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Abstract—It is well known that network traffic can be well
modeled by the use ofself-similar processes with parameterH .
The use of this kind of traffic is important for the design and
performance evaluation of high performance computer networks.
Simulation plays a very important role in the context of perfor-
mance analysis. In the context of simulation, however, the impact
of the number of sources has not been sufficiently emphasized
for the generation of synthetic self-similar traffic. In this paper
we describe a simulation scenario suitable for the testing of
performance issues underself-similar traffic. Our analysis was
centered on the effect of traffic aggregation over theself-similarity
degree, determining the necessary number of sources to approach
the verified relation H = (3−minα)/2. Besides, we highlighted
the performance of severalHurst parameters estimators for this
type of simulation scenarios, identifying the most suited ones.

Index Terms—Self-Similar, Heavy-Tail Distributions, Estima-
tors.

I. I NTRODUCTION
Simulation plays an important role for the design, perfor-

mance evaluation and dimensioning of computer networks.
Diverse network features can be studied with the aid of sim-
ulation scenarios. The effect of traffic behaviour on theQoS
metrics such asdelay, delay jitter, packet loss, etc. is such an
example[13][14][15]. In this context, packet network traffic has
shown to be ofself-similarnature[2][3]. Thus, current simula-
tion scenarios must take this behaviour into account. A well
known and amply cited simulation scenario is given in [1][4],
whereself-similar traffic was generated by the transmission of
files of sizeZ by an ensemble ofi = 32 users. A particular
feature of this scenario is that the distribution of files,Zi,
transmitted by useri is heavy-tailedwith parameterαi, giving
rise to highly variable file sizes. In the limit as the number of
usersi → ∞, the traffic in the network node isself-similar
with H = (3−minαi)/2. Unfortunately, theHurst parameter
obtained in that paper is highly variable and overestimates when
α > 1.6 and underestimates whenα < 1.6. From the above it
is noted that the scenario described in [1][4] can not be used for
simulation studies where accurate tuning of theHurst parameter
is required. In addition, estimators used to test the presence of
self-similarbehaviour are not the most robust. In this paper, we
propose some changes to the simulation scenario and determine
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the neccesary(and finite) number of users to approach the limit
H = (3−minαi)/2 with minimum variation. It is shown that
our simulation scenario can be used to effectively generate a
self-similar process withHurst parameterH , whereH shows
little variation. Thus, we propose a simulation scenario which
can be used to study the behaviour of network algorithms
underself-similar traffic, and whereH can be effectively and
accurately tuned by the values ofα. Also, we complement
the study presented in [1][4] by including in our study sev-
eral estimators ofHurst-index. In this context, the paper is
organized as follows, section II reviews fundamentals concepts
related toheavy-tail distributions,self-similar processes and
the methods for generatingself-similar processes fromheavy-
tailed distributions. It also reviews the main estimators for
both of them. Section III provides description of the simulation
scenario and points out the differences with the one described
in [1][4]. Section IV shows the results of the simulation and
finally section V presents the concluding remarks.

II. I NTERNET TRAFFIC MODELS
A. Heavy-Tail Distributions

Heavy-taileddistributions are distribution functions whose
tails P (X > x) and P (X ≤ −x), for positive x, decrease
slower than exponential rate[34]. The latter, e.g., normal and
exponential distributions, are said to be of light tails while
Pareto distribution are said to exhibitheavy tails. We will
concentrate on rightheavy-tails, i.e., on distributions whose
survival functionP (X > x), x ≥ 0 behaves as a power law.
Let X be a random variable defined on the probability space
{Ω, F, P}, we said thatX has a heavy right tail if the following
asymptotic behavior holds

P [X > x] ∼ x−αL(x), x → ∞, (1)

where L(x) is a slowly varying function, i.e.,
limi→∞ L(ix)/L(i) = 1 and α ∈ (0, 2) is the tail-index.
When α > 2, the random variableX has finite mean and
variance; whenα ∈ [1, 2), X has infinite variance but finite
mean; finally whenα ∈ (0, 1), X has infinite variance and
infinite mean. Qualitatively, typical features of sample paths
of heavy-taileddistributions are; most observations take small
values, intermediate values occur frequently and extreme
values occur rarely but with non-negligible probability. The
thicker the tail of a distribution,F , the more probable the
appearance of an extreme value is. As above-mentioned
tail-index indicates the existence of moments in a random
variable X . Let E(Xβ) be the moment of orderβ of X ,
if β < α then E(Xβ) < ∞, otherwise if β > α then
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E(Xβ) = ∞. For more information on properties, estimators
and methods of generation ofheavy-taileddistributions please
refer to [5][6][7][24][25][26]. Heavy-tailed distributions has
for instance be used to model network delay[36].

