contribution to that of 
the general real symmetric matrices. 

The outline of the paper is as follows. In next section, we 
review some basic definition and facts about the Chebyshev 
polynomials and an equality on the sum of trigonometric 
function without proof. In section 3, we first compute trace, 
determinant, the characteristic polynomial, the eigenvalues and 
eigenvectors by using root-finding scheme and solving 
symmetric tridiagonal linear system of equations respectively, 
which are different from the techniques used in [7]. As we all 
know, the powers are easily determined if we know the spectral 
decomposition. Therefore, we present the spectral 
decomposition by constructing the inverse of the similarity 
matrix of which column vectors are the eigenvectors. On the 
grounds of the spectral decomposition, we discuss the 
conditions under which  can be unitarily diagonalizable. In 
addition, we give some conclusions when  is a symmetric 
tridiagonal matrix. In section 4, using the results in section 3, we 
present the powers, inverse (if invertible) and a square root of . 
In the end, to make the application of the obtained results clear, 
we solve a difference system as example and verify the result 
obtained by J. Rimas is a special case of our conclusion. 
Moreover, the algorithms of Maple 13 are given. 

II. PRELIMINARIES 
There are several kinds of Chebyshev polynomials. In particular 
we shall introduce the first and second kind polynomials  
and , as well as a pair of related (Jacobi) polynomials 

 and , which we call the Chebyshev polynomials of 
the third and fourth kinds [8]. 
Definition 1 The Chebyshev polynomials , ,  
and  of the first, second, third and fourth kinds are 
polynomials in  of degree  defined respectively by 

  

when  
Lemma 1 The four kinds of Chebyshev polynomial satisfy the 
same recurrence relation 
  
with  in each case and , , , 

, respectively. Furthermore, three relationships can be 
derived from the above relations as follows 

  
By expanding the following determinant along the last row 

and using the three-term recurrence for  in Lemma 1, we 
find  can be expressed by the determinant, namely, 

  

where . 
Lemma 2 The equality 

  

holds for every , . 

III. SPECTRAL DECOMPOSITION 
Employing Laplace expansion, the expression of  in 

terms of determinant, and the relation between the Chebyshev 
polynomial of the first kind and second kind, we have the 
following assertions. 
Lemma 3 If  is a tridiagonal matrix of the form (2), then 

  

and the characteristic polynomial of  is 

  (3) 

where  is the identity matrix. 
Proof : The trace of   is equal to the sum of all the diagonal 
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entries, so we have  from the form of . 
By expanding the determinant of  along the first column 

and the last column, we have 
 

  

According to the expression of  in terms of determinant 
and Lemma 1, we have 

  

Similar to the determinant, the characteristic polynomial can 
be calculated.                                                                     

Consequently, the eigenvalues of  can be obtained through 
computing the zeros of the characteristic polynomial (3). In 
view of the roots of  are ,  

, so the eigenvalues of  are 

  

From this, we can obtain the following conclusions: 
1) The expression of determinant can be also written as 

, namely, 

 . 

2) If  is even, then , ; If  
is odd, then , , and 

. From this, we can again obtain . In 
addition, the spectral radius of  will converge to 

 as . 
3) If , then  is 

invertible. 
The corresponding eigenvectors of  can be attained via 

solving the following equation system 
  (4) 
in which the coefficient matrix  is nonsymmetric. It is 
more convenient to solve the equation system if we change the 
coefficient matrix into a symmetric matrix. 

Let  = diag  and . 
Suppose  solves equations 

  (5) 
which can be deduced equivalently to the linear system of 
equations with the symmetric tridiagonal matrix, then  
is a solution of (4). 

When , the equation (5) can be written as 

  

Solving the above equations, we have some solutions 
  
where . 
Hence, solutions of the characteristic equation (4), the 
eigenvectors of  with , are 
  
                                                             
where . 

When , the equation (5) can be written as 

  

The system has solutions 
  
Therefore, the solutions of the characteristic equation (4) are 

  
which are the eigenvectors of  with . 

