

Abstract— This paper presents the parallel multicore Sobel edge

algorithm which parallelizes the traditional sequential Sobel edge

detection algorithm on a parallel multicore platform. Dealing with

images, the algorithm inherits repetitive instructions that depend on

the image size, thus may slow down the processing speed. The

multicore architecture is a ready available resource on ordinary

personal computer but often not fully utilized to its utmost potential.

Align with this hidden opportunity, Sobel edge algorithm can be

implemented on parallel programming paradigm by focusing on the

thread operations. This work presents the parallel multicore Sobel

edge algorithm which parallelizes the traditional sequential Sobel

edge detection algorithm on a parallel multicore platform via Parallel

communication software named Message Passing Interface (MPI).

The test is being done on ten different images with each image tested

in the varying size of 1KxK, 2KxK and 3KxK pixels. Various

threads, ranging from two to ten had been performed on Duo and

Quad cores. An interesting result shows that in sequential processing

Duo core overcome Quad core speed. As for parallel processing, two

thread is the best used for Duo core and eight threads is finest for

Quad core.

Keywords—Parallel programming, Sobel edge algorithm,

Message Passing Interface (MPI), Multicore.

I. INTRODUCTION

ARALLEL programming or parallel computing is an

exciting and promising area to be explored today especially

due to the decreasing cost of computer hardware [1].

Beside that most organization has a network of computers

available in every department. As for universities, there are

many computers in lecturer rooms and in computer labs

abandon after office hours. These available resources can be

utilized by implementing parallel computing.

Manuscript sent on August 15, 2011:

N.E.A.Khalid and N.M.Noor with Faculty of Computer and Mathematical

Science, Universiti Teknologi MARA, Shah Alam, 40450, Malaysia as senior

lecturer (e-mail: elaiza@tmsk.uitm.edu.my).

S. A. Ahmad is with Faculty of Electrical Engineering, Universiti

Teknologi MARA, Shah Alam, 40450, Malaysia as graduate student (e-mail:

arpah@ tmsk.uitm.edu.my).

A.F.A.Fadzil is a final year student of Bachelor Degree in Computer

Science with Faculty of Computer and Mathematical Science, Universiti

Teknologi MARA, Shah Alam, 40450, Malaysia.

(ahmadfirdausfadzil@gmail.com)

M.N.Taib currently the Professor and the Dean of Faculty of Electrical

Engineering, Universiti Teknologi MARA, Shah Alam, 40450, Malaysia.

(phone: 603-5543 5034; fax: 603-5543 5077; e-mail: dr.nasir@ ieee.org).

This area promised a multitasking process and may solve

bigger problem in less time. These criteria is very significant in

today’s era which every application that relate to science and

engineering has to deal with a large amount of data and

demand the real-time or near real-time performance [2].

Parallel computing is suitable for applications that required

huge amount of computer power such as in modeling physical

systems in many field of science, medicine and engineering.

Modelers, whether to predict the weather or render a scene in

the next blockbuster movie, can usually use whatever

computing power is available to make the simulations more

detail. Vast amount of data, whether customer shopping

patterns, telemetry data from space, or DNA sequences, require

analysis. This kind of analysis can be utilized on parallel

computing platform with the multitasking processes. In

biomedical application, such as X-ray image processing is a

potential area to be implemented on parallel computing

platform because in this area there exists specific solution that

do not allow generalization [2].

The advancement of processor technology had produces the

multicore computer. Multicore processors are the solution to

the ever increasing of computing demand required and stressed

upon the processors. As the computing power of the core is

restricted by heat and size, duplicating the core for more

potential computing resource is the viable current solution.

Hence, this additional computing resource on a separate core

creates a drive towards changing the application development

in order to fully utilize these computing powers. Multicore

processors provide a better power consumption without

sacrificing the processing speed [14] thus making it a new

standard in the CPU market. Utlizing the multicore by parallel

programming is a challenge due to its complex interacting facet

of performance based on memory consumption, processor

utilization and synchronization and communication costs [2].

