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    Abstract— This paper deals with parameter estimation of 
sinusoids within a Bayesian framework, where inferences about 
parameters require an evaluation of complicated high dimensional 
integrals or a solution of multi-dimensional optimization. 
Unfortunately, it is not possible in general to derive analytical 
Bayesian inferences. Therefore, the purpose of this paper is to 
study some of existing stochastic procedures, based on different 
sampling schemes and to compare their performances with respect 
to Cramér-Rao lower bound (CRLB), defined to be a limit on 
the best possible performance achievable for a method given 
a dataset.  Furthermore, all simulations support their 
effectiveness and demonstrate their performances in terms 
of CRLB for different lengths of data sampling and signal-to 
noise ratio (SNR) conditions.  
 
      Keywords— Bayesian inference; parameter estimation; Gibbs 
sampling; simulated annealing; parallel tempering;  Cramér-Rao 
lower bound; power spectral density.   

I. INTRODUCTION 
   

In experimental science, it is hard to find any experiment 
where we can measure directly desire quantities that 
characterize physical systems.  Therefore, those quantities 
that we would like to determine are different from the data 
we measured. However, it contains at least some 
information about them so that extracting this information is 
subject to this paper.  

  In a wide range of applications, a discrete data set 
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N
id

=
=D  denoted as an output of  a physical system that 

we want to be modeled is sampled from an un known 
function ( )y t   at discrete times 1{ }N

i it = : 
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where θ  is a set of parameters that characterize behavior of 
physical systems ( ; )if t θ which is time dependent systematic 
component, called model function whose choices depend on 
applications.  We initially restrict our attention to the real 

static1  sinusoidal model which is a superposition of m  
sinusoids: 
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Due to its applicability, it has received a great interest in 
many fields of science [1, 36, 37]. Especially, the frequency 
parameter has been subject to extensive research since it 
enters the signal model in non-linear fashion. The term ( )e t  
represents a random process at time t , due to measurement 
error. Then Equation (2) can commonly be written in the 
matrix-vector form:  

 = +D Ga e ,                                         (3) 

where D  is ( 1)N ×  matrix of data points; e  is ( 1)N ×  
matrix of independent identically distributed Gaussian noise  
samples with variance 2σ ; G  is ( 2 )N m×  matrix whose 
each column is a basis function evaluated at each point of 
time series and  a  is  (2 1)m× matrix whose components are 
arranged in order of coefficients of cosine and sine terms. 

The vector { }{ }2

1
, , ,

j j

m

c s j j
a a ω σ

=
=θ  consists of parameters, 

which belong to signals and noise. Then, the goal of data 
analysis is usually to infer θ

 
from D . Besides estimating 

them, there are two additional important problems left.  The 
first one we will not consider here is to assess whether or 
not the model function ( ; )if t θ  is appropriate for explaining 
the data, i.e., a number  of sinusoids, m ,  may not be 
known as a priori so that it is called model selection[33, 36].  
The second one we studied here is to obtain an indication of 
uncertainties in parameter values by using different 
methods, i.e. some measures of how far they are away from 
their true values. 

In this paper, we consider to introduce some 
improvements of Bayesian methods that use three different 
stochastic sampling procedures for estimating parameters of 
                                                           
1 Static refers to that the amplitudes of the sinusoids do not change 
with time. 
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noisy sinusoids. We first combine BRETTHORST method 
with a simulated annealing (SA); secondly, we derive an 
extension of Gibbs (GIBBS) sampling to multi-dimensional 
cases and finally, we use parallel tempering (PT) algorithm 
to implement a flexible choice of priors. Although different 
numerical procedures for the Bayesian parameter estimation 
problem have been proposed by different researchers in 
statistical signal processing literature, there has been a little 
work about a comparison of their performances. Therefore, 
series of computer simulation studies with a variation in the 
signal to noise ratio (SNR) and the length of the data 
sample N  are set up for a frequency estimation of a single 
sinusoid in order to assess the best achievable accuracy of 
parameter estimates with respect to CRLB. 

 
II. BAYESIAN DATA ANALYSIS 

To estimate the characteristics (e.g., amplitudes, 
frequencies) of signals from D  the Bayesian framework is 
interested in the current context because it provides a 
mathematical foundation for making inferences about them 
and, as a consequent, provides a rigorous basis for 
quantifying  uncertainties in their estimates. Therefore, the 
basic relationship quantifying those parameter inferences is 
given by Bayes’ rule [3, 12, 13, 39]: 

( ) ( | , )
( | , )