Using the above results, we give the spectral decomposition 
of  and demonstrate it. Note that  
and  are eigenvalues of  in the remainder 
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of the paper. We introduce the fact about the spetral 
decomposition in [9] as the following lemma. 
Lemma 4 If  has  linearly independent eigenvectors 

, form a nonsingular matrix  with them as 
columns, then , where 

  

and  are eigenvalues of . 
Theorem 1 If  has the form (2) with . Then 

, where

  

 and ,  
Proof : From Lemma 4, we know that the only thing we need to 
do is to show that , that is,  is 
the inverse of . 
If , then 

  

From Lemma 2, we have 

  

Then . 
If , then 

  

According to Lemma 2, we have  
 

Thus . Therefore, , 
and  is the inverse of .  is 
the spectral decomposition of  with  .               
Corollary 1 Let  be a tridiagonal matrix of  the form (2) with 

. If , then  can be unitarily diagonalizable. 
Proof : A scalar multiple of an eigenvector of  is still an 
eigenvector of , So 

 
                                                             
are a set of eigenvectors of . Let  be a matrix with  as 
columns. Namely, 

  

If we want to prove that , then what we need to do 
is to verify that . Obviously, 

  

If , then 

Issue 4, Volume 7, 2013 118

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



 

 

  

From the proof of Theorem 1, we have 

  

Since , . Thus, . 
If , then  

  

by the proof of Theorem 1.  
From the above discussion, we know that the transformation 
matrix  is unitary and  with  can be unitarily 
diagonalizable when .                                                 
Theorem 2 If  is a tridiagonal matrix of the form (2) with 

. Then , where  consists of 
the eigenvectors of , i.e., 

  

Moreover,  and , 
. 

Proof : The  technique used in the proof is the same as Theorem 
1. First, we derive that 

 

According to Lemma 2, we obtain the following conclusions: 
If , then  

  
following from 

  

If , then  
 

 
and . Thus, , and 

 is the inverse of . Hence 
 is the spectral decomposition of  

with .                                                                         
Corollary 2 Let  be a tridiagonal matrix of the form (2) with 

. If , then  can be unitarily diagonalizable. 
Proof : First we know that 

 
are a set of eigenvectors of . Let  be a matrix with  as 
columns. Namely, 

 

In order to prove that , we need to demonstrate that 
. 

 

According to the proof of Theorem 2, we have the following 
arguments. 
If , then  

  

If , then  

  

Furthermore,  for . Therefore, , 
that is  is unitary. Then  with   can be unitarily 
diagonalizable when .                               
Corollary 3 Let  be a tridiagonal matrix of the form (2) with 

 or . If , then two arbitary tridiagonal 
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matrices  and  with this kind form are simultaneously 
diagonalizable, that is, there is a single similarity matrix  such 
that  and  are both diagonal. 
Proof : If , then  is the identity matrix in Theorem 1 and 
Theorem 2. The conclusion can be obtained directly from 
Theorem 1 and Theorem 2. 
Corollary 4 Let  be a family of the matrices of the form (2) 
with ,  or . Then  is a simultaneously 
diagonalizable family and a commuting family. 
Proof : From Corollary 3, we know that  is a simultaneously 
diagonalizable family, that is, for any , there exists a 
single similarity matrix  such that  and 

, where ,  are diagonal matrices. Then 

  
Therefore,  is not only a simultaneously diagonalizable 

family but also a commuting family.                                        

IV. POWERS AND INVERSE 
As we all know, if the matrix  has spectral decomposition 

, then the th  power of  can be obtained 
by , where  is diagonal matrix, the diagonal 
entries of which are eigenvalues of .  is the transforming 
matrix formed by eigenvectors of   with them as columns [9]. 
In the previous section, we have stated the spectral 
decomposition of . In this section, we calculate the powers, 
inverse and a square root of  . 
Theorem 3 If  has the form (2) with  and 

, . Then the  entry of 
 is 

  

Proof : According to Theorem 1, we have 

  

The proof is completed.                                                           
Theorem 4 If  has the form (2) with  and 

, . Then the  entry of 
 is 

  

Proof : According to Theorem 2, we have 

  

The proof is completed.                                                            
Corollary 5 Let  be a tridiagonal matrix of the form (2) with 

 and , . If 

,  , then  can be taken 
negative integer in Theorem 3 and  

  

Moreover, the matrix  

  

is a square root of  with . 
Corollary 6 Let  be a tridiagonal matrix of the form (2) with 

 and , . If 
 , , then  can be taken 

negative integer in Theorem 4 and 

  

In addition, the matrix  

  

is a square root of  with . 

