

Abstract— Personal Health Applications (PHA) are tools and

services in medical informatics domain, which use information
technologies to help individuals create their own personal health
information. This paper introduces a personal health application as a
distributed mobile application communicating with a context-aware
system meant to collect environmental data, using sensors connected
to a FBGA board. The physiological risk factors measurements are
stored into a database running on web-server and distributed then to
all the registered client applications running on mobile devices. The
client applications will receive updates from the server with the new
available information gathered from the context-aware system
showing to the user the possible health risks identified. While a high
level overview of the entire context-aware system designed for
physiological risk factors measurement station is presented, this
paper is focused on the data processing layer and on the software
implementation of the client application running on mobile devices.

Keywords— Health Application, Distributed Computing,
Monitoring, Autonomic Computing, Context-aware system, APNS.

I. INTRODUCTION
ersonal Health Applications are thought of as the next
generation of consumer-centric information systems that

help improve self-management, health care delivery and
wellness by providing clear, accurate and complete
information, which increases understanding, competence and
awareness. Personal Health Application is now part of the
Medicine 2.0 movement. eHealth (also e-health) is a relatively
recent term for healthcare practice supported by electronic
processes and communication, dating back to at least 1999. As
Mitchell J. presents in his paper[12], e-Health can be seen as
"a new term needed to describe the combined use of electronic
communication and information technology in the health
sector... the use in the health sector of digital data -
transmitted, stored and retrieved electronically - for clinical,
educational and administrative purposes, both at the local site
and at distance".

One of the main factors blocking the use of e-Health tools
from widespread acceptance is the concern about privacy
issues regarding patient records, most specifically the EPR

Sveatoslav Vizitiu is with the Electrical Engineering Department,
Technical University of Cluj-Napoca, G. Baritiu street, no. 26-28, Cluj-
Napoca, 400027 ROMANIA (e-mail: sveatoslav.vizitiu@gmail.com).

Lazar Sidor is with the Distributed Systems Department, Faculty of
Computer Science, Technical University of Cluj-Napoca, G. Baritiu street, no.
26-28, Cluj-Napoca, 400027 ROMANIA (e-mail: lazar.sidor@gmail.com).

(Electronic Patient Record). This main concern has to do with
the confidentiality of the data.

Health 2.0 refers to a number of related concepts including
telemedicine, electronic medical records, mHealth, Connected
Health, and the use of the Internet by patients themselves [2].
Of the forms of e-Health already mentioned, two types: front-
end data exchange and back-end exchange. Front-end
exchange typically involves the patient, while back-end
exchange does not.

Mobile health, or more commonly, mHealth, is „the use of
wireless communication devices to support public health and
clinical practice” [1]. Mobile devices are handheld in nature
and include mobile phones, personal digital assistants, patient
monitoring devices, and other wireless devices. mHealth
applications are receiving increased attention largely due to
the global penetration of mobile technologies.

Mobile medical applications range from communication
between individuals and health systems (such as call centers,
appointment reminders, treatment compliance) to health
monitoring and surveillance (including surveys, patient
monitoring devices), and access to information at the point of
care (health records, decision support).

As the United States has moved toward the development of
a national Health IT infrastructure, over 1,500 mobile medical
applications have been developed to assist both patients and
their clinicians in managing care [6].

Nowadays, the mobile industry boom, combined with the
rapid growth and explosion of information and the increasing
necessity for having access to this information point towards
also the need for computing systems capable of maintaining
and managing themselves. Related to this and based on the
human body autonomic nervous system, IBM proposed an
approach for building autonomous computing systems,
targeting the increasing complexity management, by
embedding autonomous paradigms into the hardware and
software components [14].

The high usage of devices capable of consuming web-
services based on specific contextual information points
towards also the need of providing accurate and adequate
information to end users.

In order to provide such relevant information, any
application and service should be aware of its context and
automatically adapt to their changing contexts-known as
context-awareness.

Real-time environmental changes and medical
risks monitoring in a context-aware system,

using distributed mobile applications
Sveatoslav Vizitiu and Lazar Sidor

P

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 6, 2012

236

In this paper we describe a context-aware system capable of
reacting in case of a health risk detected while performing
real-time physiological measurements for a specific GPS
location retrieved from a user handling a mobile device.

