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Abstract— The present paper describes some methods to ex-

tend classical single-time ODEs and PDEs, creating some multitime

versions of these equations. Our approach is justified by examples of

possible applications in different fields of science. The first section

of paper motivates the interest in this subject. Three original ways to

pass from the single-time formulation to several evolution variables are

proposed: using some geometrical objects that extend some classical

single-time PDEs and then finding families of multitime exact soliton

solutions for the obtained multitime geometrical prolongations; creat-

ing new versions with more evolution variables for significant ODEs

and PDEs, by accepting that the variable ”time” may be a function

of certain parameters; introducing a multitime (tα) instead the single-

time variable t and a directional derivative instead the partial derivative

with respect to t, in first order ODEs. All these methods are applied

to some classical modeling equations from physics, biology, economy,

ecology. Our original techniques may be useful in modeling, in order

to obtain efficient representations of some phenomena including more

temporal scales evolving from slow to faster.

Keywords— Keller-Segel model, multitime modeling, multi-

time sine-cosine-Gordon solitons, telegraph equation, Ueda attractor.

I. HISTORY OF MULTITIME MODELING

IN classical modeling, the spatial parameter was naturally
accepted as multidimensional, since the temporal parameter was
unidimensional. But recently appeared a new idea: the mathe-
matical models for certain natural phenomena can be formu-
lated by means of multitime evolution PDEs. In recent years,
some interesting multitime developments of classical, single-
time theories and principles from different fields of mathemati-
cal research, were debated in the research group of Udrişte (see
[4], [7], [8], [12], [14]-[22]). Our paper develops further these
ideas.

The term ”multitime” (”multi-temporal”) was introduced
in physics by Dirac, Fock and Podolsky, in 1932, consid-
ering multi-temporal wave-functions described by evolution
PDEs. It was assumed in mathematics by Friedman and Littman
(1962, 1963). But the multi-temporal wave equations ap-
peared recently in the context of harmonic analysis on Rieman-
nian symmetric spaces. Multi-temporal parabolic equations,
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named sometimes pluri-parabolic or ultra-parabolic equations,
appeared in theory of the Brownian motion (diffusion processes
with inertia, see [17]), transport theory (Fokker-Planck equa-
tions), biology (dynamics of age-structured populations, [2]),
Maxwell waves and equations (see [1]), meteorology, ecology
(diffusion and dispersion of impurities in rivers), computer sci-
ence and other practical applications of mathematical physics,
economics [24] and engineering sciences. Some interesting pa-
pers have in attention initial boundary value problems for some
multi-time equations ([10], [11], [13]) .

The multi-temporal formalism can be used to describe the
long time evolution of the soliton solutions ([7], [8], [19]). Im-
portant problems that include harmonic maps, minimal subman-
ifolds, deformations, multi-temporal oscillators etc can be for-
mulated by multitime modeling (see [4], [16]). It is a technique
of modeling adequate to the case when a dynamical system con-
tains nonlinearities due to the friction, the deterioration, the flaw
or to the presence of the constituents consisting of intelligent
materials. It is also useful in engineering since it allows to pre-
dict material properties or system behavior based on knowledge
of the associated geometry. In meteorology, multitime model-
ing refers to interaction between weather systems of different
spatial and temporal scales that produces the weather that we
experience finally.

In usual quantum mechanics the wavefunction (for N-
particles) depends on 3N spatial variables and one time vari-
able, considering simultaneity for all particles. The idea of the
multi-time formalism is to add a separate time-variable for each
particle. One then has a multi-time wavefunction, i.e., a wave-
function that depends on 3N spatial and N time variables. The
main reason for doing this is to get a Lorentz-invariant object
and a corresponding theory ([9], [11]). Using different time-
variables for different particles is also justified when the coher-
ence between the amplitudes vanishes.

Another problem where the multitime approach is useful is
the simulation more efficiently of the transitory regime of cer-
tain electric circuits. One used a PDE system with two tempo-
ral variables, one for the fast periodic variations, second for the
slow, transitional evolution of the system ([10], [11], [13]). The
method was successfully implemented in a simulation program
(as we see in the paper [3]).

Some possibilities for new theories of physics in several
temporal dimensions are in present investigated. New directions
in the work to understand the physical phenomena, the origin
and the evolution of the Universe, are suggested. Weinstein [23]
is also one of the initiators of this flow in thinking and research.