( )
p I p I

p I
p I

=
θ D θ

θ D
D

,                       (4) 

where I   represents the prior information; ( )p Iθ  is the 
prior PDF of the parameter vector θ  that encapsulates our 
state of knowledge of the parameters before the receipt of 
the measurements D ;  ( )| ,p ID θ  is termed the likelihood 
function when considered as a function of θ , but is known 
as the sampling distribution when considered as a function 
of D ; ( ),p Iθ D  is the  posterior PDF of θ , that 

corresponds to the update of ( )p Iθ  incorporating the 
knowledge gained about θ   after the receipt of the 
observations D . By use of Bayesian inference, All 
information in D   relevant to the problem of estimating θ  
is summarized in the posterior PDF ofθ . Furthermore,  

( )p ID  is termed as evidence which is a measure of the 
probability but, it is constant in   parameter estimation so 
that   Equation (4) becomes 

( ) ( ) ( ), | , .p I p I p I∝θ D θ D θ                    (5) 

To proceed further in the specification of ( ),p Iθ D , we 

now need to assign a functional form for the terms ( )p Iθ  
and ( | , )p ID θ . Because different methods use different 
prior PDFs ( )p Iθ , we postpone discussing their 
assignments to the next sections but, in the case of 

independent measurements the assignment of a functional 
form for ( | , )p ID θ becomes 
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where  
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After making assignments to the prior and posterior PDF, 
the problem turns out to search θ  in a parameter space ℑ : 

               ( ){ }ˆ arg max ,p I
∈ℑ

=
θ

θ θ D .                          (8) 

 
III.   BAYESIAN METHODS 

 
A. Bretthorst’s Integral Method with SA 

Let us rewrite the joint posterior PDF of all parameters in 
Equation (5):  
( ) ( ) ( )2 2 2, , , , , , , , , , ,c s c s c sp I p I p Iσ σ σ∝ ×ω a a D D ω a a ω a a .    (9) 

From the product rule of the probability using together with 
independent property the joint prior PDF of all parameters 
can then be written in the form: 

( ) ( ) ( ) ( )2 2, , , ,c s c sp I p I p I p Iσ σ∝ω a a a a ω .       (10) 

If ( ),c sp Ia a  is assigned to a uniform prior PDF and 

( )p Iσ  is a constant because  σ  is assumed to be known, 
then the joint prior PDF of all the parameters may be 
reduced to uninformative prior PDF for ω  which is  
bounded in the interval ( )0,π : 

                 ( )2, , , m
c sp Iσ π −∝ω a a .                        (11) 

This is because there is no variation at negative frequencies 
and the highest possible frequency corresponds to wave that 
under goes a complete cycle in two unit intervals, so that 
lower limit on the range is 0 and all the variation is 
accounted for by frequencies less than π . By using 
Equations (6) and (11) and dropping constant terms the 
posterior PDF of the parameters given in Equations (5) 
becomes 

( ) ( )2 2 21, , , exp , , ,
2c s c sp Iσ χ σ ∝ − 

 
ω a a ω a a .       (12) 

In order to obtain the marginal PDF ofω , we need to take 
the integration of Eq. (12) with respect to the amplitudes 
and the noise variance 2σ . If 2σ  is known, then the 
posterior PDF ofω  is given by 

 
2

2( | , ) exp( )
2
mp I
σ

∝
hω D ,                      (13) 

where 
1

( ), ( 1,..., 2 )
N

l i l i
i

h d H t l m
=

= =∑ is a projection of data 

onto new orthogonal model functions ( )lH t : 
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j j jl ll
H t G tλ ϕ

−

=
= ∑ ω

 

.          (14) 

Here lj  represents the j th component of the l th 

normalized eigenvector of the matrix T=Ω G G , with lλ  as 
the corresponding eigenvalue. If the variance of the noise 

2σ  is unknown, then it is known as a scale parameter so 
that the completely uninformative prior PDF for a scale 
parameter is the Jeffreys’ prior [14], defined 

as ( )2
2

1 0p Iσ σ
σ

∝ < < ∞ . By using this prior PDF in 

Equation (12) and integrating it with respect to 2σ we obtain   

( )
22

2
, 1

m N

mp I
N

−

 
 ∝ −
 
 

hω D
D

     ,            (15) 

where 2h represents the mean squared observed projections. 
This is the form of the “Student’s t distribution” with 
( )N m− degree of freedom.  

The approach summarized above requires analytical or 
numerical approximation of integrals which is not given 
here but, we refer to Bretthorst’s work [6]. Consequently, 
the Bayesian parameter estimation problem turns into 
maximization of the posterior PDF of ω given in Equations 
(13) and (15) in the parameter space { }0,πℑ = . 
Unfortunately, conventional algorithms [15, 16] based on 
the gradient direction fail to converge. Even when they 
converge, there is no assurance that they have found a 
global, rather than a local maximum. This is because the 
logarithm of the posterior PDF is so sharply peaked and 
highly nonlinear function ofω . To overcome this problem, 
Bretthorst used a pattern search algorithm described by 
Hook-Jevees [17] but, we found out that this approach does 
not converge unless the starting point is much closer to the 
optimumω . Therefore, we combined it with a simulated 
annealing (SA) algorithm [18, 19] to obtain a global 
maximum of the posterior PDF of the frequenciesω . For 
detail information, we refer to our papers [26, 27, 28] and 
book’s chapter [32].  
 