At the level of data processing layer, our proposed system is
based on autonomic computing approach, by containing an
autonomic manager for implementing autonomous features.

The relevant data read from the environment by using
specific sensors are transmitted to the server in order to be
distributed to all connected users.

The rest of this paper is structured as follows. Section 2
provides a short description of the main concepts used in the
design and implementation of the proposed system. Then, the
overview structure of the context-aware proposed system is
presented and described shortly in section 3, while the mobile
application design is detailed in section 4. The paper
concludes with a short summary and an outlook on further
research and development steps.

II. THEORETICAL STUDY
Developing applications, which communicate with a remote

server, a data format has to be used for the communication
protocol. For a Web Service, XML based SOAP is rife and
widely accepted. While XML works fine with many scenarios,
it has some drawbacks that makes it difficult to use in some
scenarios. One such scenario is AJAX-style Web Services,
where XML is difficult to process on the client side. Also,
XML is larger in size than its corresponding JSON
representation.

JSON is a lightweight data-interchange format [5] and like
XML, it is human-readable, platform independent, and enjoys
a wide availability of implementations. For each property,
XML has two tags: opening and closing. On the other hand,
JSON has the property name only once.

In order to send notifications from a central server to a list
of multiple client applications, the Push Technology can be
used as the publisher or the central server initiates the request
for a given transaction. The notifications sent using the Push
Technology are called Push Notifications.

APNS (Apple Push Notification Service) is a service
created by Apple Inc. and it can be used to send push
notifications to clients that have registered to receive updates
via a configuration profile and are also using the server's mail,
calendar and contacts services. Each notification has a
maximum size of 256 bytes, which makes it very efficient for
services with small data allowances (such as mobiles) [4],
[22].

A FPGA board (Field-Programmable Gate Array) is a
semiconductor device containing programmable logic
components and programmable interconnections.

At the data acquisition layer our proposed system contains a
FPGA board and uses digital and analog pins located on the
board to communicate with temperature, pressure, humidity
and dust density sensors.

The communication with the sensors is made using sensor-
specific protocols and interfaces. Communication involves the
transmission of commands (made up of 8 bits), waiting for a

time interval for the sensors to perform the physical
measurements and then read the data stored in the sensor [11].

The improvements in integrated circuit technology, in the
form of low-cost, high- density FPGAs with reduced package
size as digital interfacing solutions have been presented also in
[16] where a biomedical monitoring system is described.

On any autonomic computing approach, an autonomic
component offers at least one of the four self* or CHOP
paradigms (C = configuring, H = healing, O = optimizing, P =
protecting). The CHOP paradigms are implementing at the
component level by the autonomic managers. Each autonomic
manager enforces one or more CHOP functionalities by
executing a MAPE cycle consisting of monitoring, analyzing,
planning and executing the plans.

The use of the Autonomic Managers in the system
development is also required by the WSDM standard [15]
built on SOA design principles and a detailed overview of the
basic features related to autonomic computing and its basic
goal and functional demands are presented in [21].

In case of developing context-aware systems, the main
element in the data acquisition process is the context meant to
provide information about the current user status, location or
devices in the environment. The concept of context-aware
computing was introduced in 1994, as being present in
systems capable to “examine the computing environment and
to react to changes to the environment” [17]. A more complete
definition was provided in [18], by taking into consideration
the mobile devices with externally connected GPS, additional
sensors and network access.

The lack of privacy in context sensitive systems is
presented in [19] while an information system applied in the
healthcare business and combined with the mobile system is
described in [20].

III. SYSTEM OVERVIEW
The proposed system presented in the figure 1 consists of

several components analyzed from a three-tier perspective:
1. Data acquisition layer
2. Data processing layer
3. Data visualization layer

At each layer, different hardware and software modules
perform specific operations detailed in the next sections

A. Data acquisition
At this layer, the Context Aware System interacts with the

external Environment through the hardware modules
consisting of an FPGA board which receives real-time
information from the environment, through several sensors
programmed to collect relevant meteorological information
related to humidity, dust and pressure.