B. Estimators of tail-index

Several estimators of the tail-indexα have been proposed,
next subsections reviewHill -based and QQ plots used for
estimatingα.

1) Standard Hill Estimator:Let X1, X2, ..., Xn be a dis-
crete time series with distributionFX(x). Now let X(1) >
X(2) > ... > X(n) denote the ordered statistics of time series
X1, .., Xn. The Hill estimator ofγ = α−1 based onk + 1-
upper ordered statistics,1 < k ≤ n, is defined according to the
following formula:

Hk,n = k−1
k∑

i=1

log
X(i)

X(k+1)
. (2)

The parameterα is estimated by plottingk versusHk,n for
1 < k ≤ n and looking for a stable region in the plot. The
stable region must sit at heightα. Usually theHill estimator
works better when the underlyingheavy-taileddistribution is
Pareto. When the distribution is not of Pareto-type theHill
estimator shows volatility, i.e., irregular erratic behavior.

2) Smooth Hill Estimator: The smooth Hill estimator,
smooHill, is obtained by applying a smoothing technique to
the standardHill estimator in order to reduce the volatility in
the standardHill plot. Let againX(1) > X(2) > ... > X(n) be
the ordered statistics, thesmooHill estimator is defined as

smoo α̂k,n,u =
1

1
(u−1k

∑uk
j=k+1 Hj,n

, (3)

whereu ∈ {2, 3}. Again a plot ofk versussmoo α̂k,n,u should
stabilize at a region̂α.

3) Alternative Hill Estimator: Another variant of the stan-
dard Hill estimator is the alternativeHill estimator,altHill ,
which changes the scale of theHill estimator. ThealtHill
estimator can be applied to the standardHill estimator and the
smooHill estimator. When applied to thesmooHillestimator, it
results in thealtsmooHill estimator ofα̂. ThealtHill estimator
is defined as

H⌈nθ⌉,n = ⌈nθ⌉−1

⌈nθ⌉∑

i=1

log(
X(i)

X(⌈nθ⌉+1)

), (4)

where⌈y⌉, is the smallest integer greater of equal toy ≥ 0. For
the estimation of̂α we plot θ versusH⌈nθ⌉,n for 0 ≤ θ ≤ 1.
The stable region in the plot should be the estimated value of
α̂.

4) QQ-Plot: Let X = (X1, X2, ..., Xn) be i.i.d observa-
tions with common distributionF . Now let X(1), X(2), ...X(n)

be the upper order statistics ofX , i.e., X(i) > X(j) iff
i < j. Pick k upper order statistics and neglect restk + 1.
The distribution of thek exceedances,X(1), .., X(k) should
be Pareto ifF is heavy-tailed. Taking the logarithm of thek
exceedances makes its distribution approximately exponential,

thus the plot of the empirical quantiles of the exceedances
against the theoretical quantiles of the exponential distribution
should yield a straight line with slopeα−1. More formally the
plot of

{
(

− log(1 −
j

k + 1

)

, logX(k−j+1), 1 ≤ j ≤ k}, (5)

should yield approximately aα−1 slope straight line if the
distribution ofX1, X2, ..., Xn satisfies the asymptotic behavior
of (1). The slope of the line is computed by least squares
regression through the points in (5) and is called the QQ
estimator, i.e.,

α̂−1
k,n =

∑k
i=1(νi,k)ξi,k −

∑k
i=1(νi,k)Hk,n

k( 1k
∑k

i=1(νi,k)
2 − ( 1k

∑k
i=1 νi,k)

2)
, (6)

whereνi,k = − log( i
k+1 ) and ξi,k = log(

X(i)

X(k+1)
). There are

two different versions of the QQ-plot, namely the dynamic and
static QQ-plot. The dynamic QQ-plot is similar to theHill plot
and is obtained by plotting{(k, 1/α̂−1

k,n), 1 ≤ k ≤ n} and
finding a stable region in the plot. The static plot is obtained
by choosing an appropiate value ofk, plotting the points in (5)
and finding a region where the plots looks linear, then in the
linear region apply (6) which should yield the value ofα−1.