B. Gibbs Sampling 

In order to avoid solving the difficult multivariate 
maximization problem in Section III.A, an alternative way 
proposed by Dou and Hodgson [7] combines Gibbs 
(GIBBS) sampling with Bayesian inference. Basically, it 
draws samples from the desired marginal distributions 
condition on the remaining unknown parameters, the data 
and the prior information.  We extend this derivation for 
multiple frequency signals and summarize it below, but 
refer to their papers [7, 8, 39] and recently [34] for detail 
information. 

 Assume that 2σ  is known and there is no any specific 
information about the parameters{ }, ,c sω a a . Then Equation 
(5) turns out to be the following form:  

  ( ) ( )2 2, , , , , , , ,c s c sp I p Iσ σ∝ω a a D D ω a a ,         (16) 

Because of ( ), , constantc sp I ∝ω a a  or flat prior PDF, 
called an uninformative prior then the mode of the posterior 
is the same as the maximum of the likelihood.  Suppose also 
that 

jca is the only unknown parameter among{ }, ,
jc s−

a a ω , 

where { }1 1 1
,..., , ,...,

j j j mc c c c ca a a a
− − +
=a . If the distribution of 

the noise is known as a-priori, the conditional PDF of 
jca  is 

considered to be as a univariate normal distribution: 
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and { }(1) (1)

1
ˆ N

i i
d

=
=D whose components are defined by 

(1)

1

ˆ cos( ) sin( ),
l l

m
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l
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=

= − +∑    (19)  

where  
1
0lj

l j
l j

δ
≠

=  =
 helps to eliminate the contribution of 

the cosine term of the j th sinusoid.  However, in some 
cases where 2σ  is unknown the joint posterior PDF of the 
parameters{ }2, , ,c s σω a a  can be implemented in the form: 

( ) ( ) ( )2 2 2, , , , , , , ,c s c sp I p I p Iσ σ σ∝ω a a D D ω a a    (20) 
In order to eliminate it, we assign Jeffreys’ prior to 
( )2p Iσ and integrate Equation (20) with respect to 2σ  so 

that we obtain   a univariate Student’s T- distribution: 

( )2 2 1ˆ( , , , , ) , ( ) , 1
j j j c c cj j j

T
c c s c a a ap a a s Nσ

−

−∝ Τ −a a ω D X X ,   (21) 

with  
2 (1) (1)1 ˆ ˆˆ ˆ( ) ( )

1c j c j cj j

T
a c a c as a a

N
= − −

−
D X D X .      (22) 

In a similar way, the conditional PDF of 
jsa  is given in the 

form of Equations (17) and (21) but,  ˆ
jsa  and 

s jaX are 

obtained by replacing 
jsa  and sine terms in Equations (18) 

and (21) with 
jca  and cosine terms, respectively. In 

Equations (17) and (22), (1)D̂  term is calculated by 
eliminating the contribution of the sine term of the j th 
sinusoid in Equation (19) instead of cosine term.  

In order to enable sampling for the frequency ω we need 
Taylor series expansion of ( )2χ ω  at ω̂ :  
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Then the conditional PDF of jω  turns out to be in the form: 
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If 2σ  is unknown, Equation (25) becomes  

( ) ( )2 2 1ˆ, , , , , ( ) , 1j j j

T
j j c s jp s Nω ω ωω σ ω −

− ∝ Τ −ω a a D X X . (27) 

with  

                         ( ) ( )2 1 ˆ ˆ
1j

T
s

Nω
= − −

−
D D D D ,                 (28) 

where the components of the simulated data D̂ is defined by 
the use of the current estimated values of the parameters. In 
numerical calculations, a systematic form of GIBBS 
algorithm proceeds in the following manner. Firstly, 
arbitrary starting values { },0 ,0 0, ,c sa a ω  are chosen. At the 
each iteration of the GIBBS sampler, we cycle through the 
set of conditional distributions and draw one sample from 
each. When a sample is drawn from one conditional 
distribution, the succeeding distributions are updated with 
the new value of that sample. Then successively random 
drawings from the full conditional distributions described 
above are as follow: 

1 1 1

1 1 1

,1 ,1 ,1 ,0 ,0 ,0 0

,1 ,1 ,1 ,1 ,0 ,0 0

,1 ,1 ,1 1,1 1,1 1,0 ,0

~ ( { ,...., , ,...., }, , , )