The physical parameters measured by the sensors are
converted to electrical signals transmitted to the FPGA board,
which sends the data to a web-server for further processing.
The messages sent to the server will stipulate the date and time
the measurements were made together with the actual
measurement values.

For the implementation of the system presented in this

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 6, 2012

237

ar

bo

rticle, we will
1. Compac
2. Digital h
3. A minia

Fig. 1

Fig. 2 H

The place w
oard is present

Since the SH

use the follow
ct optical dust
humidity sens
ature SPI digit

 Context-aware

Hardware archi

where these sen
ted in figure 2

HT15 and MP

wing sensors:
t sensor GP2Y
sor SHT15
tal barometer

e system overvi

itecture for data

nsors are con
2.
PL115A1 sen

Y1

MPL11.

iew diagram

a acquisition

nnected to the

sors only hav

e FPGA

ve 3.3V

dig
ter
GP
so
loc
po

thr

SH
sen

bo
act

pin
are

wh
sig

ter

ite
co
by
the
fig

SC
wa
DA

gital signals
rminals on t
P2Y1010AU0

it needs to b
cated on the

ower directly f
The FPGA b
rough Etherne
The next sec

HT15 sensor,
nsor data tran
In order to co

oard needs to s
tually begin th
The SHT15 s
ns: Vcc and G
e accessed fro

The FPGA bo

hich is formed
gnal from the
First we mus

rminal is mark
In a for loop

eration, the DA
mmand that n

y a falling edge
e data to the s
gures 4 – 6 bel

After all the

CK is assigne
aiting for a co
ATA is marke

they can b
the FPGA b
0F sensor has
be connected
FPGA board

from the board
board will com
et or Wi-Fi.
ctions describ

by using L
smission.
ommunicate w
send a start se
he data acquis
sensor must be
GND, the digi
om LabVIEW

Fig.3 Sen

oard will need
d of 8 bits and
sensor.
st make sure
ked for data tr
p, the progra
ATA terminal
needs to be sen
e of SCK are
server. The se
low:

Fig. 4 Sen

8 bits are sen
ed '1' to sign

onfirmation for
ed for receivin

e connected
board. On th
both digital an

d to the DIO
d. All the sen
d.
mmunicate wi

e the process
abVIEW Vir

with the SHT1
equence in ord
sition.
e connected t
tal signal SCK
FPGA.

nd byte (part 1)

d to send the
d then wait fr

that SCK is
ransmission.
am iterates 8
l is assigned t
nt and then a r
executed in or

end byte opera

nd byte (part 2)

nt, the DATA
nal the senso
r the data that

ng data.

only to the
he other han
nd analogue s
and AIO ter

nsors will ge

ith the server

s of writing d
rtual Instrume

15 sensor the
der for the sen

o the FPGA u
K and DATA

necessary com
rom an acknow

 '0 'and the D

times, and in
the current bit
rising edge fo
rder to actuall
ation is illustr

line is releas
or that the bo
t was just sent

e DIO
nd, the
signals,
rminals
et their

r either

data to
ent for

FPGA
nsor to

using 4
A which

mmand
wledge

DATA

n each
t of the

ollowed
ly send
rated in

sed and
oard is
t. Then

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 6, 2012

238

Fig. 5 Send byte (part 3)

At the end of the operation, there is a while loop in which

the application waits until it receives the value '1' from the
sensor, meaning that it successfully received all the data.

Fig.6 Send byte (part 4)

Initiating a transaction (described in figures 7 - 9) consists

in lowering the DATA line while SCK isi '1', followed by a
falling and then rising edge of SCK and then raising DATA
while SCK is '1' - all these operation are done at a 1ms
interval.

Fig.7 Transmission start (part 1)

Fig.8. Transmission start (part 2)

Fig. 9 Transmission start (part 3)

A measurement operation as illustrated in figure 10 is

composed of resetting the connection to the sensor (sending
the value '1' for 9 clock cycles, followed by a transmission
start sequence), sending the command that needs to be done,
waiting for a time interval (in this case 400ms) for the sensor
to make the measurements and the data in the sensor to be
available, reading the MSB and LSB of the data (this needs
sending a confirmation to the sensor) and reading the CRC
data. Because MSB and LSB are represented on 8 bits, it is

necessary to convert this data into an integer so that it can
easily be used later.