Trade-off have to be made among these facets to achieve the

goal of better performance and utilization. But in implementing

parallel solution certain conceptual and programming

challenges have to be investigated further.

Image processing is one of the areas that sought

tremendous processing prowess. The image that required to be

processed is often very large but the processing needs to be

fast [3]. When such cases happen, the most imminent solution

is by adapting a new and advance hardware that is capable to

accommodate the processes [4]. One of the solutions is by

using Graphical Processing Unit (GPU) to optimize the

imaging algorithms. However, this solution is expensive and

the implementation process is complex [16]. Beside that the

Parallel approach of Sobel Edge Detector on

Multicore Platform

N.E.A.Khalid, S.A.Ahmad, N.M.Noor, A.F.A.Fadzil and M.N.Taib

P

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 5, 2011

236

graphic card solution such as GPU, creating the gap between

the processors and memory speed [17].

The usage of Multicore to speed up image processing task

is cheaper solution compare to GPU [18]. Image processing

task such as edge detection algorithms are suitable and prove

to be successful and economical to be implemented on the

desktop personal computers [18]. Clustering algorithm is very

practical to be implemented on multicores platform [19].

Wang and friends [19], had tested the k-mean and mean shift,

a popular clustering algorithms, on the multicore platform

using threads. Their results shows parallel implementation

could achieve linear speedup to four threads with various

parallelization. Issues about multicore performance such as

memory access [17] and load balancing [20] had been

investigated and proven that image processing tasks are

beneficial to be implemented on multicore via parallel

computing paradigm.

Bearing these issues in mind, the better solution towards

solving this problem is by fully utilizing the current multicores

hardware, to fulfill its utmost potential and subsequently

creating a system that is able to accommodate the massive

processing requirement [5]. One way to exploit the multicore

architecture is by parallelization the operation of multiple

threads on different cores using parallel communication

software named MPI and examined the performance. While

MPI is normally used to be implemented mostly in distributed

memory architecture such as SMP cluster [13], it also supports

multithreading [12] which in turns allowing it to be

implemented on shared memory architecture such as the

multicore. Other reason to adapt MPI is also due to the fact

that the future works for this paper involves clustering the

multicore architectures. Usually, parallelism involving

multicore uses OpenMP as the communication model [11].

This paper aims to analyze the performance of multicore

architecture on the application of Sobel Edge detector

implemented on various thread processing via the parallel

programming paradigm.

This paper had been organizes as follows. In section 2, the

methodology is described in detail. Section 3 elaborates the

results and analysis of the finding. Finally section 4 is the

conclusion.

II. MATERIAL AND METHOD

A. Material

Ten images of size 3Kx3K pixels are used as the initial

images. These images are then resized using imaging tools into

smaller dimensions of 1Kx1K and 2Kx2K pixels. The images

are colored and roughly are scenery, animals and part of car

images. The sizes of the imagers are modified to the specified

sizes using Adobe Photoshop software.

B. Sobel Edge Algorithm

The edge detection algorithm named Sobel, that had been

used in this work is a well known and established algorithm for

detecting an edge in an image [6]. The algorithm aims to

identify points in a digital image at which the image brightness

changes sharply or more formally has discontinuities [6]. This

algorithm has significant parallelism since it operates at pixel

by pixel level. Edge detection is one of the central tasks of the

lower levels of image processing which exhibit the need to

program in parallel [7]. Sobel edge detector is based on the

mathematical equation as given below:

 (1)

where x and y is the convolution kernels that is in a form of

3x3 mask. Figure 1 illustrates the convolution kernels that

usually used for Sobel operator [5].

 0° 90°

Fig. 1: Convolution Kernel

Despite the simple appearance of the formula which looks

fairly simple to calculate, in terms of programming it involves

a huge number of iterations within the program in to finish the

operation.