~ ( ,{ ,...., , ,...., }, , )

~ ( , ,{ ,...., , ,...., }, )

j j j j m j

j j j j j m

j j

c c c c c c s

s s c s s s s

j j c s j j m

a p a a a a a

a p a a a a a

pω ω ω ω ω ω

− +

− +

− +

a ω D

a ω D

a a D

   (29)       

After the first iteration, we get{ },1 ,1 1, ,c sa a ω ; secondly 

{ },2 ,2 2, ,c sa a ω and so on. Repeating this procedure K  times, 

we obtain{ }, ,, ,c K s K Ka a ω . In Bayesian context, for a large 
enough K  the joint PDF can be replaced by the conditional 
PDF so that the parameters ,jc Ka , ,js Ka  and ,j Kω  become 
random variables. Then we draw M random samples 

of{ }, 1

Ml
c K l=

a , { }, 1

Ml
s K l=

a and{ }
1

Ml
K l=

ω  from their marginal PDFs, 

respectively and using these samples, we obtain all of the 
estimates about the corresponding parameter, such as its 
most probable value, its mean and its marginal variances 
with respect to the most probable value etc. When 2σ  is 
unknown, we do the same thing as above except that the 
random numbers are generated from the Student’s T-
distributions given in Equations (21) and (26).    
 
C. Parallel Tempering 

The algorithm of GIBBS sampling overcomes some 
problems associated with BRETTHORST but, it faces with 
two serious drawbacks. First of all, it is only an approximate 
Bayesian inference scheme since Laplace approximation in 
Equation (25) is used in order to enable sampling forω . 
Secondly, the optimum point ω̂  of ( )2χ ω given in Equation 
(24), is highly intractable since it involves minimization of a 
sharply peaked multimodal cost function which cannot 
computed in closed form.  To overcome these problems and 
provide a flexibility of choice of priors, we implement 
parallel tempering (PT) method [9, 10] that is originated 
with Swendsen [20], extended by Geyer [21] and later 
developed and successfully used in a number of general 
optimization problems[40].  

In Bayesian analysis we need to specify a suitable prior 
PDF that should represent the best knowledge of the 
parameters. If ω is considered as a location parameter and 
we know that there value is upper, maxω  and lower 
bound minω . If that is all we know about this parameter then 
the principle of maximum entropy [3] will lead us to assign 
uniform prior PDF: 

( ) min max
max

1

0 otherwise
maxp I

ω ω ω
ω ωω

 ≤ ≤ −= 


.          (30)                                                                       

Otherwise, it is a positive quantity so that it can be 
considered as a scale parameter. Therefore, one may then 
choose Jeffreys prior [31] as mentioned before but, this is 
not strictly speaking a probability at all because it cannot be 
normalized. To make this a proper, probability one must 
introduce and upper and lower bound for ω  and compute 
the normalization constant so that we get its modified 
version: 

( )
min max

max

min

1

( ) ln

0 otherwise

ccp c
c

ω ω ω
ω

ωω
ω

 ≤ ≤  + +=   + 


,   (31) 

where c  removes singularity at minω ω=  and it is assigned 
to the mean of the standard deviation of the noise vector.  In 
Bayesian calculations, the prior PDF provides an order of 
magnitude estimate for the parameters. These estimates are 
ascertained from known factors, such as the sampling time 
and the magnitude of data. On the other hand, we assign the 
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prior PDFs for the angular frequencies and amplitudes using 
broad uninformative Gaussians. This is because a bounded 
Gaussian correctly describes an order of magnitude of the 
estimate. However, these priors can be assigned by 
specifying a lower and upper parameter values so that an 
uninformative Gaussian prior PDF for ω is defined in the 
form: 

( )
( )2

min max22

1
, 22

0 otherwise

exp
p

ω

ω ω ωω

ω µ
ω ω ω

ω µ σ σπσ

  −
  − ≤ ≤  =   


. (32)   

where        

                  
max min max min,

2 3ω ω
ω ω ω ω

µ σ
+ −

= =  .     (33)  

Finally, a suitable prior PDF for  jω  can be taken as a 
combination of these three prior PDFs described above: 

 

( ) ( ) ( )
( )2

min max22max

min

1 1 1
3 23 23( ) ln ( )

0 otherwise

j
j

j j

exp
p I c

c

ω

ωω

ω µ
ω ω ω

ωπ σπσω ω
ω

  −  + + − ≤ ≤  =  +  +



(34)
 

By using similar arguments, the prior PDF for the amplitude 

jca  can also be taken as  

( )
( )2

min max22
max min a

1 1
2( ) 22 2

0 otherwise

j c

j

j c jc

c a

c
c a

a
exp D a D

p a I D D

µ

σπ σ

  −  + − ≤ ≤  = −  
 



 , (35)     

where 
max min max min,

2 3c sa a
D D D D

µ σ
+ −

= = .            (36) 

