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The spectral decomposition of near-Toeplitz
tridiagonal matrices

Nuo Shen, Zhaolin Jiang and Juan Li

Abstract—Some properties of near-Toeplitz tridiagonal matrices
with specific perturbations in the first and last main diagonal entries
are considered. Applying the relation between the determinant and
Chebyshev polynomial of the second kind, we first give the explicit
expressions of determinant and characteristic polynomial, then
eigenvalues are shown by finding the roots of the characteristic
polynomial, which is due to the zeros of Chebyshev polynomial of the
first kind, and the eigenvectors are obtained by solving symmetric
tridiagonal linear systems in terms of Chebyshev polynomial of the
third kind or the fourth kind. By constructing the inverse of the
transformation matrices, we give the spectral decomposition of this
kind of tridiagonal matrices. Furthermore, the inverse (if the matrix is
invertible), powers and a square root are also determined.
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I. INTRODUCTION

RIDIAGONAL matrices arise frequently in many areas of
mathematics and engineering [1]-[2]. In some problems in
numerical analysis one is faced with solving a linear system of
equations in which the matrix of the linear system is tridiagonal
and Toeplitz, except for elements at the corners. For example,
for the homogeneous difference system
w(l+ 1) = Au(l), e Z, (1)
Where A is a nonsingular constant matrix and 7 is the set of all
integers including zero, the general solution can be written as
u(l) = Ale, | € 7, where ¢ is an arbitrary constant vector [3].
Thus, to obtain the general solution of the above homogeneous
difference system, we need to give the general expression for
Al
J. Rimas computed arbitrary positive integer powers for
tridiagonal matrix
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1
in [4]-[5] and presented B! = L (g;;(1)), here
T ‘ A .
G (D) = (4= XN Uz (%)

k=1
X Uszia 7 vihj=1,...,n,

A(k =1,...,n)is the eigenvalue of the matrix B, r: is the

order of the matrix B. Moreover, even order matrix B is

nonsingular and the above expression can be applied for

computing negative powers of B. Taking / = —1, he got the

following expression for elements of the inverse matrix B~

1 o= d— A2 h
B, =— Rira s (22
{ b znz Iy 223(2>

k=1

Ak
x Uszs_s (7") vj=1,...,n.

But odd order matrix B is singular and its inverse and negative
powers do not exist.

J.  Gutiérrez-Gutiérrez [6] studied the entries of positive
integer powers of an » x n complex tridiagonal Toeplitz
(constant diagonals) matrix

A, = tridiag,, (a1, ap, a—1)

g a_1
(i1 7)) a_1
— ay
a_1
[e3] a a_1q
a an

where aja_; ;é_(]. He gave the following result:
Consider a,ag,a—; € C, ara—; # 0and n € N. Let

A, = tridiag, (a1, 00.0_1), 8=, fu% and

— o _hw
Ap = —2cos ;15 forevery 1 < /o < n. Then
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ﬁj—k:
2n+2
[Z]

. An—
+ Z(/l - )\3—.‘1—0—1)0.’!*' ( 2h+1)

h=1

AL = 21+ (—1)" 1)U 1 (0)Us—1 (0)

- /\n h C
X Upq (2+l> (a0 +a 18 A ny1)?

+ (—1)j+k(a[) —_ (l_l.\'lj)Arﬁ,—fl+l)q}‘|

forall g € Nand 1 < j, & < n, where | zz| denotes the largest
integer less than or equal to .

In this paper, we consider the near-Toeplitz tridiagonal
matrices of order n(n € N,n > 2)with specific perturbations
in the first and last main diagonal entries as follows:

a+b ¢
a b ¢
a b .
A= . . (2
b C
a —a+b

T KT
where «v, a,b,c € C, and o = +\/ac, ac # 0.

If « = ¢, then A is symmetric. For a general real symmetric
matrix is orthogonally equivalent to a symmetric tridiagonal
matrix, so solving the spectral decomposition problem of the
symmetric tridiagonal matrices makes a contribution to that of
the general real symmetric matrices.