C. Parallel architecture and Software Design

Parallel manner is more complicated. There are two ways of

parallelization, data or task parallelism. This work used data

parallelism as a digital image can be split into several parts to

be processed by two processors of duo and quad core.

1. Hardware and Software

The multicore processors specification used in this work are

duo core and quad core and is described in Table 1.

Table 1: Hardware Used

Component Description

of Processor Cores 2 (Duo) 4 (Quad)

Processor
Intel® Core™ Duo

E7500 @ 2.93GHz

Intel® Xeon® E5420

@ 2.50 GHz

RAM
3.46 GB DDR-2

RAM

3.46 GB DDR-2

RAM

The software required to perform the parallel process are

Windows XP, Microsoft visual studio, Net Framework.

MPICH 2 parallel communication software and CPU

Monitoring software for performance measure as shown in

Figure 2.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 5, 2011

237

Fig. 2: Software Installation Flow

The parallel communication software used in this project is

called the message passing interface or MPI. MPICH 2 is the

software that enables message passing in parallel system.

 The main role that the message passing interface (MPI)

plays in this project is to execute programs in multiple threads,

thus enabling all the central processing unit (CPU) to utilize

each and every single core in order to accommodate the

multiple threads execution. In this paper, we used 2 threads, 4

threads, 6 threads, 8 threads and 10 threads.

There are two ways of parallelization, data or task parallelism.

2. Data Parallelization Process

Data parallelism looks to be the simplest and feasible

solution in this case, as a digital image can be split into several

parts to be processed by different processor’s core. The

sequential versus parallel process design are depicted in the

figure 3.

Fig. 3: Data parallelization Model

The data parallelism is achieved by splitting a single image

into 2,4,6,8 or 10 subimagse which correspond to 2,4,6,8 and

10 threads used. Example of image being split into two

subimages is depicted in Figure 4. After splitting the image,

both parts of the image will undergo Sobel edge detector

algorithm. Then each of the partition is executed in individual

threads on a different core. Figure 3 illustrates how the split

image looks after the Sobel edge detection algorithm is applied

and how the parts are stitched back together upon the

completion of the operation.

Splitting an Image

Sobel Image Edge Detector

Filter and Stitch Operation

Fig. 4: Data splitting and stitching architecture

Basically, what the project does is that it filters an image from

its original source using Sobel edge detection algorithm.

Fig. 5: Data parallelization Model

Figure 5 above illustrates a single image with the size of

(Width)m x (Height)n. Therefore, in order for the program to

finish its execution, it needs to iterate through the whole pixels

of the image and applies the Sobel edge detection algorithm.

The number of computation involved is relative towards the

resolution of an image. 1000x1000 pixels image will require

1,000,000 numbers of iteration as the program loops through

the width and height of the image. The algorithm that is used

to filter the image is written in C# as in figure 6.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 5, 2011

238

public static Image Mask(Image im)

{

 int[,] masking = new int[,] { { -1, 0, 1 }, { -

2, 0, 2 }, { -1, 0, 1 } };

 Bitmap b, b1;

 b = new Bitmap(im);

 b1 = new Bitmap(im);

 FastBitmap proc1 = new FastBitmap(b);

 FastBitmap proc2 = new FastBitmap(b1);

 proc1.LockImage();

 proc2.LockImage();

 //float max, min;

 for (int i = 1; i < b.Height - 1; i++)

 {

 for (int j = 1; j < b.Width - 1; j++)