 A similar prior PDF is also assigned to the coefficient 

jsa by replacing 
jca with

jsa in Equation (35). Putting 
Equations (32) and (34)   into Equation (10), we obtain the 
posterior PDF ( ), | ,p Iω a D , denoted here as a tempered 
PDF ( , | , , )Iπ βω a D : 

( )( )( , | , , ) ( , | ) exp ln( ( | , , )I p I p Iπ β β=ω a D ω a D ω a (37) 
Now, the problem turns out finding the parameter values 
that maximize Equation (37) using the PT algorithm. 
Starting from a given initial sample { , , }t c sX = ω a a over the 
state space, it basically uses a stochastic transition function 
to produce a new sample using proposal PDF ( )1t tq X X+ , 
which is considered here to be a multivariate Normal 
distribution with a mean equaled to current sample tX  and a 
deviation Xσ  named as a step size which is taken to be a 
square root of CRLB for estimated parameters [21]. It 
consists of two main updating steps. The first one is the state 
update of each chain in which there exists nβ  multiple 
copies of Markov chain Monte Carlo (MCMC) 
simulations[20], which are run simultaneously in parallel 

each at  different values of tempering parameter β .  
Actually, MCMC algorithm generates desired samples tX

 
by constructing a kind of a random walk in a model 
parameter space so that it is accepted as a new sample called 

1tX +
  by satisfying    

              ( )1 1,t tu X Xα +≤ ,                              (38)  

where 1u  is a random variable drawn from uniform 
distribution (0,1)U   and an acceptance  probability 

( )1,t tX Xα +  is defined by 

( ) 1
1

( , )
, min 1,

( , )
t

t t
t

p X I
X X

p X I
α +

+

  =  
  

D
D

 .           (39) 

After a number of iterations on each replica of the MCMC 
simulations, the current samples are considered 
probabilistically for exchanges between different tempering 
levels. This is the second update step called the swapping 
between two neighboring chains at each sn step if a random 

number 2u  drawn from (0,1)U  satisfies 2
1

s

u
n

≤ . Then at 

time t  the simulation iβ  in the state ,t iX  and the simulation 

1iβ +  in the state , 1t iX +  can be interchanged if a random 
number 3u  drawn from (0,1)U  satisfies   

3 , , 1( , ), (1 1)t i t iu X X i nα β+≤ ≤ ≤ − ,            (40) 
where   

, 1 , 1
, , 1

, , 1 1

( | , , ) ( | , , )
( , ) min 1, .

( | , , ) ( | , , )
t i i t i i

t i t i
t i i t i i

X I X I
X X

X I X I
π β π β

α
π β π β

+ +
+

+ +

  =  
  

D D
D D

.   (41) 

This is called a probability of the swap acceptance.  As 
expected, after an initial burn-in period this proposed 
method generates samples tX  with a PDF equal to the 

desired posterior PDF ( ),tp X ID . Finally, inferences about 
parameters are based on these samples drawn from the 
output corresponding to the lowest temperature chain 
( 1β = ). For detail information about the algorithm, we refer 
to our recent papers in [30, 31, 38]. 

 
 

IV. COMPUTER SIMULATIONS 
 

In this section, we demonstrate the performance of our 
algorithms by some simulation results. We first generated a 
simulated data vector according to a signal model with two 
closed harmonic frequencies: 

0.5403 cos(0.3 ) 0.8415 sin(0.3 )

0.4161cos(0.31 ) 0.9093 sin(0.31 ) .
i i i

i i i

d t t

t t e

 
   (42)    

Here it  runs over the symmetric time interval T−  to T  in 
(2 1) 512T N+ = =  integer steps and the components of  ie   
are generated from the zero mean Gaussian distribution with 
a deviation 1σ = . Then they were added to the simulated 
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data samples and obtained the noisy data 1{ }N
i id =  , shown in 

Figure 1(a). Thus, we carried out the Bayesian analysis of 
the noisy data, assuming that we know the mathematical 
form of the signal model but, not the values of its 
parameters. 

 All three Bayesian methods were coded in Mathematica 
programming language because it provides much flexible 
and efficient computer programing environment. 
Furthermore, it also contains a large collection of built-in 
functions and results much shorter computer codes than 
those written in C or FORTRAN programming languages. 
They were run on a workstation with four processors which 
of each has got Intel Core 2 Quad Central Processing Unit 
(CPU). As an initial estimate of the frequencies 0ω  for each 
stochastic maximization procedures, it is possible to take 
random choices from the interval ( )0,π  . However, it is 
better to start with the locations of the peaks with the 
greatest magnitudes as an initial estimate of ω   
automatically from the Fourier power spectral density 
(FPSD) graph by using a computer code written in 
Mathematica. Then we carried on calculating the 
coefficients ca  and sa  as initial values for the amplitudes, 
respectively.  