The outline of the paper is as follows. In next section, we
review some basic definition and facts about the Chebyshev
polynomials and an equality on the sum of trigonometric
function without proof. In section 3, we first compute trace,
determinant, the characteristic polynomial, the eigenvalues and
eigenvectors by using root-finding scheme and solving
symmetric tridiagonal linear system of equations respectively,
which are different from the techniques used in [7]. As we all
know, the powers are easily determined if we know the spectral
decomposition.  Therefore, we present the spectral
decomposition by constructing the inverse of the similarity
matrix of which column vectors are the eigenvectors. On the
grounds of the spectral decomposition, we discuss the
conditions under which A can be unitarily diagonalizable. In
addition, we give some conclusions when A is a symmetric
tridiagonal matrix. In section 4, using the results in section 3, we

present the powers, inverse (if invertible) and a square root of A.

In the end, to make the application of the obtained results clear,
we solve a difference system as example and verify the result
obtained by J. Rimas is a special case of our conclusion.
Moreover, the algorithms of Maple 13 are given.

Il. PRELIMINARIES

There are several kinds of Chebyshev polynomials. In particular
we shall introduce the first and second kind polynomials 7, {z)
and {/,, (), as well as a pair of related (Jacobi) polynomials

116

V,(z)and W, (), which we call the Chebyshev polynomials of
the third and fourth kinds [8].
Definition 1 The Chebyshev polynomialsT;, (x), I/,,(z), V,,(x)
and W, (z) of the first, second, third and fourth kinds are
polynomials in 2: of degree . defined respectively by

Tu(x) = cosnd,

Up(x) =sin(n+1)8/sin b,

V() = cos (n + %) 8/ cos %9,

W, (x) = sin (n + ;) f/sin %9,
when r =cosf, —1 <z <1.
Lemma 1 The four kinds of Chebyshev polynomial satisfy the
same recurrence relation
Xn(fr) = 2~TXW—1(~T) - Xn—i(f):
with X((z) = 1ineach case and X, (z) = x, 2, 22 — 1,
2x + 1, respectively. Furthermore, three relationships can be
derived from the above relations as follows
2T, (x) = Up(x) — Up—2(x)
an{T) = []'n(T) - Urafl(m):
Walz) = Up(a) + Up_1(x).
By expanding the following determinant along the last row
and using the three-term recurrence for {7, (z) in Lemma 1, we

find U/, () can be expressed by the determinant, namely,

Up(x) = 1,
Uy (z) = 2z,
20z
Yy 2z
Up(x) =
20z
y o 2w
where yz = 1.

Lemma 2 The equality
n
3 cos 2h—Lkr _,
Pt 2n
holdsforeveryn e N, k=1,..., 2n — 1.

I1l. SPECTRAL DECOMPOSITION

Employing Laplace expansion, the expression of {/,,(z) in
terms of determinant, and the relation between the Chebyshev
polynomial of the first kind and second kind, we have the
following assertions.

Lemma 3 If A is a tridiagonal matrix of the form (2), then
trA = nbh,
¢ it b
det A = 2", | =——
2|a
and the characteristic polynomial of A is
pa(N) =det (AL — A) = 2|a|"T;, (AQ—ID) €))
C
where T is the identity matrix.
Proof : The trace of A is equal to the sum of all the diagonal
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entries, so we have trA4 = nb from the form of A.
By expanding the determinant of A along the first column
and the last column, we have

a+b ¢
a b ¢
a b
det A =
b ¢
(L _(l + b LN
b «c
a b c
— (62 _ 02)
a b ¢
G (n—2)x(n—2)
b ¢
a b s
— 2bac
a b e
a b (r—3)x (n—3)
b«
a C
+ a’d?
a b ¢
a b (n—4)x(n—4)

According to the expression of {7,, () in terms of determinant
and Lemma 1, we have

b
(2 2y 2 .
det A = (b° — o)|e|**U,—a (2|a|>

b b
_ 25)|a‘”_lUn 3 (2| |) + ‘0{| U g (2|Oz)

n | b b
~let* 00 (57) =0 (5|
b
= 2|7,
T (57)

Similar to the determinant, the characteristic polynomial can
be calculated. [l
Consequently, the eigenvalues of A can be obtained through
computing the zeros of the characteristic polynomial (3). In
view of the roots of T,(z) are x; =cos T
i=1,2,...,n,so the eigenvalues of A are
(21 — 1)m
2n
From this, we can obtain the following conclusions:
1) The expression of determinant can be also written as

det A =T[", (b + 2| cos 2= 1)“) namely,

) (2¢ — 1)
T, 2|la| cog ———— .
) (2 cos 2n

) ~II(

Ai = b+ 2|a cos

2|

2) Ifniseven,then \,_; =2b—X;i=1,2,.... 5, Ifn
is odd, then A\, ,=2b—X;, i=1,2,...,]%], and
Az = b. From this, we can again obtain trA = nb. In
addition, the spectral radius of A will converge to

2\(1~|(0'~3M (i=1,2,...