 {

 int data3 = Math.Abs(((proc1.GetPixel(j -

1, i - 1).R

 + proc1.GetPixel(j - 1,

 i - 1).G + proc1.GetPixel(j - 1, i -

1).B) / 3) * masking[0, 0] +

 ((proc1.GetPixel(j - 1, i).R +

proc1.GetPixel(j - 1, i).G +

 proc1.GetPixel(j – 1, i).B) / 3) *

masking[0, 1] +

 ((proc1.GetPixel(j - 1, i + 1).R +

proc1.GetPixel(j - 1,i + 1).G +

 proc1.GetPixel(j - 1, i + 1).B) / 3) *

masking[0, 2] +

 ((proc1.GetPixel(j, i - 1).R +

proc1.GetPixel(j, i - 1).G +

 proc1.GetPixel(j, i - 1).B) / 3) *

masking[1, 0] +

 ((proc1.GetPixel(j, i).R +

proc1.GetPixel(j, i).G + proc1.GetPixel(j,

 i).B) / 3) * masking[1, 1] +

 ((proc1.GetPixel(j, i + 1).R +

proc1.GetPixel(j, i + 1).G +

 proc1.GetPixel(j,

 i + 1).B) / 3) * masking[1, 2] +

 ((proc1.GetPixel(j + 1, i - 1).R +

proc1.GetPixel(j + 1, i - 1).G +

 proc1.GetPixel(j + 1, i - 1).B) / 3) *

masking[2, 0] +

 ((proc1.GetPixel(j + 1, i).R +

proc1.GetPixel(j + 1, i).G +

 proc1.GetPixel(j + 1, i).B) / 3) *

masking[2, 1] +

 ((proc1.GetPixel(j + 1, i + 1).R +

proc1.GetPixel(j + 1, i + 1).G +

 proc1.GetPixel(j + 1, i + 1).B) / 3) *

masking[2, 2]);

 if (data3 > 255)

 data3 = 255;

 proc2.SetPixel(j, i,

Color.FromArgb(data3, data3, data3));

 }

 }

 proc1.UnlockImage();

 proc2.UnlockImage();

 return (Image)b1;

}

Fig. 6. The coding

The fact that multicore architectures need to be utilized

properly in order to get it fully utilize does not help the

situation. This means an available resource neglected when it

is actually needed. In the end, the situation will lead to a very

slow execution time. Below is the program fragment written in

C++ that separates a single process into a multi-threaded

executions.

int maxNum;

int nTasks, rank;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &nTasks);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

STARTUPINFO si1 = {sizeof (STARTUPINFO)};

PROCESS_INFORMATION pi1;

int MPI_Barrier (MPI_Comm comm);

for (int i = 0; i < nTasks; i++)

{

 if (rank == i)

 {

 cout << "using thread " << i << endl;

 //build cmd line

 string arguments;

 arguments.append("C:\\Paraquest3\\SobelFilter.exe

");

 char *str = new char[arguments.size() + 1];

 std::strcpy (str, arguments.c_str());

 system(str);

 break;

 }

}

Fig. 7. The coding

The idea of using this approach is to make the CPU fully

utilize its resources by separating the process into multiple

individual threads. This will allow the core of the CPU to be

used effectively.

 The program above runs the algorithm by executing the

applications using different number of threads. The user will

specify the number of threads to be used for the execution.

Performance Evaluation Method

The evaluation of the parallel execution performance is

measured with respect to speedup, performance improvement

and efficiency with reference to the time taken for both

sequential and parallel processing [3].

Speedup measures how much a parallel algorithm is faster

than a corresponding sequential algorithm. The speedup

calculation is based on Equation 2;

 (2)

The performance improvement depicts measurements

relative improvement that the parallel system has over the

sequential process. This performance is measured based on

Equation 2;

 (3)

Efficiency is used to estimate how well-utilized the processors

are in solving the problem, compared to how much effort is

wasted in communication and synchronization. As for

efficiency, the calculation is based on Equation 3;

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 5, 2011

239

 (4)

III. RESULT

The result discussion is divided into the performance

of sequential process and parallel processes in the

multicore processor.