In the case of 1σ = , the output of the computer 
simulations of all methods is illustrated in Table 1. It can be 
seen that the estimated two frequencies and their 
corresponding amplitudes from the noisy signal are quoted 
as (value) ± (standard deviation). If one uses each of those 
estimated values of parameters in the signal model to restore 
it, we almost obtained similar results shown in Figure 1(b).    

In general, we secondly consider a multiple harmonic 
frequency signal model: 

  0.540302 cos(0.1 t ) 0.841471sin(0.1 )
0.832294cos(0.15 ) 1.81859sin(0.15 )
4.94996cos(0.3 ) 0.70560sin(0.3 )
1.30729cos(0.31 ) 1.51360sin(0.31 )
0.850087cos( ) 2.87677sin( ) ,

( 1, 2,

i i i

i i

i i

i i

i i i

d t
t t

t t
t t

t t e
i

= −
− −
− −
− +
+ + +

= ..., )N

(43) 

In a similar way, we obtained the noisy data shown in 
Figure 3(a) and ran Mathematica codes of the proposed 
algorithms again. We found the estimated values of 
parameters using each method and tabulated in Table 2. It is 
observed that each of them provides estimated parameter 
values with almost similar estimation accuracies, especially 
for the angular frequencies. 

The usual way the result from a spectral analysis is 
displayed is in the form of a power spectral density (PSD) 
[3, 6] that shows the strength of the variation (energy) as a 
function of frequency. In Fourier transform spectroscopy 
this is typically taken as the squared magnitude of the 
discrete Fourier transform of the data. In order to display 
our results in the form of a power spectral density, it is 
necessary to give an attention to its definition that shows 
how much power is contained in a unit frequency. 

According to Bretthorst, the Bayesian power spectral 
density (BPSD) is defined as the expected value of the 
power of the signals over the joint posterior PDF:  

( ) ( ) ( )2 2

1
, , , ,

2 j j

m

c s c s c s
j

NBPSD p D I d dσ
=

= +∑∫ω a a ω a a a a     (44) 

Performing integrals analytically over ca  and sa  by using 
orthogonal model functions H   defined in Equation (14), 
the PSD can therefore be approximated as  

 

( ) ( )2
2 2

2 2
1 1

ˆ
2 exp

2 2

m m
kk kkk

j
j k

bb
BPSD h

ω ω
ω σ

πσ σ= =

− −  
= +   

   
∑ ∑ , (45) 

where 
2 2

ˆ
ˆ

j j
k k

jk
j

hb m ω ω
ω ωω ω =

=

∂
= −

∂ ∂
.                   (46) 

This function stresses information about the total energy 
carried by the signal and about the accuracy of each line. 
Fourier and Bayesian PSDs for two signal models are shown 
in Figures 2 and 3. Fourier PSDs in Figures 2 (a) and 3 (b)  
indicate only one of two and four of five well separated 
frequencies, respectively but, Bayesian PSDs in Figure 2 
(b)-(d)  and 3(c)-(e) show that all two and the five 
frequencies are well separated, respectively while their  
heights are indicative of the resolution. A comparison of 
them implies that frequencies obtained by using the 
proposed methods are separated very well although the 
separation of the sinusoids is less than the Nyquist step [3, 

6, 24], defined as 1 2 N
πω ω− < . These results demonstrate 

ability of resolving closely spaced frequencies by use of the 
methods based on Bayesian inference.   

Moreover, we initially assumed that the values of the 
random noise in data were drawn from the Gaussian 
distribution. Figure 4 shows the exact and estimated PDF of 
the noise using each of the proposed methods. It is seen that 
the estimated (dotted) PDF is closer to its true (solid) PDF 
and the histogram of the errors, which is known as 
nonparametric estimator of the PDF of the noise is also 
much closer to its true PDF.  

Performance of estimators is often compared against the 
CRLB, which is an inversion of the Fisher Information 
Matrix ( )J ω  whose elements are the expectation of the 
second derivative of the Log likelihood function with 
respect to the parameter vectorω  :  

( ) ( )2

2

ln ,p D I
J E

ω
ω

ω

 ∂
= − 

∂  
                      (47) 

Assuming that the matrix ( )J ω  is   diagonal for a large  N  
so that its inversion is straightforward. In this case, the 
diagonal elements yield the lower bound for the variance of 
the estimates ω̂  asymptotically and we can write  