Fig.10 Measurement operation

B. Data processing layer
The main component of the entire context-aware system, at

this layer, is the Autonomic Manager module responsible of
performing M-A-P-E loops in order to process the information
received from the data acquisition layer.

The autonomic manager component will be implemented on
the web-server side in order to configure the system to react
based on the context information and the processed
measurements.

At the Knowledge level, the context-aware system will
collect environmental information from the dust, pollen,
temperature, humidity and pressure available sensors.

Meteorological stations running on a FPGA board and
located in certain points of interest in specific locations, are
directly connected to the Internet in order to send the collected
information to the web-server, in form of XML formatted
messages. The XML will stipulate the date and time the
measurements were made and the actual measurement values.

In the Monitoring phase, the web-server will continuously
check and receive updated information from the available
weather stations.

The Analysis phase is responsible for processing and
analyzing the XML messages and for inserting the data
measurements from the sensors into the database.

In the Planning phase, based on the analyzed information
received at the previous step, the risk areas are calculated and
for each user a check is performed in order to detect if the last
recorded GPS position points to a risk area.

The Execution phase is responsible to take action and to
send notifications for each users detected as being localized
near or in the risk areas calculated at the previous steps. At the
same time, the web-server updates the user related information
with their current position coordinates.

Whenever the server gets a message specifying that the user
has changed its current position, it needs to do a series of
operations such as: compute the health risk in the new area
that the user is and also determine the closest pharmacy and
hospital in case of an emergency.

Once a MAPE loop is completed, the server is self-
configured based on the information received from the
meteorological stations and from the user.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 6, 2012

239

C. Data visualization layer
At this layer, any user can interact with the context-aware

system by using a dedicated mobile application running on a
smart-Phone device capable of detecting the user’s GPS
location. The GPS location becomes the main contextual
information used to establish if the user is near a risk area,
identified based on the measurements received from the
server, for that specific location.

The mobile application sends the user's current GPS
coordinates to the server every 30 minutes when the
application is running in the background and every minute
when the application is open, so the server detects the user
location and checks the nearest physiological risk
measurement stations to get the relevant environment
information for each user.

If there are health risks, such as too much dust, the
application will notify the users that they will be jeopardized if
they enter in the nearby region and it is not recommended
visiting that specific area. If the users still have entered in
region identified as representing a health risk zone, the
application will find the nearest pharmacies and hospitals in
the area and displays the emergency number available for
these.

In the next section we present a concrete implementation
for the data visualization layer, with a mobile application
implemented using Objective-C programming language and
targeted to work on devices running on Apple’s iOS operating
system.

IV. MOBILE APPLICATION DESIGN

This section presents the high level structure of the mobile
application and the main functionality flows, from the
following points of view:

1. Software Architecture
2. User Interface
3. Application States
4. Push Notifications

A. Software Architecture
From the architectural point of view, the application relies

on the MVC (Model-View-Controller) design pattern
principles and is designed from a multi-tier architecture
perspective, as illustrated in figure 11.

The "View" layer contains the main classes modeling the
user interface and interaction screens consisting of standard
and customized UI controls available in the iOS SDK. Each
view is controlled by its correspondent view controller
implemented at the "Controller" layer and is responsible to
intercept the user gestures and to trigger actions specific to the
current active screen.

At the "Model" layer all the business logic is implemented
through instances of specific manager classes responsible to
implement the actions requested at the controller layer and to
communicate with a database for storing and fetching user’s
and environment related information.

The "Database" layer contains the MySQL database

implementation storing information related to: users, hospitals
and pharmacies as point of interests, health risk types, sensors
data, notification messages and active devices. The
information is stored into and fetched from database through
the model layer’s specific manager instances responsible of
creating and populating data objects. Each data object created
contains relevant information received from the operating
system or from the device’s hardware components (e.g: GPS
location receiver).

Fig.11 Mobile application class diagram

The database is located on a distributed web-server and the

application connects to this via communication over WiFi or
Ethernet networks.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 6, 2012

240

B. User Interface
This section describes the most important user interaction

views available in the application: Registration, Sign-In,
Settings, Sensors Data, Map Location and Nearby POIs.