C. Self-similarity and long-memory

Processes with some form ofscaling behaviour can be de-
fined as stochastic signals possesing invariance properties on all
or a set of scales(i.e., no characteristic scale can be identified).
Examples of such processes includeself-similar[29], long-
memory, fractal and multifractal processes[30][27][28][31].
The paper deals withself-similar and long-memoryprocesses,
the most known of them. Strictself-similarsignals(H-ss),X =
{Xt, t ∈ R}, are defined as those for which appropiate changes
of scale of time and space do not vary its statistical properties,
i.e., processes for whichXat = aHXt, for any t ∈ R,
a,H > 0, where the equality is in terms of finite-dimensional
distributions. Weakself-similarity, a more often used version,
is defined as processes for whichEXatXas = a2HEXtXs,
for any t, s ∈,R, a,H > 0. Note that strict self-similarity
implies nonstationarity,long-memoryprocesses on the other
hand is often defined for stationary processes. Long-memory
property of finite-variance stationary signalsY = {Yt, t ∈ R}
is possesed ifEYtYt+τ ∼ cγ | τ |β−1(equivalently as its PSD
f(ν) ∼ cf | ν |−β) as τ → ∞(as ν → 0). Indeed, a strong
relationship between these two processes exists and a givenself-
similar process(H-ss) with stationary increments(Hsssi) possess
long-memoryin its first increment process, i.e.,EYtYt+τ ∼
cτβ−1 provided Y = ∆1X(t; 1) = X(t + 1) − X(t) and
X belongs to the space of finite variance H-sssi processes.
The above for example holds true for the unique GaussianH-
sssi process, namely, fractional Brownian motion(fBm) with
0 < H < 1. Many estimators ofHurst-index have been
proposed[20][37][38],R/Sstatistic, variance based(aggregated,
differenced, detrended), periodogram-based(GPH, cumulated,
whittle), wavelet based estimators(abry, delbeke)[23][33], etc.
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D. Estimators of theself-similarity parameter

1) R/S Statistic::The R/S Statistic[6][8][9][10][38] devel-
oped by E.Hurst when studying Nile river is defined for a
processY (t) in the interval(τi, τi + n) as

R

S
(τi, n) :=

max
(

W (τi, n)
)

−min
(

W (τi, n)
)

S(τi, n)
, (7)

whereW (τi, n) = Y (τi+u)−Y (τi)−uE(τi, n) andE(τi, n)
and S(τi, n) denote the mean and standard deviation in the
interval(τi, τi+n). Hurst found that for long-memory records,
(7) behaves asE{RS (τi, n)} ∼ nH , H > 0.5, in constrast,
short-memory processes followE{RS (τi, n)} ∼ n0.5. A log-
log plot of the mean values of theR/Sstatistic values versusn
is an estimator ofH .

2) Block averaged methods: Variance and Absolute Mo-
ment: Consider the aggregated seriesΓm({xi}) = X

(m)
i of

a lengthN time series[11][16]. The sample variance of the
block averaged process Var

(
Γm({xi})

)
for long-memoryseries

behaves asymptotically as Var
(
Γm({xi})

)
∼ cm−β, wherec

is a constant andβ = 2− 2H . From this result, a log-log plot
of Var

(
Γm({xi})

)
versusm, for different values ofm, and

such thatmi+1/mi = C ∈ R+ is an estimator ofH . The
absolute moment ofX(m)

i , AM (m), behaves asymptotically as
AM (m) ∼ m−β/2, thus a log-log plot ofAM (m) versusm
results in a line with slope−β/2 = H − 1 from which H is
inferred. First method is called the variance method and the
latter the absolute moment one.

3) Periodogram based methods: Periodogram and Whittle:
The periodogram,I(υ) = 1/(2πN) |

∑N
j=1 Xje

ijυ |2 for the
series{Xj} is also an estimator ofH . The periodogram for a
long-memorytime series behaves asI(υ) ∼| υ |1−2H for υ →
0, therefore a log-log plot ofI(υ) versusυ is used to obtain
H . TheWhittle method[37][32][21] [38][6] is a non-graphical
MLE estimator strongly related to the periodogram defined
by the following relationQ(η) :=

∫ π
−π

(
I(υ)/f(υ; η)

)
dυ +∫ π

−π log(f(υ; η))dυ, whereη is a vector of unknown parameters
andf(υ; η) is the spectral density at frequencyυ of the studied
function, the value of vectorη that minimizes the function Q is
considered theWhittle Estimator. A discretized version ofQ(η)

is obtained asQ∗(η) =
∑(N−1)/2
j=1 I(υ)dυ/f∗(υj ; η) whereN

is the series length. TheWhittle MLE specifies the functional
form of the spectral density at all frequencies and theLocal
Whittle[37][32] [6] assumes only the functional form whenν
approaches zero, namelyf(υ) ∼ G(H) |υ|1−2H asv → 0 and
from Q∗(η) the task is reduced to minimize the function

R(H) = log


 1

M

M∑

j=1

I(υj)

υ1−2H
j


− (2H − 1)

1

M

M∑

j=1

log υj (8)

Its computation involves the introduction of the parameterM
which is an integer less thanN2 , and satisfying1

M + M
N −→ 0

asN −→ ∞.