( ) ( )
2

2

3 2 2

ˆ24 , ( 1,2,..., )
ˆ ˆ

CRLB

j j

j

c s

j m
N a a

σσ ω ≥ =
+

      (48) 
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where 2σ̂ represents the estimated variance of the noise. A 
set of computer simulation was therefore conducted to 
evaluate the sinusoidal frequency estimation performances 
of the proposed algorithms. We first generated 64 data 
samples with different noise levels from a single real tone 
frequency signal model and calculated the mean square error 
(MSE) of the estimated frequencies   after 50 independent 
trials under the same SNR, defined as  

                            
2 2

210 log c sa a
SNR

σ
 +

=  
 

,                      (49) 

which varies from 0 to 20 decibel (dB) so that we plotted 
the logarithmic values of MSE as a function of the SNR and 
showed it in Figure 5(a). It can be seen that BRETTHORST, 
GIBBS and PT estimators have thresholds about 3 dB, 4 dB 
and 5 dB of the SNRs, respectively and   the curves for the 
frequency estimates  obtained by using these methods also 
follow nicely the CRLB all the way down approximately to 
5 dB. As getting lower SNRs all estimates starts to 
deteriorate significantly. To see changes in performances we 
calculated an efficiency parameter η [34], defined as 

CRLB 100
MSE

η  = × 
 

.                         (50) 

This indicates closeness to the CRLB. Table 3 contains the 
MSEs and the values of efficiency parameter η  for the 
frequency estimation and indicates that BRETTHORST is 
the most efficient among the others so that BRETTHORST 
is called better estimator at SNR 20dB=  and 64N = .  The 
above argument treats with only the case in which a data set 
of 64N =  is used for estimation. However, one may ask 
how to estimation accuracy varies with the length of data 
sampling N .  To answer it, we secondly generated data sets 
with different lengths N  from a single real tone frequency 
signal model under SNR 10= dB. After independent 20 
trials we calculated the values of MSEs of the estimated 
frequency obtained by each of methods so that we plotted 
their logarithmic values as a function of the length of data 
sampling N , which varies from 64 to 676, shown in Figure 
5(b).  From these results, larger  N  makes higher accuracy 
but, requires larger consumption of CPU time. In addition, 
Table 3 also indicates that PT is slightly more efficient 
method because it give a value of efficiency parameter η  
closed to CRLB for the frequency estimation at 676N =  
under SNR=10 dB. As expected, lower SNR and less data 
sampling deteriorate the performances of the methods. As a 
result, computer simulations show that the performances of 
the proposed methods are close to optimal with a minimum 
variance, which is close to the predictions made by the 
CRLB.  

The computational complexity of the methods depends on 
the length of data samples N , number of parameters m  and 
some control parameters that need to be tuned before 
performance becomes optimal and vary with the methods 
such as annealing schedule in BRETTHOST, tempering 
levels nβ  and steps for exchanging sn  , maximum number 

of iterations in PT ,  number of Gibbs simulations K, and 
number of sampling M  in GIBBS.  Discussions about the 
control parameters are given in papers[31, 32] where the 
proposed methods were introduced separately. By fixing 
those parameters, Figure 6 shows only CPU time of 
different simulations taken by BRETTHOST in a variety of 
number of data samples N  and parameters m . GIBBS and 
PT give also similar results given in papers [31] and [32], 
respectively.  Consequently, it indicates that as the length of 
the data samples or the number of parameters increases all 
the methods requires larger consumption of CPU time.  

 
 
 

CONCLUSIONS 
 

In this paper, three Bayesian approaches with different 
sampling procedures to estimate parameters of sinusoids 
embedded in Gaussian noise are partly improved and 
outputs of their computer simulations are compared and 
discussed. 

 Overall results show that Bayesian approach can not only 
give us the best estimates for the parameters but, also tell us 
uncertainties associated with their estimated values. 
Although they are more computationally intensive than the 
usual power spectrum methods, they are the best suited to 
those datasets where the values are noisy and aliasing that 
causes difficulties in the interpretation of the power 
spectrum. Computer simulation results allow us to show 
outstanding performances for separating two closely spaced 
sinusoids at very low SNRs and also demonstrate how the 
state-of-the art Bayesian inference schemes for the 
frequency in the static sinusoidal model work. Moreover, 
their performances for single frequency estimation are 
demonstrated via computer simulations at different data 
lengths N   and various SNRs and indicate that errors 
variance obtained by each of them tracks that of CRLB 
closely  at low SNR values, showing no signs of thresh 
holding down to SNR=5 dB. 