3) Ifb# =
invertible.
The corresponding eigenvectors of A can be attained via
solving the following equation system
(M—Aw=0, v#0, 4)
in which the coefficient matrix AT — A is nonsymmetric. It is
more convenient to solve the equation system if we change the
coefficient matrix into a symmetric matrix.
Let D =diag(dy, dy,...,d,_1)and dp = ( ‘/c)""”.
Suppose u solves equations
(M — A)Du =10, (5)
which can be deduced equivalently to the linear system of
equations with the symmetric tridiagonal matrix, then » = Du
is a solution of (4).

,n), then A'is

When &« = —/ue, the equation (5) can be written as
A—b _
(|’3‘ +1)U|—7L2 = 0
—uy + ﬁug — Uz = 0
—ug + Algf’ug —uy = 0
—Up—2 + ﬁun 1 —U, = 0
Up—1 + ( ol ]) U, = 0O

Solving the above equations, we have some solutions

u = [Wolxs), Wilx),. .., LV,,__J:L‘,;)]T di=1,...,n,
where x; = cos %
Hence, solutions of the characteristic equation (4), the

eigenvectors of A with @ = —+/uc, are
o = [dgWo (), i Wi (), .., dpy Wi 1(3~?)]T
t=1,.
(2i—1)w

where x; = cos =52
When « = +/ae, the equation (5) can be written as

()};f’ — l) ) —ue = 0

—uy + ﬁuz —uy = 0
—Uug + Algf’ug —uy = 0
—Up—2 + ﬁun_q — Uy =
Up—1 + ()“Jlb + ]) Uy, =
The system has solutions
w® = Vo), Vi(z), ..., V()] i=1.....n

Therefore, the solutions of the characteristic equation (4) are
v = [dy Vo), diVi(x), ..o dn Vi1 (z)] "
i=1,....n,
which are the eigenvectors of A with o = /ac.
Using the above results, we give the spectral decomposition
of A and demonstrate it. Note that A = diag(Xy, Ao, ..., A\,)
and \;(¢ =1,2,...,n)are eigenvalues of A in the remainder
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of the paper. We introduce the fact about the spetral
decomposition in [9] as the following lemma.
Lemma 4 If A has n linearly independent eigenvectors

v (2 ) form a nonsingular matrix S with them as
columns, then A = SAS~!, where
Ay
A =
AN-
and \q..... A\, are eigenvalues of A.

Theorem 1 If A has the form (2) with o = —
A = SATST(D~)2 where
doWo (1)
Lil I'Vl (:L‘l}

ac. Then

an’Vg (.LQ)
d1Wl (.Lg)
5= : :

dp oW s (xl) dp—aWh_2 (552)
dn—l”'jn—l (ml) dn—lm'fn—l (3:2)

d{)[«‘V(] (.In)
dl TJ’Vl (Ln)

dp2aWn_2 (xn)
dn—ll’Vﬁ—l (mn)
T = diag(ty,... . t)and t, = (1 —2p)/n, h=1.2,. ... n
Proof : From Lemma 4, we know that the only thing we need to
do is to show that ST ST (D~ 1)? =1, thatis, TST(D~1)?is
the inverse of S.
If i = j, then
(STS" (D)
= dia Wi (zn) tndia Wi () (1/di 1)

h=1

=D Wi (a)

h=1
2 (i—1/2)(2h—1)7

1 (2h — 1)7 sin e
= Z (1 — cos8 o ) PRC

h=1 ] BIL In

1< 2 — 1)(2h — 1)7
——Z(l—cos(? ) )T)
71 2n

h=1

1 N (212 r
- ; (n, - Z(,Ob o B

h=1
From Lemma 2, we have

n

Zcos (2i = 1)(2h — U)m _o.

2n

h=1
Then [STST(D~1)?];; = 1.
If i # 3, then

118

[STS" (D)7

= Z di 1 Wiia (zp) bpdy -1 Wi (z) (1/dy—1)*

h=1

n
= d:’—j Z Wi (xh) [/Vj_l (.Th)
h=1

Cdig (X~ =)= 1)
T on (th n

h=1
- i3 —L(2h— )7
fE COS (i+7 )2h—1) .