II. MULTITIME VERSION OF PDEs VIA

GEOMETRICAL ELEMENTS

There is a close connection between PDEs systems and dif-
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ferential geometry.
We’ll make the passing from single-time to multitime us-

ing ingredients in the differential geometry of the manifold IRm

(derivations, trace), which extend the initial PDEs, using the
method from the papers [4], [7], [8], [12], [14]-[22]. For gen-
erating multitime PDEs, we recall geometrical objects from the
first order jet bundle (metric, connection, vectorial fields, tenso-
rial fields), creating multitime extensions for significant PDEs
from geometry or physics. As examples, let us introduce and
study some multitime geometrical prolongations of the sine-
cosine-Gordon PDE.

A. Multitime sine-cosine-Gordon PDE

The sine-cosine-Gordon equation is related to many phys-
ical systems, such as spin chains, one-dimensional supercon-
ducting arrays and nonlinear optics (see [6]).

The single-time sine-cosine-Gordon PDE is

uxx − utt − a cosu− b sin 2u = 0. (1)

Now let us introduce and study a multitime version of the
sine-cosine-Gordon PDE.

Suppose a multitime t = (t1, ..., tm) is a point in IRm. We
endow the manifold IRm with a symmetric linear connection
Γγαβ and with a fundamental symmetric contravariant tensor
field g = (gαβ) of constant signature (r, z, s), r + z + s = m.

Using a C2 function u : IR × IRm → IR, we build the
Hessian operator

(HessΓu)αβ =
∂2u

∂tα∂tβ
− Γγαβ

∂u

∂tγ
, α, β, γ=1,m,

its trace, called ultra-parabolic-hyperbolic operator,

�Γ,gu = gαβ(HessΓu)αβ

and define the multitime sine-cosine-Gordon PDE as

�Γ,gu = uxx − a cosu− b sin 2u,

that is

gαβ(t)
(

∂2u

∂tα∂tβ
−Γγαβ(t)

∂u

∂tγ

)
=uxx− a cosu− b sin 2u. (2)

Theorem 1 There exists an infinity of geometrical struc-
tures Γγαβ and gαβ on IRm such that a solution of the sine-
cosine-Gordon PDE (1) is also a solution of the multitime sine-
cosine-Gordon PDE (2).

Proof Let t1 = t and u = u(x, t1). Suppose u =
u(x, t1) is a solution of single-time PDE (1). The function
v(x, t1, ..., tm) = u(x, t1) is a solution of the multitime PDE
(2) if the family of geometrical structures Γγαβ , gαβ is fixed by

g11 = 1, Γγ11 = 0, γ = 1,m.

It is obvious that we have an infinity of geometrical structures
that satisfy this algebraic equation.

This Theorem justifies the term multitime geometrical pro-
longation of the sine-cosine-Gordon PDE.

Conversely, if we want to obtain a solution of a single-time
sine-cosine-Gordon PDE from a solution of the multitime sine-
cosine-Gordon PDE, we can use:

• a suitable curve τ → φ(τ), tα = φα(τ), α = 1,m, which
imposes some conditions on the coefficients; particularly,
we can look for a solution of type u(x, (τ, ..., τ))

• solutions u(x, t) depending only one variable tα, α =
fixed; for example u = u(x, t1).

Let φ : I ⊂ R→ R be a function of class C2. We seek for
solutions of the PDE (2) in the form of multitime solitons

u(x, t) = φ(x− cαtα) = φ(z), (3)

where cα, α = 1,m, is a constant vector and z = x − cαtα.
Substituting the derivatives in the PDE (2), we obtain a second
order ODE,

(gαβcαcβ − 1)Φ′′ +gαβΓγαβcγΦ′ +a cos Φ +b sin 2Φ=0.

For a fixed gαβcαcβ = v 6= 1 and Γγαβ = 0, after transforma-
tions, we obtain a new form that allows us to find the expression
of Φ′ as

Φ′ = ± 1√
1− v

√
2bsin2Φ + 2a sin Φ− k − b,

where k is an arbitrary real constant. In order to find some exact

soliton solutions, we consider the particular situation b =
a
√

2
2

and we choose for k a convenient value, k = −a
√

2. The ODE
becomes

Φ′ = ± 1√
1− v

√
a
√

2(
√

2 sin Φ + 1)2.

It follows that∫
dΦ√

2 sin Φ + 1
= ±

√
a
√

2
1− v

z + C,

where C is an arbitrary real constant.