In analyzing experimental data, one has enough prior 
information in a given experiment to select the best model 
among a finite set of model functions so that Bayesian 
inference helps us to accomplish it. This is, in general, 
called model selection but, it is known here as a detection of 
number of sinusoids that is a big part of spectral analysis. A 
joint detection and estimation problem for complex signal 
models is our current interest and therefore will deserve 
further investigations. In addition, Mathematica has grown 
in breadth and depth to become today an unparalleled 
platform for all forms of computations. 
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Table 1. The best estimates of parameters for two 
frequencies sinusoidal signal model 

θ   True 
Values   

BRETTHORSTS  GIBBS  
 

PT 

1  0.3 0.3001
0.0001±

 0.3001
0.0004±

  0.3002
0.0003±

  

2  0.31 0.3102
0.0001±

 0.3108
0.0004±

 0.3103
0.0005±

 

1c
a  0.5403   0.4721

0.06±
 0.4821

0.06±
  0.4286

0.05±
 

1s
a  0.8415−   0.8653

0.06±
  0.8300

0.06
−
±

 1.0960
0.04±

  

2c
a  0.4161−   0.3952

0.06
−
±

 0.3852
0.06
−
±

 0.3111
0.04
−
±

  

2s
a  0.9093−   0.7816

0.06
−
±

  0.9005
0.06
−
±

  
0.9168
0.04
−
±

 

 

 

Table 2. The best estimates of parameters for a multiple 
frequency sinusoidal signal model 

θ   TRUE 
VALUES 

BRETTHO
RSTS 

GIBBS 
 

PT 

1  0.1000 0.1001  
± 0.0005 

0.0989  
± 0.0004 

0.1005 
±0.0004 

2  
0.1500 0.1502  

± 0.0003 
0.1499  
± 0.0002 

0.1502 
±0.0002 

3  
0.3000 0.2997 

± 0.0002 
0.3001  
± 0.0001 

0.2998 
±0.0001 

4  
0.3100 0.3097  

± 0.0004 
0.3102  
± 0.0002 

0.3094 
±0.0003 

5  
1.000 0.9999 

 ± 0.0002 
1.0000 
 ± 0.0001 

1.0001 
±0.0001 

1c
a  

0.5403 0.5669 
± 0.0645 

0.5740 
 ± 0.0657 

0.5645 
±0.0573 

1s
a  

-0.8414 -0.8922  
± 0.0646 

-0.7589 
 ± 0.0662 

-0.7664 
±0.0586 

2c
a  

-0.8322 -0.8873 
± 0.0662 

-0.8922 
 ± 0.0654 

-0.7985 
±0.0604 

2s
a  

-1.8185 -1.8215  
± 0.0661 

-1.8140 
 ± 0.0662 

- 1.8304 
±0.066 

3s
a  -4.9499 -4.7931  

± 0.0649 
-5.0060 
 ± 0.0658 

-4.9055 
±0.0934 

3c
a  -0.7056 -0.7841 

± 0.0655 
-0.7615 
 ± 0.0655 

-0.7161 
±0.0915 

4c
a  

-1.3072 -1.3671  
± 0.0653 

-1.1790 
 ± 0.0651 

-1.3965 
±0.1178 

4s
a  

1.5136 1.4932 
±0.0628 

1.4840 
 ± 0.0656 

1.4921 
±0.0681 

5c
a  

0.8500 0.8879  
± 0.0667 

0.9373 
 ± 0.0655 

0.8414 
±0.0651 

5s
a  

2.8767 2.9218  
 ± 0.0649 

2.9260 
 ± 0.0657 

2.8529 
±0.0612 

 

Table 3.  Performance comparison of Bayesian methods 
for single frequency estimation of noisy sinusoid 

 SNR 20dB=  672N =  

 
Methods 

 
MSE(dB) 

 
η  

 
MSE(dB) 

 
η  

GIBBS -
72.0742 

110 -81.371 122 

BRETTHORST -74.7158 106 -83.007 120 

P T -68.266 116 -85.010 117 

CRLB -
79.3572 

100 -99.357 100 
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Figure 2 Spectral analysis of two frequencies signal model: (a) 
Fourier PSD and Bayesian PSDs obtained (b)   
BRETTHORST; (c) GIBBS; (d) PT. 
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Figure 1. Signal models function with two frequencies 
corrupted by random noise and its restoration.  (a) 
Observed data (b) Estimated signal.  
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Figure 3 Spectral analysis of five frequencies signal 
model: (a) Observed data, (b) Fourier PSD and Bayesian 
PSDs obtained by (c) BRETTHORS; (d) GIBBS; (e) PT. 
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Figure 4. Comparison of exact and estimate PDFs of the 
noise in data 
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(b) 
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Figure 5. Performance comparison of Bayesian methods for 
a single frequency sinusoid: (a) Estimation error variance 
versus SNR with 0.3ω =  and 64N = ; (b) Estimation error 
variance versus number of data length N  with 

0.3ω = and SNR 10dB= .   

 

Figure 6. CPU times versus with Number of parameters 
and data samples for BRETTHORST.  
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