2n,
h=1
According to Lemma 2, we have

o CTAC DT _h (iD=,

2n 2n
h=1 h=1

Thus [STST(D~")?);; = 0. Therefore, STST(D~")? =1,
and TST(D-1)2isthe inverse of S. A = SATST(D 1)2is
the spectral decomposition of A with @ = —+/ac . O
Corollary 1 Let A be a tridiagonal matrix of the form (2) with
a = —y/ac. If |a| = ||, then A can be unitarily diagonalizable.
Proof : A scalar multiple of an eigenvector of A is still an
eigenvector of A, So

'vﬁi) =4/ % [doWo(x), diWilx), ... dp_ 1 W,y (;’!:,;)]T ,
t=1,...,n,

are a set of eigenvectors of A. Let I/ be a matrix with fu1” as

columns. Namely,

1=y d-o”f'—o (.I‘l)

Tl

=2 gy Wy ()

L—ity do VVO (372)

"

]'_%dl IV] (Tg)

Loas dan I"Vn72 (372 )

i

1y dnfl Wi ($z)

T

l_,r:'.l dnfz H’;nfg (.’131 )

L dpaWn ((Ul )

L

tudyWo ()

v/ 1_—,nzfldl Wy (@)

Loy d'n —2 I’anz (.’T.‘,,,‘.,)

T2

v EEdn 1 W () |

If we want to prove that A = I/ ALT*, then what we need to do
is to verify that JT* = I. Obviously,

T
OUU"yy =Y/ 158 di 1 Wi 1 ()

l—f“ihdjilﬂ,fjil(xh)
h=1
=l ,
=d; 1d; Z ; Wiy ()W ().
h=1 '
If i = j, then
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— Th

[UU);; = di—yd; 12 W2 ()

h=1

T -
= |d;_ 1| Z ki i‘,)l ).

h=1
From the proof of Theorem 1, we have

1=
o
> n VE (o) = 1.

h=1
Since |a| = ||, |[d;—1[* = |2]""" = 1. Thus, [UU*];; = 1.

If i # j, then
n J_ . )
Z nih Wii(wn)Wii(s) = 0

h=1

by the proof of Theorem 1.

From the above discussion, we know that the transformation
matrix UJ is unitary and A with o« = —/ac can be unitarily
diagonalizable when |a| = |c|. ]
Theorem 2 If A is a tridiagonal matrix of the form (2) with

a = y/ac. Then A = PAQPY (D)2, where P consists of
the eigenvectors of A, i.e.,

doVo (21) doVo {xa)
d]_vvl (,Ll) ci1V1 (iL‘g)
P = I
dp—2 Vi 2( ) 2 V2 (372)
dno1 Vi1 (1) dpo1 Vg (22)
(f(]V(] (:1:.,,)
d1 Vi (@)
danVn72 (5[771.)
dn l" (Sgn)
Moreover, ¢} = diag(qy, ..., gn)and g, = (1 4+ z3) /1,
h=1,2,...,n.

Proof : The technique used in the proof is the same as Theorem
1. First, we derive that
[PQP"(D™")];;
n

= diaVicr (zn) andi1 Vi1 (zn) (1/dy 1)
h=1

= difj Z Qh_'l’,ifl (:L‘h) ij]_ (:lfh)

h=1

Cdi [~ (i—2h—1)r
on (Zm:-, 2n

h=1
l+j — 1)(2h —1)r

According to Lemma 2, we obtain the following conclusions:
If i = j, then
(PP (D))

1 N (it D@2k r
= ; (n—k Z(,()h o

h=1

=1
following from

Z(‘,‘()S (2i — 1)(2h — D)7 _o.