Fig.12 a) Sign up screen b) Settings screen

Registration view - (illustrated in figure 12. a) allows the
user to enter personal information, such as: first name, last
name, email address, password and to select the notification
categories to receive in case of health risk detected. Each of
the notification categories is related to one of the available
sensors for: temperature, pollen, dust, pressure and humidity.

The information is also used to uniquely identify the user
based on device identifier, at the database layer.

Sign-In view – allows the user to enter his credentials and to
login into the application after a successful registration or after
a previous log-out operation.

Settings view – allows the user to log-out from the
application or to update state for the configurable settings
(e.g.: enable or disable push notifications) as illustrated in
figure 12.b.

Fig.13 a) Sensor data b) Current location screens

Sensors Data view – represents the main screen of the
application and it displays the sensor data from the nearest
physiological risk measurement station based on the user's
current location. Only data for the sensors that were selected
by the user during the registration process will be shown on
this screen. For each of the selected sensor, the application
will also show the measurement units and the risk level, as
illustrated in figure 13.a). The main screen also includes
controls for accessing the other screens and functionalities,
like the navigation to the nearby points of interest screen or
action call of the predefined emergency phone number.

Map Location view – represents the screen where the user is
be able to see his current position on the map (as illustrated in
figure 13.b) and also has the possibility of checking the sensor
data from other physiological risk measurement stations (not
just the nearest) that can be seen on the map. All the
measurement stations and correspondent risk levels registered
at each of these are available as map annotations.

Nearby POIs view – represents the screen displaying
hospitals and pharmacies as points of interest based on the
current user’s location. The hospitals and pharmacies
information presented in the detailed views contains essential
information as the distance to a certain institution, a link to
show the information on the map and a call button that dials
the phone number of that specific institution.

C. Application States
The main flow of the application is illustrated in the figure

12, in which the most important states and conditional
branches are described and are detailed below:
1. Start - The application can be launched as for the first

time or it can become active from the background state. In
case of a “first start” launch, all the application resources
are initialized together with instance of database and
location managers. In case of a “transitioning from
background to foreground state”, the application will
display the latest screen in which the user has navigated.

2. First use check - The application verifies if the user
haslaunched the application for the first time. If yes, the
register screen will be displayed and the user can sign up
using personal information, in order to be registered for
receiving notifications.

3. Login check – After a successful registration or in case
the user is logged out from the application, the login
screen is displayed. The login screen allows the user to
enter credentials and to be able to access the main screen
presenting all the possible ways of interaction with the
application.

4. Load Main screen – After any of the two register and log-
in operations, the application communicates with the
hardware components in order to retrieve the current GPS
location of the user. Once the main screen is loaded and
the current GPS location is sent to the server, all the
contextual information gathered from the environment is
displayed on the screen. From this state, the user has the
option to change personal settings or to navigate to other
screens responsible of displaying relevant information

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 6, 2012

241

related to the current position.
5. Stop – The user can choose to terminate the application

or to send it in a background state. Depending on the
application state the current location is updated on a
different time interval. In the “Running in background”
state the application only updates the significant location
changes of the user. Once the application is stopped
(terminated or running in background) each time the areas
of physiological risk measurement stations influence
changes and if there are critical health risks in the area
around the latest location sent to the server, then the user
is notified about the potential risks identified

Fig.14 Application state diagram

D. Push Notifications
The Apple’s push notification mechanism is used to inform

the user about health risk identified for the current position
received from the mobile device. No mater which application
is currently running on the device and no mater in which
operation state is the device: locked or unlocked, the
notification alert will be displayed to the user in form of an
alert containing information message and option buttons for
canceling or opening the application responsible for handling
the notification.

A Push Notification provider is an application written by
the application's developer to send push notifications to the
iPhone application through the APNs.

The APNs (Apple Push Notification Service) is a stream
TCP socket that the provider can communicate using a SSL
secured communication channel.

The push notification (containing the payload data) is sent
as a binary stream (as described in figure 15). Once connected
to the APNs, the connection should be kept alive and as many
push notifications are required have to be sent within the
duration of the connection.