By a change of variable, tg
Φ
2

= t, we have to calculate∫
2dt

2
√

2t+ 1 + t2
. Because the denominator is a square equa-

tion in variable t with the roots −
√

2 − 1 and −
√

2 + 1, using
the procedure of splitting in simple fractions, we obtain∫

2dt
2
√

2t+ 1 + t2
=
∫

1
t+
√

2− 1
−
∫

1
t+
√

2 + 1
,

which allows to find the result

ln
∣∣∣ t+

√
2− 1

t+
√

2 + 1

∣∣∣ = ±

√
a
√

2
1− v

z + C, C ∈ IR.

We distinguish two cases:

• If we take

ln
∣∣∣ t+

√
2− 1

t+
√

2 + 1

∣∣∣ =

√
a
√

2
1− v

z + C,

then it folows

t =
−2

1−K1 exp
(√

a
√

2
1−v z

) −√2− 1,

where K1 is an arbitrary real constant. The reverse of the

substitution tg
Φ
2

= t gives the first family of solutions

Φ = 2arctg

 2

K1 exp
(√

a
√

2
1−v z

)
− 1
−
√

2− 1

 ;
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• If consider

ln
∣∣∣ t+

√
2 + 1

t+
√

2− 1

∣∣∣ =

√
a
√

2
1− v

z + C,

then we find

t =
2

1−K2 exp
(√

a
√

2
1−v z

) −√2 + 1,

where K2 is arbitrary in IR, and a new family of solutions
of the ODE

Φ = 2arctg

 2

1−K2 exp
(√

a
√

2
1−v z

) −√2 + 1

 .

In summary, we can formulate the next result:

Theorem 2 Under foregoing hypothesis, the multitime
sine-cosine Gordon PDE (2) has two families of multitime soli-
ton solutions defined respectively by

u(x, t) = 2arctg
(

2
K1eA(x−cαtα) − 1

−
√

2− 1
)
,

u(x, t) = 2arctg
(

2
1−K2eA(x−cαtα)

−
√

2 + 1
)
,

where

A =

√
a
√

2
1− gαβcαcβ

and K1, K2 are arbitrary real constants.

B. Another multitime version of sine-cosine-Gordon PDE

Let’s take again the classical sine-cosine-Gordon PDE

uxx − utt − a cosu− b sin 2u = 0.

In order to obtain a PDE of polynomial form (preferable for
eventually finding some solutions), we’ll make a change of un-
known function, u = 2arctgv. The initial PDE becomes

vtt − vxx −
2v

1 + v2
v2
t +

2v
1 + v2

v2
x+

+
a(1− v2)

2
+ 2bv

1− v2

1 + v2
= 0. (4)

To this second order PDE, we apply the multitime extension via
geometrical approach.

Suppose the multitime t = (t1, ..., tm) ∈ IRm is a param-
eter of evolution. We endow the manifold (jet bundle of order
one) J1(IR × IRm, IR × IRm) with a distinguished symmetric

linear connection Γγαβ = Γγαβ

(
x, t, v,

∂v

∂t

)
, and with a distin-

guished fundamental symmetric contravariant tensor field h =(
hαβ(x, t, v,

∂v

∂t
)
)

of constant signature (r, z, s), r+ z+ s =

m. Using a C2 function v : IRm × IR → IR, we build the
Hessian operator

(HessΓv)αβ =
∂2v

∂tα∂tβ
− Γγαβ

∂v

∂tγ
, α, β, γ = 1,m

its trace, called ultra-parabolic-hyperbolic operator,

�Γ,hv = hαβ(HessΓv)αβ ,

and a multitime PDE,

�Γ,hv−
∂2v

∂x2
+

2v
1 + v2

v2
x+

a

2
(1−v2)+2b

v(1− v2)
1 + v2

=0, (5)

where t = (t1, ..., tm) ∈ IRm and x ∈ IR.
LetCγ(x, t, η, ξ), γ = 1,m be a distinguished vector field.