— 2n
If i # 3, then
(i—$)2h—Dr & (t+j7j—12h—-1Dm
Z cos —— o + Z COS o =0
h=1 h=1
and [PQPT(D~")?];; = 0. Thus, PQP" (D)2 =1, and
QPT(D~")?is the inverse of P. Hence

A = PAQPT(D1)Zis the spectral decomposition of A
with o = y/ac. I_\
Corollary 2 Let A be a tridiagonal matrix of the form (2) with
a = \/ac. If|a] = |c|, then A can be unitarily diagonalizable.
Proof : First we know that

1V (.’1:.,;)]T

'vg) \/ H:“ [doVo(x:), diVile;),. ..
'L':l,...:n,

are a set of eigenvectors of A. Let V' be a matrix with v, as
columns. Namely,

[ —lt;“ duI/[] (.’L‘l) 1/ 1+J2(EUV0 Lg)
lerllel (l“l) 1/ Lt%d'lvv] (sz)

\/ 17,,,':“ dp—aVp_2 (21)

L_‘,;m A1V (11: 1)

Lo o o Via (22)

%dnfl Vi (3‘2)

ltf & d() Vv() (;rﬂ.’,)

v/ H%dﬁﬂ ()

1+x 7
P a2V o (vfl-n)

14z r -
\/ T n “ dnfl anl (Jln) i

In order to prove that A = V AV *, we need to demonstrate that
VVv* =1

VViy = >y iy Viea () 5 d 0 V-

h=1
1+
= di—ldjj—l Z n h I/ (T;,‘)I (.T}L).
h=1

According to the proof of Theorem 2, we have the following

(I.‘h)

arguments.
Ifi=j then

Sy @V () =1
If i # j, then h?

> Ty Vi (o) = 0.

h=1
Furthermore, d;_,d;_, = 1for |a| = |c. Therefore, VV* =T,
that is V" is unitary. Then A with « = /ac can be unitarily
diagonalizable when |a| = |c|. .
Corollary 3 Let A be a tridiagonal matrix of the form (2) with
a = —y/acor a = y/ac. If o = ¢, then two arbitary tridiagonal
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matrices A and B with this kind form are simultaneously
diagonalizable, that is, there is a single similarity matrix S such
that S~ AS and §—'BS are both diagonal.
Proof : If @ = ¢, then ) is the identity matrix in Theorem 1 and
Theorem 2. The conclusion can be obtained directly from
Theorem 1 and Theorem 2.
Corollary 4 Let § be a family of the matrices of the form (2)
with @ = ¢, & = |aOr « = —|a. Then § is a simultaneously
diagonalizable family and a commuting family.
Proof : From Corollary 3, we know that F is a simultaneously
diagonalizable family, that is, for any A, B € §, there exists a
single similarity matrix S such that §~' A4S = A, and
S—'BS = A,, where A, A, are diagonal matrices. Then
AB = SA 87'SA387 = SA A8

= 85A:A 87! = SA,57'SA 87! = BA.
Therefore, § is not only a simultaneously diagonalizable
family but also a commuting family. r

IV. POWERS AND INVERSE

As we all know, if the matrix A has spectral decomposition
A = SAS !, then the /th ( € N) power of A can be obtained
by A* = SA'S~1, where A is diagonal matrix, the diagonal
entries of which are eigenvalues of A. S is the transforming
matrix formed by eigenvectors of A with them as columns [9].
In the previous section, we have stated the spectral
decomposition of A. In this section, we calculate the powers,
inverse and a square root of A.

Theorem 3 If A has the form (2) with & = —/ac and

p, = cos EA-LT p — 19 . Then the i, j entry of
Al (1 eN)is

b
Z(b + 2]z (1 = zp) Wiy ()W, ().
h=1
Proof : According to Theorem 1, we have

™

[Al]ij B Z di—ll'vi—l {.’L’h) )\fy.ithd‘;_l] H’rj_l (.’L’h)
h=1

di i~ . )
= ;(b + 2lafan)! (L — a)Wisi () Wi—i ().
The proof is completed.

Theorem 4 If A has the form (2) with & = /ac and
T = COs % h=1.,2,...,n. Then the i, j entry of

Al (L e N)is
(A" =

[A'],; = -

-

T

_d;
n;’ Z b+2nTh) (]- + Th)vvt 1(7h)1’j ](Th)

h=1
Proof : According to Theorem 2, we have

n

[Al]ij = Z di—1Vio1 (zn) A%th;_H Vio1 (xg)
h=1

i\ ! .
= N+ 2000 L + 1) Vi () Vi (21).
0 ;E,.:.( + 20y ) (1 + ) Vi (2n) Vi1 (20)
The proof is completed. O

Corollary 5 Let A be a tridiagonal matrix of the form (2) with
a = —/acand x; = cos w, h=1,2,...,nIf

120

b+ 2\n|(os(2?)ﬂl), =1,2,...,

negative mteger in Theorem 3and

- z Th
A szu\

Moreover, the matrlx C

= dij th+2|n'|frh

is a square rogt olf A with @ = —/ae.