V. EXAMPLES 
Example 1 Consider the matrix 

 

it is a special case of  we discussed in this paper. On the 
grounds of the conclusions in preceding part, we derive the 
following conclusions: 
1) The eigenvalues of  are , 

. The corresponding eigenvectors are 

where . Moreover, if  is even, then 
, ; If  is odd, then 

,   and . From 
this, we deduce that if  is even, then  is invertible and if  

 is odd, then   is singular. 
2) The trace of is . The determinant of  is 

. In addition, if  
is odd, then . If , then 

; If , then  . 
3) Let , . The  entry of 

 is 

  

If  is even, then the inverse of  is 

  

        The matrix  
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is a square root of . 
Proof : We demonstrate that the above result 3) we obtained is 
equivalent to the conclusion presented in [4]-[5]. 
Let ,  , , 

, then , . Since 
,   (where  denotes the 

smallest integer larger than or equal to ),  we have 

  

In view of the matrix  in [4]-[5], we consider the matrix  
of the similar form with  and give the related facts. 
Example 2 Consider the matrix 

 

we derive the following results: 
1) The eigenvalues of  are , 

. The corresponding eigenvectors are 
 

where . Moreover, if  is even, then 
, ; If  is odd, then 

,   and . From 
this, we deduce that if  is even, then  is invertible and if  

 is odd, then   is singular. 
2) The trace of is . The determinant of  is 

. In addition, if  
is odd, then . If , then 

; If , then  . 
3) Let , . The  entry of 

 is 

  (6) 

If  is even, then the inverse of  is 

  

The matrix  

  

is a square root of . 
Note that  is similar to  in [4]-[5] by the similarity matrix  

  

So the eigenvalues, trace, and determinant of  is equal to  
those of . Furthermore, we have . Another 
expression of  is obtained as follows: 

  (7) 

Next, we prove that the expressions (6) and (7) are equivalent. 
 

 
Example 3 Consider the homogeneous difference system [3], 
where the matrix  is given by 

  

the general solution is , where  is an arbitrary 
constant vector. In particular, according to Theorem 4, we get 

   

by using Maple 13 programme. 

Issue 4, Volume 7, 2013 121

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



 

 

VI. CONCLUSION 
Being inspired by J. Rimas and J. Gutiérrez-Gutiérrez, we 

not only generalize their work concerning the positive integer 
powers of tridiagonal matrices, but also other basic properties 
including trace, determinant, eigenvalues, eigenvectors and so 
on. Unfortunately, In this paper, we consider only two kinds of 
tridiagonal matrices. If possible, we can consider more general 
tridiagonal matrices. 

APPENDIX 
Theorem 3 and Theorem 4 can be executed by Maple 13 
programme. 
The algorithm of Theorem 3: 
>restart: 
>n:=n:l:=l:a:=a:b:=b:c:=c: 

Al:=array(1..n,1..n): 
x:=cos((2*h-1)*pi/(2*n)): 

>for i from 1 by 1 to n do 
     for j from 1 by 1 to n do 
        Al[i,j]:= evalf(sqrt(a/c)^(i-j)/n 

*(sum((b+2*sqrt(a*c)*x)^l*(1-x) 
                    *(ChebyshevU(i-1,x)+ChebyshevU(i-2,x)) 
                *(ChebyshevU(j-1,x)+ChebyshevU(j-2,x)),h=1..n))) 
     end do 
   end do; 
  >print(Al); 
The algorithm of Theorem 4: 
>restart: 
>n:=n:l:=l:a:=a:b:=b:c:=c: 

Al:=array(1..n,1..n): 
x:=cos((2*h-1)*pi/(2*n)): 

>for i from 1 by 1 to n do 
     for j from 1 by 1 to n do 
        Al[i,j]:= evalf(sqrt(a/c)^(i-j)/n 

*(sum((b+2*sqrt(a*c)*x)^l*(1+x) 
                       *(ChebyshevU(i-1,x)-ChebyshevU(i-2,x)) 
                 *(ChebyshevU(j-1,x)-ChebyshevU(j-2,x)),h=1..n))) 
     end do 
   end do; 
  >print(Al); 
where , ,  are the entries of ,  is the order of ,  is the 
power index. The th powers of  is obtained if we input 

 and . 
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