If we adopt the hypothesis

hαβ(x, t, η, ξ)Γγαβ(x, t, η, ξ)ξγ =Cγ(x, t, η, ξ)
ηξ2
γ

1 + η2
, (6)

then we obtain the a multitime extension of PDE (4):

hαβ(x, t, v,
∂v

∂tγ
)
∂2v

∂tα∂tβ
−
Cγ(x, t, v,

∂v

∂tγ
)v

1 + v2

(
∂v

∂tγ

)2

−

−∂
2v

∂x2
+

2v
1 + v2

v2
x +

a

2
(1− v2) + 2b

v(1− v2)
1 + v2

=0. (7)

Remark Results similar to Theorem 1 can be formulated
for this second extension of the sine-cosine-Gordon equation;
we can understand this multitime extension of the sine-cosine-
Gordon PDE as a multitime geometrical prolongation of the
single-time one.

III. MULTITIME EXTENSION OF EVOLUTION LAWS

VIA ”TIME-FUNCTIONS”

The evolution laws that appear in theories from different
fields of science have a single-time formulation. To give a mul-
titime version, we accept that the time t can be a C∞ function of
certain parameters, i.e. t = t(s1, s2, ..., sm). Thus the simple
uni-dimensional variable t from the single-time law becomes
in the multitime law a function that we can call time-function.
The substitution of the derivatives with new expressions found
by differentiating composed functions leads to multitime new
PDEs or systems of PDEs. If it is necessary, some logistics
such as the technique of duality can be used for these equations
to become symmetric.

We sall see this technique applied for two examples: a sec-
ond order ODE known as Ueda attractor (see [24]) and a second
order PDE associated to a system of two PDEs (second order,
but first order in t) from biology, named Keller-Segel equations
(see [2]).

A. Multitime extensions of Ueda attractor

Ueda found a strange attractor, a dynamical system mod-
eled as

ẍ+ 2γẋ+ x3 = F cos t,

where γ and F are constants that determine the chaotic behav-
ior, and the unknown is x(t). We propose two ways to extend
this second order ODE at the multi-temporal case. The differ-
ence consists in the form of expressions that substitute the par-
tial derivatives. Thus we obtain a multitime PDE or a system of
multitime PDEs.

a) The first multitime extension

Let’s consider the variable time t becoming a function of
a vector parameter of evolution s = (s1, ..., sm), that is t =
t(s1, s2, ..., sm), x = x(t((s1, s2, ..., sm))

Because
∂x

∂sα
= ẋ

∂t

∂sα
,∀α = 1,m,
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we have by addiction

ẋ =

m∑
α=1

∂x

∂sα

m∑
α=1

∂t

∂sα

.

The second order derivatives with respect to the components of
the vector s are

∂2x

∂sα∂sβ
= ẍ

∂t

∂sα
∂t

∂sβ
+ ẋ

∂2t

∂sα∂sβ
=

= ẍ
∂t

∂sα
∂t

∂sβ
+

m∑
α=1

∂x

∂sα

m∑
α=1

∂t

∂sα

∂2t

∂sα∂sβ
, ∀α, β = 1,m,

so that, by addiction, it results

ẍ =

m∑
α,β=1

∂2x

∂sα∂sβ
−

m∑
α=1

∂x

∂sα

m∑
α=1

∂t

∂sα

m∑
α,β=1

∂2t

∂sα∂sβ

m∑
α,β=1

∂t

∂sα
∂t

∂sβ

.

The multitime equation is

m∑
α,β=1

∂2x

∂sα∂sβ
+

m∑
α=1

∂x

∂sα

m∑
α=1

∂t

∂sα

2γ m∑
α,β=1

∂t

∂sα
∂t

∂sβ
−

m∑
α,β=1

∂2t

∂sα∂sβ

 =

=
(
F cos t(s1, s2, ...sm)− x3

) m∑
α,β=1

∂t

∂sα
∂t

∂sβ
. (8)

We obtain a multitime second order PDE, quite compli-
cated.

Remark To keep the periodicity, we can choose the time-
function t = t(s1, ..., sm) with a special property: we want to
exist certain constants T 1, ..., Tm > 0 and k ∈ Z so that

t(s1 + T 1, ..., sm + Tm) = t(s1, ...sm) + 2kπ, (9)

for all (s1, ..., sm) ∈ IRm. Thus we have

cos t(s1 + T 1, ..., sm + Tm) = cos t(s1, ..., sm),

∀(s1, ..., sm) ∈ IRm.

b) The second multitime extension

Let’s α, β be arbitrary, fixed in {1, ...,m}. Then we have

ẋ =

∂x

∂sα

∂t

∂sα

=

∂x

∂sβ

∂t

∂sβ

=

∂x

∂sα
+

∂x

∂sβ

∂t

∂sα
+

∂t

∂sβ

.