Corollary 6 Let A be a tridiagonal matrix of the form (2) with

a = yJacand xj = cos (2h rl)ﬂ h=1.2,...nIf

b # —2acos (21273) yi=1,2,...,

negative integer in Theorem 4 and
A N

by
n hz_: b+ 2cex ,x,
In addition, the matrix D
d,; . -
J Z VO 2axy (14 xp)Vie (20 Vs (z0)

h=1
is a square root of A with o = \/ac.

n, then Z can be taken

oz, Wii(zn) W1 (za).

T,ll ”t I(T?e)njfl(qﬂh)

7, then £ can be taken

—i(an) Vo ().

i =

V. EXAMPLES
Example 1 Consider the matrix
S -
1 0 1
1 0 1
B =
1 0 1
I

it is a special case of A we discussed in this paper. On the
grounds of the conclusions in preceding part, we derive the
following conclusions:
1) The eigenvalues of B are X =2cos 5~ ,
i=1,2,...,n. The corresponding elgenvectors are
ol = Wo(zs), Wi (), ..., Woa ()],
where x; = cos -1  Moreover, if n is even, then
Agi—i= A, ¢=1,2,...,%2; If n is odd, then
Anpii=—Ay i=1,2...,[5]and Az = 0. From
this, we deduce that if » is even, then B is invertible and if
n is odd, then B is singular.
The trace of BistrB = 0.
2i-Lm 5 addition, if »

det B = 27,,(0) = HLI 2 cos =5
0 (mod 4), then

(2i—1)m

2) The determinant of B is

is odd, then det B=0. If n=
det B =21fn =2 (mod 4), then det B = —2.
3) M h=1.2,...,n. The i, j entry of

Let x;, = cos
B! (leN)is

1 .
[B']:; = D 2x) (1= ap)Womr (o) Wi (22).
h=1
If n is even, then the inverse of B is
(B 1, L Wi (m,) W, _

1
DD

h=1
The matrix B,

Ih
9rh

(.Th).
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Z‘/—Q?h (1 — 2p) Wi (a,) W,

h 1
is a square root of B.

Proof : We demonstrate that the above result 3) we obtained is
equivalent to the conclusion presented in [4]-[5].

(.‘E;L)

Letd, — G DT = _9pos ChUT 0 oy 20U
2n, ' 4 2n. i 2n '

h=1,2,...,n,then A\, = —2xy, x5, = cosfy,. Since

)\”+|_1 = }\1, i=1,2,...,[%] (where[z]denotes the

smallest integer larger than or equal to x), we have
Bl =

- p )\fl v )\h
- a_ 4— )\2 ki Uzis — | Usj-a —
M ;1:1:( h) h 3 ( 2 ) i ( 9 )

1
_1 Lir,. . )\h .. )\h
— = (- )A,‘JL%(2>LQT‘,(2)

= % Z(l — /IT,;Q.L)(QT;,)EII% (If,)l,’rz.,g_;; (.’I’?h)

h=1

1
sin 4 ‘ 0, sin 2-1g,
= — E 2.,!,,1? 2 2C0b 9;7)
sin Oh sin Oh
h 1

gin 2”;" Ay, sin %9;,

- E (2x5) (1 — cos B) — 7 —%;

h 1 S 5 SN o

= ; Z(Z;L‘h)[(l —ap)Wisi (a )W,y (). O
"h=1
In view of the matrix B in [4]-[5], we consider the matrix C
of the similar form with B and give the related facts.

Example 2 Consider the matrix

(1 1
1 0 1
1 0 1
C =
1 0 1
L l 71 |
we derive the following results:
1) The eigenvalues of € are A =2cos EHT
i=1, 2 .n. The corresponding eigenvectors are
("')— )V (x3),..., n_l(wi)]T i=1,....n
where r; = cosM. Moreover, if n is even, then
Angi—i=—A;i, =1,2,...,%; If n is odd, then
Anpii=—Ay i=1,2...,[5]and Auyy = 0. From

this, we deduce that if » is even, then C' is invertible and if
n is odd, then C is singular.