4) Wavelet based methods:Let dx(i, j) denote the wavelet
coefficients of a particular finite length sequence{xi}, it is
known that forlong-memoryprocesses the variance at leveli of
the coefficients is given by Var(dx(i, .)) = σ2

2 Vψ(H)(2j)2H+1,
whereVψ(H) depends on the particular wavelet and theHurst-

index and is defined by:

Vψ(H) = −

∫ ∞

−∞

γψ(τ) | τ |2H dτ (9)

taking the logarithm at Var(dx(i, .)) should result in
log(Var(dx(i, .))) = (2H + 1)j + K, whereK is a constant.
Abry and Veitch have suggested anHurst-index estimator based
on this behaviour using Daubechies wavelets[33][19][23]. First
a time averageµi of dx(i.j) is computed at a given scale,
where µi is defined asµi = (ni)

−1
∑ni

j=1 d
2
x(i.j), where

ni is the wavelet coefficient number at scalei and n the
time series points. The estimatedHurst-index is then obtained
from the slope of a linear regression method for log2(µi) =
log2( 1

ni

∑ni

j=1 d
2
x(i, j)), wherei = 1, 2, . . . , [log2(n)].

5) Sources of inaccuracies:Algorithms’ accuracy are often
affected by some parameters such as cut-off selection, number
of aggregation levels and the minimum number of points in
block size in regression based methods. Also other parameters
include number of frequencies for periodogram methods, be-
gining and ending octave, etc. These parameters are sources
of inaccuracies and bias the esttimates. They must be selected
carefully.

E. Self-similarity through high-variability

Self-similar traffic can be generated using the Lamperti
transformation based on a stationary stochastic process or can
be generated by the superposition of an infinite number of users
which are superposed in a node. In this paper we concentrate
in the generation ofself-similar traffic based onheavy-tailed
distributions. LetXi be a random variable with aheavy-tailed
distribution. Suppose the random variable can represent the file
size of traffic sourcei or the period of transmission between
succesive packets. As the number of usersi → ∞, then,
the traffic aggregated(or superposed at a node) isself-similar
with self-similarityparameterH = (3−minαi)/2[17][18][35].
We used the high variability of interdepartures times for the
generation ofself-similar traffic.

III. S IMULATION SCENARIO
This section presents the proposed simulation scenario which

generatesself-similar traffic with parameterH . This scenario
turns to be an appropiate model for simulations where the
degree of trafficself-similarityneeds to be finely and precisely
adjusted. The simulation scenario is shown by the network
model of figure 1. In this network,self-similar traffic is
generated by an ON/OFF model, where the ON and/or OFF
are heavy-tailed [17][18]. Although the required number of in-
dependent users should be infinite along this model, in practice,
this condition is not feasible giving rise toself-similar traffic
generators using diverse number of sources. This diversity has
an important impact over trafficself-similarity generation and
measurement. For instance, in the works [1][4], oriented to
study the relationship between file sizes andself-similarity
phenomena, the numbers of sources was set up toi = 32
and its variation seemed not to be significant to their results.
In contrast, in the experiments we performed, a significant
relationship between this parameter and the generatedself-
similar traffic was found and thus, the network configuration
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of figure 1 was proposed in order to calibrate this feature.
As shown in the figure 1, the network consists ofi nodes(or
sources) andl output links in a packet switched configuration.
The parameteri is customizable and represents statistically
independent UDP sources, i.e,Si, S2, . . . , Si are i.i.d.N1 and
N2 represents routers through which packets from sourcesSi
are processed and forwarded to the destination sourcesRi. In
our configurationN1 represents the node over which traffic is
superposed and thus represents our measurement point. Queue
length of nodeN1 was set up to1000 packets with buffer size of
312.5kB and its output link bandwidth was set up to32.768Mb
and latency of30ms. Each link fromSi to N1 and fromRi
to N2 has a bandwidth of8.2Mb and a latency of20ms. In
order to obtainself-similar traffic in N1, the traffic sourcesSi
have a Pareto random variable generator for the inder-departure
time ti. Recall that ifti is a Pareto random variable, itsCDF
is given by:

P(ti ≤ t) = 1− (
tmin
t

)α, (10)

where the minimum value ofti is tmin and α is the tail-
index. The Pareto random variable has infinite variance when
1 < α < 2. In this case tha mean is finite. Then, in order to
keepE(t) < ∞ for all sources, the simulation was performed
for α ∈ {1.1, . . . , 1.9}. Eventhough the mean of the inter-
departure time rely upon the value ofα, in our configuration
it is constant, i.e.,E(t) = 500µs for all given values of
α. Likewise to normalize the data mean rate for all sources,
tmin was tuned to each values ofα, with an initial value
of 0.041ms and fixed packet size of320 bytes. The network
configuration just reviewed was used in all the experiments of
the paper. We used the well-known network simulatorns-2 in
a 2x2.8GHz Quad-Core Intel Xeon Macintosh platform. All
results were obtained from several hundreds of runs executed
for 300 simulated seconds and varying number of sources.

IV. RESULTS
A. Generation of Pareto series

In order to check the correctness of our simulation scenario,
we first test the appropiate generation ofheavy-tailedtraces
in ns-2 from which users send the packets (recall that Pareto
series simulate inter-departure times of packets). Figure 2 shows
typical packet inter-departure time series trace inns-2 with
α ∈ {1.2, 1.8}. Top plot correspond to Pareto series with

Fig. 1. Simulation scenario

α = 1.2 while bottom plot to Pareto withα = 1.8. Note
that traces behave qualitatively asheavy-tailedprocess, i.e
extreme values occur frequently. As above mentioned, the

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

packet Number

In
te

rd
ep

ar
tu

re
 T

im
e 

(m
s)

tail index alpha=1.2

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

160

180

200

packet Number

In
te

rd
ep

ar
tu

re
 T

im
e 

(m
s)

tail index alpha=1.8

Fig. 2. Typical Pareto series generated with ns-2.

number of extremes values(i.e., of silent periods) inns-2
generated Pareto series occur with a non-negligible probability.
Note that the ’usual’ values are below100ms and that the
lower the value ofα is the greater this value. AHill -plot
and a CCDF plot will confirm the appropiate generation of
Pareto series in our simulation scenario. Figure 3 shows the
Hill plots associated to traces of figure 2. Top plot corresponds
to Pareto withα = 1.2 while the bottom toα = 1.8. Note that
Hill -plots stabilize in a region and this region corresponds to
the true value ofα. CCDF plots are also helpful for testing
if a given model follows a particular probability distribution
FX(x). CCDF plots, therefore can be used to test if a series
follows a Pareto distribution. Figure 4 shows the CCDF plots
corresponding to traces presented in figure 2. Again as before
top plot corresponds tons-2 generated Pareto time series
with α = 1.2 while bottom plot toα = 1.8. Note from the
figure that both time series follow accurately the reference
line corresponding to an exact Pareto time series with known
α. From the above it is seen that the generation of Pareto
time series withns-2 is accurate sinceHill and CCDF plots
estimate correctly the givenα. Similar results were obtained

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 3, 2009

4



0 500 1000 1500 2000
1

1.5

2

2.5

3

3.5

4

4.5

5

Packet Number

A
lp

ha
 E

st
im

at
io

n

Hill Estimator
Reference for alpha = 1.2

0 500 1000 1500 2000
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Packet Number

A
lp

ha
 E

st
im

at
io

n

Hill Estimator
Reference for alpha = 1.8

Fig. 3. Typical Hill plots for ns-2 generated Pareto series

when analyzing other time series corresponding to a given
source or sources.

B. Generation of Self-Similar series

In this subsection we experimentally verify that aggregate
traffic from N sources, where each source send packets with
inter-departure according to a Pareto series, follows and can
be modelled by aself-similar process of parameterH . Recall
that asN → ∞, H = (3 − α)/2. This subsection only test
that ggregate traffic is indeed aself-similar process. Figure
5 shows typical traffic traces obtained in a network node in
our simulation scenario. Note that the series obtained behaves
in accordance with aself-similar trace. The bottom trace
corresponds to a trace withH = 0.9 and the top plot to a
trace withH = 0.95.