The second derivative will be substituted by

ẍ =

 ∂2x

∂sα∂sβ
−

∂x

∂sα
+

∂x

∂sβ

∂t

∂sα
+

∂t

∂sβ

∂2t

∂sα∂sβ

 ∂t

∂sα
∂t

∂sβ
,

for all α, β ∈ {1, ...m} fixed.
This way to transform the single-time equation doesn’t use

the addiction of the relations that give the partial derivatives.
The initial equation becomes

∂2x

∂sα∂sβ
+

∂x

∂sα
+

∂x

∂sβ

∂t

∂sα
+

∂t

∂sβ

(
2γ

∂t

∂sα
∂t

∂sβ
− ∂2t

∂sα∂sβ

)
=

=
(
F cos t(s1, ..., sm)− x3

) ∂t

∂sα
∂t

∂sβ
, ∀α, β = 1,m. (10)

This is a system of multitime second order PDEs, with m2

equations. In order to keep the periodicity, we can make the
same choice as in the case of the first extension.

B. Multitime extensions of Keller-Segel model

For illustrate how to make the extension for a second order
PDE, we take a system that models a process from biology.

In biology and biochemistry, chemotaxis is the phe-
nomenon in which cells move according to the concentration of
certain molecules in the environment. They could be attracted
by food, or repelled by poisons. If the cells themselves secrete
the chemotactic molecules, we can describe the movement of
the cells by the Keller-Segel model (see [2]). The simplest case
is {

ut = duxx − uxvx − uvxx
vt = evxx + u− av.

By replacing the expression of u = vt+av−evxx from the
second equation of the system into the first one, we transform it
into a second order PDE (including second order in t),

vtt + vt(a+ vxx) + vtxvx − dvtxx − evxxt =

= F (v, vx, ..., vxxxx), (11)

where
F (v, vx, ..., vxxxx) =

=davxx−devxxxx− a(vx)2 + evxxxvx− avvxx + e(vxx)2.

We propose to extend the variable t as a function, t =
t(s1, ..., sm). Thus the function v becomes a multitime func-
tion v(t(s1, ..., sm), x).

Because
vsα = vt

∂t

∂sα
,∀α = 1,m,

we add these equalities and it follows that

vt =

m∑
α=1

vsα

m∑
α=1

∂t

∂sα

, vtx =

m∑
α=1

vsαx

m∑
α=1

∂t

∂sα

,

vtxx =

m∑
α=1

vsαxx

m∑
α=1

∂t

∂sα

, vxxt =

m∑
α=1

vxxsα

m∑
α=1

∂t

∂sα

,

vtt =

m∑
α,β=1

vsαsβ −

m∑
α=1

vsα

m∑
α,β=1

∂2t

∂sα∂sβ

m∑
α=1

∂t

∂sα

m∑
α,β=1

∂t

∂sα
∂t

∂sβ

.
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The equation (11) becomes the multitime PDE

m∑
α,β=1

vsαsβ −

m∑
α=1

vsα

m∑
α=1

∂t

∂sα

m∑
α,β=1

∂2t

∂sα∂sβ

m∑
α,β=1

∂t

∂sα
∂t

∂sβ

+

+(a+ vxx)

m∑
α=1

vsα

m∑
α=1

∂t

∂sα

+

m∑
α=1

vsαx

m∑
α=1

∂t

∂sα

vx−

−d

m∑
α=1

vsαxx

m∑
α=1

∂t

∂sα

− e

m∑
α=1

vxxsα

m∑
α=1

∂t

∂sα

= F (v, vx, ..., vxxxx),

or, by multiplying with
m∑
α=1

∂t

∂sα
,

m∑
α,β=1

vsαsβ

m∑
α=1

∂t

∂sα
−

m∑
α=1

vsα

m∑
α,β=1

∂2t

∂sα∂sβ

m∑
α,β=1

∂t

∂sα
∂t

∂sβ

+

+(a+ vxx)
m∑
α=1

vsα + vx

m∑
α=1

vsαx − d
m∑
α=1

vsαxx−

−e
m∑
α=1

vxxsα = F (v, vx, ..., vxxxx)
m∑
α=1

∂t

∂sα
. (12)

This new multitime PDE is complicated; to find a solution is not
so easy, but our technique applied for many types of PDEs can
leads to certain equations with different properties, more or less
complicated.