Table 2: Sequential Result on Intel XEON E5420 and Intel CORE 2 Duo

E7500

1Kx1K 2Kx2K 3Kx3K

 Quad

Core

Duo

Core

Quad

Core

Duo

Core

Quad

Core

Duo

Core

1 3.52 3.20 13.39 11.94 29.05 25.98

2 3.44 3.10 13.14 11.70 29.02 25.87

3 3.42 3.06 13.03 11.63 28.53 25.44

4 3.39 3.04 12.93 11.56 28.12 25.26

5 3.51 3.17 13.25 11.85 28.91 25.79

6 3.46 3.10 13.19 11.76 29.25 26.17

7 3.48 3.12 13.34 11.92 29.42 26.36

8 3.48 3.11 13.29 11.88 29.46 26.29

9 3.39 3.05 12.92 11.66 28.78 25.78

10 3.54 3.14 13.48 12.07 30.07 26.68

Table 2 is the result of sequential time taken between Xeon

E5420, Quad core and Intel CORE 2 Duo, dual core

processors. IKx1K, 2Kx2K and 3Kx3K stands for image sizes

in pixel values. As expected the larger the image the higher

the processing time. It is found that the quad core require more

time to process Sobel edge detector compared to the Duo core.

This could be explained by the overhead time needed to

manage the duo core is lesser than the Quad core. The result is

also largely due to the fact that the Quad core is inferior in

terms of CPU clock speed, with the Duo core speed clocked at

2.93GHz while the Quad at 2.50 GHz. The result is illustrated

graphically in Fig. 8.

Fig 8: Difference Between Sequential Result on Intel XEON E5420 and Intel

CORE 2 Duo E7500

Overall, the sequential result does not provide any substantial

findings and it is close towards what was anticipated.

3.1 Parallel Results

The Parallel results are discussed based on speedup,

performance improvements, efficiency and CPU Utilization

Factor Using the Algorithm in performing the algorithm.

3.1.1 Raw Results Using Duo Core

 Fig. 9 – 11, is the result of time (measured in seconds)

taken between sequential and various thread (Th) sizes

execution for 10 images with sizes of 1Kx1K , 2Kx2K and

3Kx3K respectively by using the Intel Core 2 Duo E7500.

Similar to previous sequential results where larger image

requires more time to be completed and it is definitely proving

its point. The significant difference between execution time

for different image sizes is apparent.

 The focal point of this result is not base on the image

sizes, but instead when executing on different number of

threads. It is evident that by increasing the number of threads

to 2, the execution time is significantly cut down.

Fig. 9: Raw Results of 10 different images(1Kx1K) execution time using

different number of threads on Duo Core

Fig. 10: Raw Results of 10 different images(2Kx2K) execution time using

different number of threads on Duo Core

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 5, 2011

240

Fig. 11: Raw Results of 10 different images(3Kx3K) execution time using

different number of threads on Duo Core

Attempts to improve the execution time further by increasing

the number of threads for execution is pretty much failed, with

every attempt returns an even slower execution time.

3.1.2 Raw Results Using Quad Core

Fig. 12 – 14, is the result of time (measured in seconds) taken

between sequential and various thread (Th) sizes execution for

10 images with sizes of 1Kx1K , 2Kx2K and 3Kx3K

respectively by using the Xeon E5420, Quad Core.

 The results show that in the beginning, the result by using

the quad core processors is similar to its duo core counterpart.

Larger images as expected require more execution time and

there is no significant difference. Things have otherwise

changed when executing using different number of threads.

Compare to the duo core processor, quad core still able to

improve the execution time after increasing the number of

threads to 8.

Fig. 12: Raw Results of 10 different images(1Kx1K) execution time using

different number of threads on Quad Core

Fig. 13: Raw Results of 10 different images(2Kx2K) execution time using

different number of threads on Quad Core

Fig. 14: Raw Results of 10 different images(3Kx3K) execution time using

different number of threads on Quad Core

The quad core processor finally shows a different side when

executing 10 simultaneous threads. Instead of improving the

execution time, the result is a reverse.

