
 

 

  

Abstract— Speech-To-Text and Text-To-Speech applications are 
essentially based on an effective separation of phonetic units, so the 

segmentation of uttered speech into phonetic units is a key processing 

task for successfully implementing speech recognition systems. 

Softcomputing methods demonstrate to be more effective than other 

methods due to the capability neural networks and fuzzy logic to be 

trained by expert.  This work phonetic segmentation of uttered speech 

that separates vowels from consonants is based on a fuzzy logic 

inference engine tuned by an expert using speech features 

distribution.  Only time-domain feature-extraction algorithms are 

applied to speech to extract features, so minimum computational cost 

was achieved.  Fuzzy decision logic is used to infer about phonetic 

units separation point.  A set of  tests has been executed to 

demonstrate that this approach can be effective in separating phonetic 

units, while requiring minimal computing power and reducing system 

complexity. 
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I. INTRODUCTION 

PEECH is a quasi-stationary signal, so it can be divided into 
segments with stationary features. Speech segments can be 

classified into macro  typologies, such as voiced or unvoiced, 

or in micro typologies such as phones (phonemes and 

allophones). 

Voiced speech consists of vowels and semi-vowels, and 

unvoiced speech consists of consonant speech segments. 

Voiced speech segments are generated by glottis when it is in 

the vibration state (pulsing at the pitch frequency).  Unvoiced 

speech segments are generated by air freely and randomly 

flowing through glottis (opened). 

Phonemes and allophones are voiced and unvoiced speech 

segments characterized by a  different constriction of the vocal  

tract. 

     Speech analysis, speech recognition, and speech 

synthesis rely on certain key information embedded in uttered 

speech [3], [4], [5], [6], [7], [8], [9].   Such information 

includes pitch, formants, energy, and so forth.  These features 

are not stationary for an entire utterance (i.e. a word).  

Therefore, a frame-based processing technique is currently 

used. 

Speech analysis is based mainly on signal processing 

 
 

 

algorithms for frequency mapping such as Fourier Transform 

(FT) or algorithms for frequency tracking such as linear 

prediction (LP). Stationary of frequency information in speech 

segments processed by such algorithms is  a primary 

requirement for successful application of frequency features 

measurements in speech recognition, speech identification, and 

speech synthesis. 

In speech recognition application isolating stationary speech 

segments is useful when a phone-to-text (PTT) approach is to  

be implemented. Best matching of a phone (phoneme or 

allophone) can be achieved only if its feature extraction is 

concerning mainly the segment part with minimal 

coarticulation information. 

In speech synthesis based on concatenation of speech 

segments (phonemes, diphones syllables, etc.) the automatic 

segmentation of utterance is necessary to build-up the speech 

data base required by the speech synthesizer. Voiced/unvoiced 

endpoints of  uttered speech are to be identified to effectively 

drive the speech synthesizer to switch the glottal source to be 

processed by the parametrically controlled vocal tract 

simulation. 

Frame-based speech-signal processing consists of separating 

a short portion of the whole uttered signal.  The duration of the 

segment must be short enough to assume the speech features in 

such a frame to be stationary [4], [15] . 

Features can be considered stationary for a phonemic 

segment of the speech but not for the coarticulation part of it.  

The framing process is asynchronous with respect to time 

sequencing phonetic units in uttered speech, so most of the 

information about speech features that is extracted by a fixed-

length frame process is imprecise.  As a result, speech-

processing performance is significantly reduced. 

To overcome this problem, the framing process needs to be 

synchronized with the time position of the phonetic units in the 

uttered speech, so only stationary data will be subjected to 

speech-feature extraction.  To achieve synchronization, a smart 

segmenting process needs to be implemented to allow the time 

position of phonetic units in the uttered speech to be identified. 

Over the last decade, considerable effort has been devoted 

to automatically segmenting speech into phonetic units [2], 

[10], [11], [14], [16]. 

Solutions have been sought both in terms of parametric (i.e. 

algorithmic) signal-processing methods (frequency-domain 

feature extraction with pattern matching) [13] and in terms of 

nonparametric (i.e. linguistic) signal-processing methods 
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(mainly artificial neural networks)  [1]. 

This work proposes a mixed-method approach to 

segmenting uttered speech into phonetic units.  The approach 

simplifies the extraction of speech features obtained through 

parametric signal processing by applying only a few time-

domain signal-processing algorithms and by using a simple 

fuzzy-logic inference engine to pattern-match the phonetic 

units. 

Time-domain signal processing and non–parametric pattern 

matching of phonetic units endpoint detection have been 

implemented to implement speech recognition (speech-to-

text), speech identification (voiceprint), and speech synthesis 

(text-to-speech) on low-end microcontrollers in deeply 

embedded applications. 

II. PROCESS FRAMEWORK 

 

To separate phonemic information in uttered speech, 

energy, zero-crossing rate, and pitch have been computed by a 

set of time-domain measurement algorithms and then  

combined by a fuzzy logic-based inference engine. This 

computing process is described below (fig. 1). 

 
Fig. 2 process to segment speech in voiced/unvoiced 

segments 

 

 

 

 

 

It is a frame-by-frame process that computes short-time 

energy, zero-crossing rate, and pitch rate. Short-time energy is 

combined with zero-crossing rate to classify voiced and 

unvoiced segments (V/U). On speech segments is executed 

also the measurement of  pitch frequency. All the 

measurements are computed in time domain. 

Energy, zero-crossing rate, and pitch are combined to infer 

about the phonetic class to which belong each segment (V/U).  

An higher smart decision logic layer streams the V/U decision 

to evaluate the end-points of the U/V segments. It recovers 

errors occurred at fuzzy logic decision layer considering the 

duration, considering pre and post decision. 