C. Self-similarity andα relation

Figure 6 shows the simulation results when considering 30
traffic sources. The same number of traffic sources was used
in [1][4]. As can be noted from the figure, the same kind of
behaviour is obtained as those of [1][4]. Note that no estimator
can follow the reference lineH = (3−minαi)/2. In fact it is
noted that the estimateŝH ∼ Href + k, wherek is a constant.
From this it can be said that no simulation scenario, neither
[1][4] nor the proposed by us is capable of finely and accurately
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Fig. 4. Typical CCDF plots for ns-2 generated Pareto series
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Fig. 5. Self-Similar Series obtained from Pareto distributions

generatingself-similar traffic for performance purposes when
N = 32. Precisely generatingself-similar traffic is important
for testing the behaviour of algorithms or novel protocols and
checking its behaviour under varying degrees of correlation
or persistence. In fact, this degree can be accurately varied
based on the tail-index of the traffic source. Figure 7 shows the
variation of theHurst-index when estimated with five different
estimators. Note that variance-type method presents high vari-
ability. R/Sstatistic presents low variability but unfortunately its
bias is high. From the two figures is concluded that when using
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30 traffic sources in the simulation scenario shown above,self-
similar traffic is effectively generated but theHurst-index of
this generated traffic presents high bias and variability. Figure
8 shows the simulation results when using50 traffic sources.
Note that significant improvements in the bias are obtained.

In fact, Whittle, wavelet andR/S statistic behave reasonable
well. Periodogram and variance method present high bias and
variability. Recall that the most robust estimators are those
based on wavelets and the MLE estimation ones(Whittle). Our
paper takes these estimators into account and our conclusions
area based on the results obtained from these. As above, figure
9 shows the standard deviation of the estimations of theHurst-
index but when using50 traffic sources. Note that although
R/Sstatistic shows low bias, the variance is high and thus is
not suggested for deciding which the number of required traffic
sources is. Whittle and wavelet are the most robust among all
the estimators[37][38][12][23] studied and thus can be used for
the task of deciding the required number of traffic sources for
obtaining self-similar traffic with low-bias and variance. We
also performed the same kind of analysis to70 traffic sources
obtaining similar results as those for50, this behavior can be
observed in Figure 10. From the above figures, we can conclude
that the required number of users neccesary to generate accurate
self-similar traffic is at least50 traffic sources. Also, variance
andR/Sstatistic methods can not be used for such a task. In our
work, Whittle and wavelet based methods were used to decide
the required number of users for the accurate generation of
self-similar signals. References [1][4] showed the results for
30 traffic sources and the methods used to test the presence
were variance andR/Sstatistic. We suggest that the relationship
betweenself-similarityparameter andQoSparameter presented
in that paper must be re-evaluated.

V. CONCLUDING REMARKS
This paper described background information onself-similar

processes andheavy-taileddistributions. It reviewed the main
estimators both forself-similarandheavy-tailedstochastic pro-
cesses. It showed the appropiateness of the simulation scenario
first in the generation of Pareto and then aggregatedself-similar
traces. The correct generation of Pareto was tested with Hill
based estimators while the generation of correct aggregated
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Fig. 6. EstimatedHurst-index for 32 users
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Fig. 7. Variation ofHurst-index estimation for 32 users
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Fig. 8. EstimatedHurst-index for 50 users

1.0 1.2 1.4 1.6 1.8

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Standard deviation of estimators

Tail−index

S
td

 d
ev

ia
tio

n

Periodogram
Variance
R/S Statistic
Wavelet
Whittle

Fig. 9. Variation ofHurst-index estimation for 50 users
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Fig. 10. EstimatedHurst-index for 70 users

self-similar traces was tested with time-domain, frequency-
domain and time-scale estimators. It also detailed the simulation
scenario for generatingself-similar traffic from heavy-tailed
sources. This scenario diverges from previous reported results
in two aspects:i) the number of sources andii) the increment
in the number ofHurst parameter estimators evaluated. Based
on extensive simulation results we found that the number
of independent users impact the accuracy of theHurst-index
and conclude that the required number of independent traffic
sources must be at least50. By incrementing the number
of sources we obtain higher accuracy but with higher com-
putational cost. Also, according to variation ofHurst-index
estimation, the Whittle and wavelet methods were the most
suited for this type of simulation scenarios. As further work
we propose the analysis of the relationship ofself-similarity
parameter andQoSperformance under the scenario proposed.
Also, it would be interesting to include severalself-similar
traffic flows in the topology to study its relation on adjacent
nodes and also to establish the mathematical relationship among
Hurst-indexes.
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