3.2.1 Speedup

 Fig. 15 and Fig.16 is the results of speedup of the

utilization of 2, 4, 6, 8 and 10 thread between Quad and Duo

CPU/core respectively. The speed up is based on equation (2)

explained previously. Fig.17 shows the comparison for

Speedup of in different threads. The results indicate that

speedup values for almost all the images processed with duo

core are close to two which indicates reasonably good

performance whereas the quad core shows the speedup values

of around 3.5 thus showing slightly less efficient use of all the

processors.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 5, 2011

241

Fig. 15: Speedup of Different thread using Intel Xeon E5420

Two threads process work quite efficiently with the Duo

core which reduces slightly with the increased in

threads used. However as the number of thread

increases, the more efficient the Quad core performance

with the exception of ten threads. Thus, this indicates

that two threads are best used for Duo core and eight

threads are suitable for Quad core.

Fig. 16: Speedup of Different thread using Intel Core 2 Duo E7500

Fig. 17: Histogram of Comparison for Speedup of Different threads

3.2.2. Performance improvement Index

 Fig. 18 and 19 show the results of performance

improvement index which is based o equation (3) explained in

previous section. The histogram of the performance

improvement index of Duo and Quad core are depicted in Fig

18. The performance significantly improved for duo core from

image with 1Kx1K to 2KX2K, however it does not indicate

much improvement between the 2Kx2K and 3Kx3K. It is also

found that there is an average of about 0.45 for the duo cluster

compared to the quad core process which is mostly above 0.70

for images of 2Kx2k and 3Kx3K. The performance of the Duo

core reduces for all case as the number of thread increases

however the performance increases steadily with the exception

of 10 threads for the Quad core. This indicates the best

performance for Duo core is two threads and while eight

thread is best used for Quad core compared to the sequential

process.

Fig. 18: Histogram of Comparison for Performance Improvement Index of

Different threads

3.2.3 Efficiency

 Fig.19 display the result of efficency utilization of the

processors based om equation (4) earlier explained. The

results shows higher efficency for Duo core compared to the

Quad core. The larger the number of thread, the lower the

efficiency. The reduction is much more significant for the Duo

core. Efficiency is highest with the two thread for both Duo

and Quad core This is true for all the image sizes. But the

larger the image the higher the efficiency.

Fig. 19: Histogram of Comparison for Efficiency of Different threads

3.2.4 CPU Utilization Factor Using the Algorithm

The main objective of this paper is to fully utilize the CPU

to its utmost potential. Therefore, CPU utilization needs to be

monitored via the task manager to determine whether or not it

met the criteria intended. Table 3 describes the CPU utilization

factor when executing the sequential algorithm on both CPUs

respectively.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 5, 2011

242

Table 3: Sequential CPU Utilization Percentage

Processor CPU Utilization

Quad Core 15%

Duo Core 50%

As suggested by the result above, the CPU utilization

factor is nowhere near its full capabilities. The first CPU

wasted 85% of the CPU’s full capabilities while the second

CPU wasted around 50%. Table 4 describes the CPU

utilization percentage for each CPU.

Table 4: Parallel CPU Utilization Percentage

Processor CPU Utilization

2Th 4Th 6 Th 8 Th

Quad Core 25% 50% 75% 100%

Duo Core 50% 100% 100% 100%

This research is about utilizing used PC in organization by

demonstrating its usability in parallel implementation of image

processing algorithm. Sobel edge detection algorithm had been

successfully implemented in sequential and parallel manner.

Basically both duo and quad have similar trends for all the

method of performance such as speedup, performance

improvement and the efficiency. Generally the performance

measurement methods increases from 1Kx1K to 2Kx2K but

reduces at 3Kx3K images. However, the parallel execution

remains to outperform the sequential execution as indicated by

the positive measurement for speedup and performance

improvement but not in terms of efficiency.