IV. MULTITIME PDEs SYSTEMS USING
DIRECTIONAL DERIVATIVE

Consider a system of ODEs in the form

d

dt

(
x
y

)
=
(
f1(x, y, t)
f2(x, y, t)

)
.

If we take t = t1 and introduce some new temporal variables,
t2, t3, ..., tm, we need a substitute for the derivative with re-
spect to t. Let h = (h1(t1, . . . , tm), ..., hm(t1, . . . , tm)) be

a direction in IRm. By substituting
d

dt
with the directional

derivative along h, we obtain a multitime PDEs system that ex-
tends the initial single-time system. For the paricular direction
h = (1, 0, 0, ..., 0), this system coincides with the single-time
system.

The choice of ti, i = 1,m instead of t is arbitrar and it
may generally depend on the meaning and the function of each
ti in the application and in the model that one study.

Example We consider again the Ueda attractor from [24],
a dynamical system modeled as

ẍ+ 2γẋ+ x3 = F cos t,

where γ and F are constants that determine the chaotic be-
haviour, and the unknown is x(t). In order to transform this
second order ODE into a system of first order ODEs, we denote
ẋ(t) by y(t) and obtain

d

dt

(
x
y

)
=
(

y
−2γy − x3 + F cos t

)
.

Let an evolution parameter t = (t1, . . . , tm) ∈ IRm be, called
multitime. Then x and y will be functions of (t1, . . . , tm). Con-
sider a direction h = (h1(t1, . . . , tm), ..., hm(t1, . . . , tm)). By
substituting the derivative with respect to t with the directional
derivative along this direction, the initial ODE system becomes
a multitime PDE system in (x, y),

hi
∂

∂ti

(
x
y

)
=
(

y
−2γy − x3 + F cos t1

)
,

or, equivalent,
hi
∂x

∂ti
= y

hi
∂y

∂ti
= −2γy − x3 + F cos t1,

where i is a summation index.
In fact, here we consider t = t1 and introduce some new

temporal variables, t2, t3, ..., tm.

V. MULTITIME EXTENSIONS OF TELEGRAPH PDE

Partial differential equations are used to model some eco-
logical phenomena and processes related to the movement of
multiple species of animals: dispersal, ecological invasions,
critical patch size, dispersal-mediated coexistence, diffusion-
driven spatial patterning ([2], [5])

Animals do not zig-zag back and forth wildly like
molecules. They tend to continue forward in the direction of
their existing path. This process is modeled by a PDE named
telegraph equation:

ut =
V 2

2λ
(uxx + uyy)− 1

2λ
utt. (13)

where u(x, y, t) is the density of organisms with respect to spa-

tial coordinates x, y and time t,
1

2λ
is a measure of the correla-

tion between directions of travel from one step to the next and
V is he velocity of the organisms.

We propose to create multitime extensions of this second
order PDE by all the methods above.

A. Multitime geometrical prolongations of telegraph PDE

The telegraph PDE can take the form

utt + 2λut = V 2(uxx + uyy).

Consider a point in IRm (multitime) t = (t1, ..., tm). On the
manifold IRm, we define a symmetric linear connection Γγαβ
and a fundamental symmetric contravariant tensor field g =
(gαβ) of constant signature (r, z, s), r + z + s = m. For a
C2 function u : IR2 × IRm → IR, we construct the Hessian
operator

(HessΓu)αβ =
∂2u

∂tα∂tβ
− Γγαβ

∂u

∂tγ
, α, β, γ=1,m,

its trace, named ultra-parabolic-hyperbolic operator,

�Γ,gu = gαβ(HessΓu)αβ

Issue 4, Volume 7, 2013 139

INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS



and define the multitime telegraph PDE as

�Γ,gu = V 2(uxx + uyy),

or, equivalent,

gαβ(t)
(

∂2u

∂tα∂tβ
− Γγαβ(t)

∂u

∂tγ

)
= V 2(uxx + uyy). (14)

We can understand this multitime extension of the tele-
graph PDE as a multitime geometrical prolongation of the
single-time one, because Theorem 1 can be also formulated for
this equation.

The proof is similar: let t1 = t and u = u(x, y, t1) and sup-
pose u = u(x, y, t1) is a solution of single-time PDE . The func-
tion v(x, y, t1, ..., tm) = u(x, y, t1) is a solution of the multi-
time PDE (14) if the family of geometrical structures Γγαβ , g

αβ

is fixed by

g11 = 1, Γ1
11 = −2λ, Γγ11 = 0, γ = 2,m.