Fig.15 Format of push notification message (based on Apple’s
documentation [22])

The push notification flow from a provider to a client

application and a sample of notification alert is displayed in
figure 16 a.

Fig.16 a) Push notification flow b) Sample notification alert

The flow of a push notification data is one-way. The
provider (in our case the distributed web-server) composes a
notification package that includes the device token for the
mobile client application and a payload. The provider sends
the notification to APNs which in turn pushes the notification
to the device.

When it authenticates itself to APNs, the provider
furnishes the service with its topic, which identifies the
application for which it’s providing data. The topic is
currently the bundle identifier of the target application on an
iOS device.

Each time a push notifications is required to be sent for
alerting the users about a health risk identified, the following
action is performed on the web-server (provider) side, in order

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 6, 2012

242

to send the notification message to the mobile application
through APNs:

1. Communicate with the APNs using SSL certificates
generated and available on the server
2. Construct the payload for the message to be sent
3. Send the push notification containing the payload to
the APNs

The payload is a JSON formatted string (maximum 256
bytes) carrying the information sent to the mobile application.
An example of a payload is presented below:

{
"aps": {
"alert" : "Warning…physiological risk detected”,
"badge" : 1,
"sound" :"alert.wav"
}
"custom_field1" : "<sensor type>",
"custom_field2" : "<risk level>",

}
On the client side, the operating system will be notified

about incoming notifications sent by the APNS server. The
application registered for push notifications handles the events
received from the operating system and displays the message
encoded in the payload stream (as exemplified in figure 16.b).

V. CONCLUSIONS AND FUTURE WORK
The purpose of this article is to present a self-configuring

distributed system communicating with a mobile application
that can provide useful information about a location based
environment and can offer specific assistance in case of an
physiological risk detected by the system, based on the
sensor’s data received from the external environment.

Easy Health is an iOS application that provides medical
information of different health risks to the user. Indicators for
dust, humidity, pollen, pressure and temperature are available.
The medical information that can be presented includes the
value of the medical factor, the measurement units and the risk
level. If the risk level for a medical problem is above a certain
percentage (e.g. 85%) then this risk is considered critical for
the user and the application alerts the user that there are
critical risks for his health.

The process of notification relies heavily on the current user
location. The application tracks the significant changes of the
user location at all the time (also when the application runs in
background mode). Combining the knowledge of the current
user location and the information collected from the external
environment through the physiological risk measurement
stations, the system is self-configured and it is capable to
determine when a user enters an area with critical health risks.

The physiological risk factors measurement stations
(running on FPGA boards) are the measurement facilities that
provide information about environmental factors in a certain
area. The dynamics of this information are observed by the
Easy Health server, which will distribute this information to
all the registered users. When the areas of interest to a certain
user are affected by a certain critical medical risk, then the
user is notified by a push notification, displayed on the user’s

device as an alert containing a description message and action
buttons.

The server executes MAPE loops in order to monitor,
collect, analyze and process the information received from the
sensors and then it is self-configured and notifies the clients in
case of health risks being detected.

The management of the full scope of the physiological risk
factors information on the server and handling the user
specific area of interest on a mobile device makes the
application especially effective. The essential information is
provided to the user all the time and the processing resources
of the mobile device are used in a most optimal manner.

The mobile application described in this paper is currently
implemented for Apple’s iOS platform only, but it can be
easily implemented on any other platform, reusing the high
level architectural design and components from the database
layer.

As future work for our proposed system we intend to add
support for more sensors at the data acquisition layer and to
enhance the mobile application at the data visualization layer
with the following new features:

1. Integration with other third-party services (e.g: public
available healthcare services)
2. Extend the supported types and formats for the
information displayed to the user
3. Introduce real-time advice notifications based on the
user’s current location

REFERENCES
[1] Kahn JG, Yang JS, Kahn JS: ‘Mobile’ health needs and opportunities in

developing countries. Health Policy 2010, 29:252-258
[2] Merrell RC, Doarn CR: Medical applications, mobility, and regulations.