The CPU utilization factor in a way, compliment the

performance result earlier. The efficiency of the first processor

to execute 8 concurrent threads at the same time is evidence as

the CPU is only fully utilized when executing at this thread

setup.The reason why the second processor failed to emulate

the first processor’s result is because it already fully utilized

the CPU when executing only 2 threads. More threads won’t

make thing any faster as the resource is already fully utilized.

IV. CONCLUSION AND RECOMMENDATION

It is certainly evidence that parallel multicore Sobel

algorithm improves the performance of the traditional

sequential Sobel algorithm by fully utilize the CPU to its
utmost potential. Parallel processing performs better than

sequential processing in terms of speed but with a trade off

with the performance and the efficiency of utilizing the

processors individually. However with the increasing amount

of data sizes to be process, multicore provides a welcome

alternative for fast processing. This research provides a

gateway to identify suitable methods to process large data fast.

This initial research can invoke the use of multicore in

clustering environment. It also provides some knowledge in

balancing the utilization of single core and multicore

processors in heterogenous cluster environment. This work is

not limited to image processing methods only but can be

extended to other processor intensive application.

ACKNOWLEDGMENT

The authors acknowledge with gratitude to Research

Management Institute (RMI), UiTM and financial support

from E-Science Fund (06-01-01-SF0306) from the Ministry of

Science, Technology and Innovation (MOSTI),Malaysia.

REFERENCES

[1] B. Barney, Introduction to Parallel Computing. Retrieved from

Lawrence Livermore National Laboratory:

https://computing.llnl.gov/tutorials/parallel_comp/, 2010

[2] C .Lin and L.Snyder,”Principles of Parallel programming”, Pearson

International, 2009

[3] N. Haron, R. Ami, I. A.Aziz, L. T. Jung and S. R.. Shukri,

Parallelization of Edge Detection Algorithm using MPI on Beowulf

Cluster. Innovations in Computing Sciences and Software Engineering .

2010

[4] C. Szydlowski, Multithreaded Technology & Multicore Processors. Dr.

Dobb’s Journal, May 2005.

[5] S.Akhter and J.Roberts, Multi-Core Programming: Increasing

Performance through Software Multi-threading, 2006

[6] R.C. Gonzales and R.E Woods,” Digital Image Processing”, Pearson

Education International, 2002

[7] B.Allen, M.Wilkinson Parallel Programming, Techniques and

Applications Using Networked Workstations and Parallel Computers,

Pearson,2005.

[8] Z.Guo,W.Xu and Z. Chai, Image Edge Detection Based on FPGA. 2010

Ninth International Symposium on Distributed Computing and

Applications to Business, Engineering and Science . 2010

[9] R. L.Rosas, A. D.Luca and F. B. Santillan (). SIMD Architecture for

Image Segmentation using Sobel Operators Implemented in FPGA

Technology. 2nd International Conference on Electrical and

Electronics Engineering (ICEEE) and XI Conference on Electrical

Engineering (CIE 2005), 2005

[10] C.Szydlowski, Multithreaded Technology & Multicore Processors. Dr.

Dobb’s Journal, May 2005

[11] Abdel-Qader, J. H., & Walker, R. S. (2010). Performance Evaluation of

OpenMP Benchmarks on Intel's Quad Core Processors. WSEAS LATEST

TRENDS on COMPUTERS (Volume I) , 348-355, 2010.

[12] Qi, L., Shen, M., Chen, Y., & Li, J. (2004). Performance Comparison

between OpenMP and MPI on IA64 Architecture. n Proceedings of

International Conference on Computational Science'2004. , 338-397

[13] Huttunen, P., Ikonen, J., & Porras, J.MPI Communication in SMP

Clusters Retrieved from WSEAS E-Library:

www.wseas.us/elibrary/conferences/digest2003/papers/466-257.pdf

[14] Saravanan, V., Chandran, S. K., Punnekkat, S., & Kothari, D. P. (2011).