We have an infinity of geometrical structures that satisfy this
algebraic equation.

Conversely, to obtain a solution of the single-time telegraph
PDE from a solution of the multitime one, we can use:

• a suitable curve τ → φ(τ), tα = φα(τ), α = 1,m, which
imposes some conditions on the coefficients; particularly,
we can look for a solution of type u(x, y, (τ, ..., τ))

• solutions u(x, y, t) depending only one variable tα, α =
fixed; for example u = u(x, y, t1).

Remark: The multitime telegraph PDE has stationary so-
lutions (i.e. independent on temporal variables). Such a solu-
tion must satisfy the condition uxx + uyy = 0, or, equivalent,
∆u = 0; it means that u is an harmonic function with respect
to the spatial variables.

We want to find special solutions of this multitime PDE, in
the form of multitime solitons

u(x, y, t) = φ(x+ ay − cαtα) = φ(z),

where φ : I ⊂ R → R is a function of class C2, a is a real
constant, cα, α = 1,m, is a constant vector and z = x + ay −
cαt

α.
Substituting the derivatives of u in the equation, we obtain

a second order ODE,

φ′′(z)(gαβ(t)cαcβ − V 2 − a2V 2) + gαβΓγαβ(t)cγφ′(z) = 0.

We choose the vector cα, α = 1,m such as to fix g and Γ in the
equalities

gαβ(t)cαcβ = A = const., gαβΓγαβ(t)cγ = B = const.

and the ODE becomes

φ′′(z)(A− V 2 − a2V 2) +Bφ′(z) = 0,

that is, after an integration,

φ′(z)(A− V 2 − a2V 2) +Bφ(z) = 0.

This is a linear ODE and its solutions are

φ(z) = C exp
(
− Bz

A− V 2 − a2V 2

)
+
K

B
, C,K ∈ IR.

Theorem 3 Under foregoing hypothesis, the multitime
telegraph PDE (14) has a family of multitime soliton solutions
defined by

u(x, y, t) = C exp
(
−B(x+ ay − cαtα)

A− V 2 − a2V 2

)
+
K

B
,

where
A = gαβ(t)cαcβ , B = gαβΓγαβ(t)cγ

and C, K are arbitrary real constants.

B. Multitime telegraph PDEs via ”time-functions”

Using the technique presented in Section III, the tem-
poral variable t becomes a function, t = t(s1, s2, ...sm).
Thus the single-time function u becomes a multitime function
u(x, y, t(s1, s2, ...sm)).

a)First multitime extension:

We add the equalities

usα = ut
∂t

∂sα
, α ∈ {1, ...,m}

and it follows that

ut =

m∑
α=1

usα

m∑
α=1

∂t

∂sα

.

Taking the second derivative and adding again, it follows

utt =

m∑
α,β=1

usαsβ −

m∑
α=1

usα

m∑
α=1

∂t

∂sα

m∑
α,β=1

∂2t

∂sα∂sβ

m∑
α,β=1

∂t

∂sα
∂t

∂sβ

.

The single-time telegraph equation (13) becomes a multi-
time PDE,

m∑
α=1

usα

m∑
α,β=1

∂t

∂sα
∂t

∂sβ
=
V 2

2λ
(uxx + uyy)

m∑
α,β=1

∂t

∂sα
∂t

∂sβ
×

m∑
α=1

∂t

∂sα
− 1

2λ

( m∑
α,β=1

usαsβ

m∑
α=1

∂t

∂sα
−

m∑
α=1

usα

m∑
α,β=1

∂2t

∂sα∂sβ

)
,

that is

m∑
α=1

usα

( m∑
α,β=1

∂t

∂sα
∂t

∂sβ
− 1

2λ

m∑
α,β=1

∂2t

∂sα∂sβ

)
=

=
1

2λ

m∑
α=1

∂t

∂sα

[
V 2(uxx+uyy)

m∑
α,β=1

∂t

∂sα
∂t

∂sβ
−

m∑
α,β=1

usαsβ

]
.

b)Second multitime extension:

For each α, β arbitrary, fixed in {1, ...,m}, we have

ut =

∂u

∂sα

∂t

∂sα

=

∂u

∂sβ

∂t

∂sβ

=

∂u

∂sα
+

∂u

∂sβ

∂t

∂sα
+

∂t

∂sβ

.
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The second derivative becomes

utt =

 ∂2u

∂sα∂sβ
−

∂u

∂sα
+

∂u

∂sβ

∂t

∂sα
+

∂t

∂sβ

∂2t

∂sα∂sβ

 ∂t

∂sα
∂t

∂sβ
,

for each α, β ∈ {1, ...,m}.
Thus the single-time telegraph PDE (13) produces a multi-

time second order PDEs system with m2 equations

∂u

∂sα
+

∂u

∂sβ

∂t

∂sα
+

∂t

∂sβ

=
V 2

2λ
(uxx + uyy)− 1

2λ
∂t

∂sα
∂t

∂sβ
×

 ∂2u

∂sα∂sβ
−

∂u

∂sα
+

∂u

∂sβ

∂t

∂sα
+

∂t

∂sβ

∂2t

∂sα∂sβ

 , α, β = 1,m,

that is equivalent to

∂u

∂sα
+

∂u

∂sβ

∂t

∂sα
+

∂t

∂sβ

(
1− 1

2λ
∂t

∂sα
∂t

∂sβ
∂2t

∂sα∂sβ

)
=

=
1

2λ

[
V 2(uxx + uyy)− ∂t

∂sα
∂t

∂sβ
∂2u

∂sα∂sβ

]
,

with α, β = 1,m.

C. Multitime telegraph PDEs system using directional
derivative

In order to transform the second order PDE (13) into a sys-
tem of first order PDEs, we denote ut(x, y, t) by v(x, y, t) and
it results

vt = utt = V 2(uxx + uyy)− 2λv(x, y, t).

We obtain the PDEs system

∂

∂t

(
u(x, y, t)
v(x, y, t)

)
=
(

v(x, y, t)
V 2(uxx + uyy)− 2λv(x, y, t)

)
.

(15)
Consider a multitime t = (t1, . . . , tm) ∈ IRm and a direction
h = (h1(t1, . . . , tm), ..., hm(t1, . . . , tm)). The unknowns u
and v will be functions of (x, y, t1, . . . , tm).

We refer to the derivative with respect to t. By substituting
this derivative with the directional derivative along the direction
h, the single-time PDEs system (15) becomes a multitime PDE
system in (u, v),

hi
∂u

∂ti
= v

hi
∂v

∂ti
= V 2(uxx + uyy)− 2λv,

(16)

where i is a summation index.
For h = (1, 0, . . . , 0), the multitime system coincides with

the single-time system. Thus we understand the new multitime
system (16) as a more general form of (15).

VI. CONCLUSIONS

The specialists [1]-[24] consider that in certain cases it is
more efficient to represent the evolution by a function in two
evolution variables (t1, t2), like a surface, than a curve (trajec-
tory), i.e., by a function of one variable t.

The multitime formalism has the main advantage that the
mathematical information is reach and the thinking is easier.
That is why, the techniques for creating multitime PDEs is use-
ful in mathematical modeling and graphical representations of
the evolution of certain processes, and also in signal theory.

The single-time ODEs and PDEs arise in the mathemati-
cal modeling of many physical, chemical and biological phe-
nomena and many diverse subject areas such as fluid dynamics,
electromagnetism, material science, astrophysics, economy, fi-
nancial modeling etc. To reinforce some ideas we can change
them into multi-temporal models which are sometimes more
convenient in understanding some evolutions.

A new understanding of multi-dimensional consistency has
been a major breakthrough of the papers [1]-[4], [7], [8], [10]-
[22]. Our aim is to continue these ideas, extending the known
results by extensive applications of multitime prolongations.
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[4] M. Iliuţă, C. Udrişte, I. Ţevy, ”Multitime control strategies for skilled
movements”, Balkan Journal of Geometry and Its Applications, vol. 18,
no. 2, pp. 31-46, 2013.

[5] E. E. Holmes, M. A. Lewis, J. E. Banks, R. R. Veit, ”Partial differen-
tial equations in ecology: spatial interactions and population dynamics”,
Ecology, vol. 75, no. 1, pp. 17-29, 1994.

[6] N. H. Kuo, C. D. Hu, ”A study of the solutions of the combined sine-
cosine-Gordon equation”, Applied Mathematics and Computation, vol.
215, no. 3, pp. 1015-1019, 2009.
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