Telemed J E Health 2011, 17:235-236
[3] Stephen G. Kochan, Programming in Objective-C, Third Edition

(Developer's Library), Addison-Wesley Professional; 3 edition (June 20,
2011)

[4] Joe Conway , Aaron Hillegass , iOS Programming: The Big Nerd
Ranch Guide (2nd Edition) (Big Nerd Ranch Guides) , Addison-Wesley
Professional; 2 edition (July 2, 2011)

[5] Peter MacIntyre, Brian Danchilla, Mladen Gogala and Adam
MacDonald, Pro PHP Programming Apress; 1 edition (August 5, 2011)

[6] Ronald Bradford, Chris Schneider, Effective MySQL Advanced
Replication Techniques, McGraw-Hill Osborne Media; 1 edition
(September 22, 2012)

[7] Compact Optical Dust Sensor, SHARP Corporation, http://sharp-
world.com/products/device/lineup/data/pdf/datasheet/gp2y1010au_e.pdf

[8] Humidity and Temperature Sensor, SENSIRION
http://www.sensirion.com/en/pdf/product_information/Datasheet-
humidity-sensor-SHT1x.pdf

[9] Miniature I2C Digital Barometer, Freescale Semiconductor Literature
Distribution Center,

[10] Miniature SPI Digital Barometer, Freescale Semiconductor Literature
Distribution Center,
http://www.freescale.com/files/sensors/doc/data_sheet/MPL115A1.pdf

[11] Miniature SPI Digital Barometer, Freescale Semiconductor Literature
Distribution Center,
http://www.freescale.com/files/sensors/doc/data_sheet/MPL115A1.pdf

[12] Converting a Sensor Voltage Input to Physical Units, National
Instruments Corp,
http://labviewwiki.org/Converting_a_Sensor_Voltage_Input_to_Physica
l_Units

[13] Mitchell J. From telehealth to e-health: the unstoppable rise of e-health.
Canberra, Australia: National Office for the Information Technology;
1999

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 6, 2012

243

[14] IBM. Autonomic Computing: IBM Perspective on the State of
Information Technology, 2001.

[15] W. Robinson. Monitoring web service requirements. In Proccedings of
the International Conference on Requirements Engineering, 2003.

[16]] N. Kimbelry, N. Laramie, C. Medina, “Rapid Prototyping of an FPGA
based sensor system for Biomedical Monitoring”, Proceedings of the
2006 WSEAS Int. Conf. on Mathematical Biology and Ecology, Miami,
Florida, USA, January 18-20, 2006 (pp214-220)

[17] Schilit, Bill N., Adams, Norman I. and Want, Roy (1994): Context-
Aware Computing Applications. In: Proceedings of the Workshop on
Mobile Computing Systems and Applications December, 1994, Santa
Cruz, CA, USA.

[18] Ryan, Nick S., Pascoe, Jason and Morse, David R. (1998): Enhanced
Reality Fieldwork: the Context-aware Archaeological Assistant. In:
Gaffney, V., Leusen, M. van and Exxon, S. (eds.). "Computer
Applications in Archaeology - British Archaeological Reports". Oxford:
Tempus Reparatum

[19] Peter Langendorfer, Krzysztof Piotrowski,”More Privacy in Context-
aware Platforms: User Controlled Access Right Delegation using
Kerberos”, Proceedings of the 4th WSEAS Int. Conf. on Information
Security, Communications and Computers, Tenerife, Spain, December
16-18, 2005 (pp542-547)

[20] S. Fernandes, V. Vieira, “Information System in healtcare: Potential of
Mobile systems. The case of INEM”, WSEAS Int. Conf on Sensors and
Signals, Algarve, Portugal, November 3-5, 2010

[21] Goran Martinovic, Damir Filko, Miran Karic, “Analysis of Autonomic
Computing Concepts in Computational Grid Based on the ACLM
Model”, 7th WSEAS Int. Conf. on Software Engineering, Parallel and
Distributed Systems, University of Cambridge, UK, Feb 20-22, 2008.

[22] Apple Push Notification Programming Guide,
http://developer.apple.com/library/ios/#documentation/NetworkingInter
net/Conceptual/RemoteNotificationsPG/ApplePushService/ApplePushS
ervice.html#//apple_ref/doc/uid/TP40008194-CH100-SW9

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 6, 2012

244