A Study on Factors Influencing Power Consumption in Multithreaded.

WSEAS TRANSACTIONS on COMPUTERS Issue 3, Volume 10, March

2011 , 93-103

[15] Elsamea, A. A., Eldeeb, H., & Nassar, S. (2004). PC cluster as a

platform for parallel applications. Retrieved from WSEAS E-Library:

http://www.wseas.us/elibrary/conferences/miami2004/papers/484-

163.pdf

[16] Image Processing on the Graphics card: GPU beats CPU, available :

http://www.commonvisionblox.com

[17] M.G..Benjamin and D.Kaeli, “ Stream Image Processing on a Dual-Core

Embedded System”, in SAMOS 2007, LNCS 4599, Springer-Verlag

Berlin Heidelberg, 2007, pp.149-158.

[18] S.A. Ahmad, M.N.Taib, N.E.Khalid, H.Taib, N.M.Noor and

A.F.A.Fadzil,” Analysis of Parallel Multicore Performance on

Application of Sobel Edge Detector”, Presented at conference of The

15th WSEAS International Conference on computers , July 15-17th

2011, Corfu Island, Greece.

[19] H.Wang, J.Zhao, H.Li and J.wang, “Parallel Clustering Algorithms for

Image Processing on Multi-core CPUs”, in Proceeding of 2008

International Conference on Computer Science and Software

Engineering, pp. 450-453.

[20] A.E.Mahdy and H.El-Shishiny, “ An efficient load-balancing algorithm

for Image Processing application on Multicore Processors”, IFMT ’08,

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 5, 2011

243

Proceeding of the 1st International forum on Next-generation

multicore/manycore technologies”.

N.E.A.Khalid, has received BSc (Comp Sc) from USM, Malaysia in 1985,

MSc (Comp Sc) in University of Wales in 1992 and PhD (Comp.Sc) from ,

Universiti Teknologi MARA, Shah Alam in 2010. Currently hold position as

senior lecturer in Faculty of Computer and Mathematical Sciences, Universiti

Teknologi MARA, Shah Alam. Her current research interest is in Image

Processing, Biomedical, Artificial Intelligence and Parallel Computing.

S. A. Ahmad has received B.Sc (Hon’s) in Information Technology from

Universiti Utara Malaysia in 1997and M.Sc in Electrical and Electronic

Enginnering from Univerisity of The Ryukyus, Japan in 2002. Currently is

pursing PhD in Faculty of Electrical Engineering, Universiti Teknologi

MARA, Shah Alam. Her current research interest is in Image Processing,

Biomedical, Computer Networking and Parallel Computing.

N.M.Noor has received Bachelor of Computer and Information

Engineering from UIA, Malaysia and Master of Engineering from RMIT

University in 2005. Currently hold position as senior lecturer in Faculty of

Computer and Mathematical Sciences, Universiti Teknologi MARA, Shah

Alam. Her current research interest is in Image processing, Biomedical and

computer network and communication.

A.F.A.Fadzil is a final year student of Bachelor Degree in Computer

Science with Faculty of Computer and Mathematical Science, Universiti

Teknologi MARA, Shah Alam, 40450, Malaysia.

M.N.Taib has received B.Eng.(Electrical) from Univ. of Tasmania,

Australia, MSc (Control System) with Distinction from Univ. Of Sheffield,

UK and PhD (Control & Instrumentation), UMIST, UK. Currently he is a

Professor and Dean of the Faculty of Electrical Engineering, Universiti

Teknologi MARA,. His Professional Membership are as follows: Senior

Member, IEEE, Member IET, SIAM, ISA, OSA, SPIE, AIP and ISEBI. His

current research interest is on advanced signal processing with applications in

intelligent control system, biomedical and pharmaceutical systems, process

control & biotechnology, optical fiber sensors and microwave sensors.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 4, Volume 5, 2011

244