2) The trace of CistrC = 0. The determinant of C is
det C = 21,,(0) = [T, 2cos % In addition, if »
is odd, then detC = (J . If n=0 (mod 4), then
det C =2, If n =2 (mod 4), then det C = —2.

3) Letx;, =cos (2"' DL 1,2,...,n. The i, j entry of
C! (leN)is

! I ¢ ! A
[C]i; = p ;(th) (L4 zp)Vier (z) V-
If n. is even, then the inverse of C' is

l(mh)- (6)
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_ 1 1+ oy,
[C ')y 27—2 —hy () V;

— 2xy,
The matrix Cl

L Zml+7‘11) i— 1(3“?1)1/1 l(rh)

h 1
is a square root of C.

Note that C' is similar to B in [4]-[5] by the similarity matrix
1

(-'Eh,)-

. 1
I=
1
So the eigenvalues, trace, and determinant of C' is equal to

those of B. Furthermore, we have C* = TB'T . Another
expression of C' is obtained as follows:

n

1l — i i}
[C'!]'ij = ; ;.(Z-Th)l(l - mh)w’nfi (T.F:)V[’-na-;i (Ih)' (7)
Next, we prove that the expressions (6) and (7) are equivalent.

n

(CYis = % hzl(zrh)m ) Wil Wa (zn)

sin(n — i+ 1/2)8,

— 2 <
h; 21) (1 — cosby) sin(0r,/2)
snn 3+ 17206,
sin (6 /2)
0s(i — 1/2)8), cos(i — 1/2)6,
*Z 23‘}1 1+cosﬁhjws(’ /2)8) cos(j /236,

cos(0,/2) cos(f,/2)

h=1

= Z(Qrm,,)f(l + ) V() Vio(xn).

" h=1

Example 3 Consider the homogeneous difference system [3],
where the matrix A is given by
8 0

[enRy en i en i RN
o O o=
e SR 4]
(W S e B o
w o oo

—3
the general solution is w(1) = A'c, where ¢ is an arbitrary

constant vector. In particular, according to Theorem 4, we get
20181.00  34920.00 44160.00

8730.00 13761.00 26920.00
w(b) = | 2760.00 6730.00 8001.00
880.00 1320.00  5450.00
80.00 560.00  —120.00
56320.00  20480.00 -|
21120.00  35840.00
21800.00 —1920.00 | ¢
2241.00  13800.00
3450.00  —4179.00

by using Maple 13 programme.
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VI.

Being inspired by J. Rimas and J. Gutiérrez-Gutiérrez, we
not only generalize their work concerning the positive integer
powers of tridiagonal matrices, but also other basic properties
including trace, determinant, eigenvalues, eigenvectors and so
on. Unfortunately, In this paper, we consider only two kinds of
tridiagonal matrices. If possible, we can consider more general
tridiagonal matrices.

CONCLUSION

APPENDIX

Theorem 3 and Theorem 4 can be executed by Maple 13
programme.
The algorithm of Theorem 3:
>restart:
>n:=n:l:=l:a:=a:b:=b:c:=c:
Al:=array(1..n,1..n):
x:=cos((2*h-1)*pi/(2*n)):
>for i from 1 by 1 to ndo
for j from 1 by 1 to n do
Alli,j]:= evalf(sgrt(a/c)”(i-j)/n
*(sum((b+2*sgrt(a*c)*x) M*(1-x)
*(ChebyshevU(i-1,x)+ChebyshevU(i-2,x))
*(ChebyshevU(j-1,x)+ChebyshevU(j-2,x)),h=1..n)))
end do
end do;
>print(Al);
The algorithm of Theorem 4:
>restart:
>n:=n:l:=l:a:=a:b:=b:c:=c:
Al:=array(1..n,1..n):
x:=cos((2*h-1)*pi/(2*n)):
>for i from 1 by 1 to ndo
for j from 1 by 1 to n do
Alli,j]:= evalf(sqgrt(a/c)(i-j)/n
*(sum((b+2*sgrt(a*c)*x)"*(1+x)
*(ChebyshevU(i-1,x)-ChebyshevU(i-2,x))
*(ChebyshevU(j-1,x)-ChebyshevU(j-2,x)),h=1..n)))
end do
end do;
>print(Al);
where «, b,  are the entries of A, » is the order of A, /is the
power index. The ith powers of A is obtained if we input
a,b,c,nand /.
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