A feedback has been introduced to automatically resize the 

frame duration to best match the endpoints of each  phonetic 

unit. Frame resizing occurs when the fuzzy logic decision is 

not able to classify the current frame. This happens above all 

when a segment  contains coarticulated voiced-unvoiced 

speech. Frame duration is then halved and the fuzzy logic 

decision is then applied separately to the frames. 

A. Time-domain features computation 

Speech has several crisp features related to its semantic 

content.  Some of these are time parameters, such as 

amplitude, energy, and dynamics.  Others are frequency 

parameters, such as pitch or formants. 

Time-domain computation of speech features is 

computationally less intensive than frequency-domain 

computation. Time parameters can easily be computed with an 

across-the-board formula like 
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• Q(n) is the short-time calculation of a feature from a sampled audio 

signal s(n) 

• T is a time-domain transformation function applied to signal s(n), 

weighted by the window w(n). 
 

 

 

The T  transformation is computationally easier than the one 

needed for frequency-domain transformation.  The above 

formula can also be applied to compute frequency-domain 

signal features, such as pitch and zero-crossing rate. 
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Fig. 2 a window of N samples in length superimposed on a 

speech sequence with only gradual variation 

  

Windowing (fig. 2) serves to execute the short-time feature 

calculation, with such features treated as gradually variable 

information. 

B. Short-time energy 

Amplitude of speech signal is continuously variable with 

time. Root-Mean-Square (RMS) calculation can be executed 

on a windowed segment to represent such variability. Energy 

measurement is as representative as RMS, but it is 

computationally easer because square root calculation is 

avoided. 

Short-time energy is computed applying the windowing 

technique. Energy is initially calculated using a 20 ms wide 

Hamming window, according to the following formula: 
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The energy measure very effectively segments the speech 

signal into phonetic units, such as vowels and consonants, 

because the amount of energy is vastly different between two 

phonemes (fig. 3). 

 
 

Fig. 3 energy is starkly different between two phonemes 

 
The easily identifiable variation in energy enables to quickly 

distinguish voiced from unvoiced uttered speech. 

Energy computed in large windows will fluctuate too slowly 

in time to obtain good information about phone nature.  

Energy computed in small windows is too rapidly varying and 

this can give false information about phone transition. Window 

duration can be adapted to the time dynamic of the uttered 

speech. Larger or shorter windows can be applied to segment 

speech so that transition effects due to coarticulation can be 

minimized. 

C. Short-time zero-crossing rate 

Zero-crossing rate (ZCR) is a synthetic measure of 

frequency characteristic of signal. It measures how many time 

the signal is crossing the zero-amplitude line in a unit time 

(window duration). Distribution of such frequency 

measurement is very indicative of the nature of a signal frame 

regarding its belonging to the class of quasi-periodic and the 

class of non-periodic signals. 

The ZCR feature is calculated with the following formula: 
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A unit-gain rectangular window scaled by 1/N is applied to 

yield ZCR per sample. N is the length of the window. 

Voiced and unvoiced phonemes have very distinctive ZCR 

measurements.  These correlated closely to points of major 

energy concentration.  The ZCR and energy measurements are 

clearly adequate to classify a sound as voiced or unvoiced 

[13].  

D. Short-time pitch 

Pitch is a frequency information related to the 

voiced/unvoiced nature of speech. Voiced speech (e.g. the 

vowels) embeds the glottis frequency. Unvoiced speech 

doesn’t embed any pitch frequency. Such information, 

combined with short-time energy and short-time ZCR make 

more robust the voiced/unvoiced separation process. 

Pitch is convolved with the vocal tract frequency response, 

so it need to be deconvolved. Such process is computationally 

intensive, and its computation cost is not comparable with the 

computation cost of energy and ZCR). 

Pitch is estimated through center clipping technique. Such 

technique is applied to short-time frames of uttered speech.  

Compared to other techniques for estimating pitch, such as 

autocorrelation or cepstrum, this technique estimates pitch 

more precisely at lower computational cost [14]. 

 

 

 
 

Fig. 4 detecting pitch by center-clipping a speech frame 

 

Speech-frame center clipping (fig. 3) consists of setting a 

sample’s low-amplitude levels to zero, while reducing its high-

amplitude levels.  This signal distortion is based on a clipping 

threshold tuned to about 30% of maximum signal amplitude. 

    Pitch measurement is useful to distinguish between 

voiced and unvoiced utterance frames.  During transition from 

voiced to unvoiced speech frames, energy and ZCR 

measurements might not be sufficiently indicative of speech-

frame unit type.  In such cases, pitch measurement may be 

informative enough to correctly classify a frame as voiced or 

unvoiced. 

III. SMART DECISION LOGIC 

A fuzzy-logic engine was tuned to infer speech 

classification in two distinct phoneme classes: vowels and 

consonants.  The engine processes crisp measurements of 

energy, ZCR, and pitch.  It then decides how to classify the 

frame. The inferred knowledge is based on a set of 

membership functions that depend on the distribution of input 

measurements and on a set of linguistic rules derived from 

experimentally observing the measurements that correlated to 

these two phonetic classes in the uttered speech. Voiced 

speech concentrates most of energy below 3 kHz. Unvoiced 

speech concentrate most the energy at higher frequencies. 

Membership functions were modeled on the distribution of 

each measurement.  Energy was modeled vis-à-vis the highest 

and lowest values, thus constructing a triangular fuzzification 

function. Voiced speech concentrates most of energy below 3 

kHz. Unvoiced speech concentrate most the energy at higher 

frequencies  (fig. 5). 

 

 
 

Fig. 5 membership functions to fuzzify short-time energy 
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Normalized ZCR distribution was directly transformed into 

a membership function by interpolating the distribution curve 

as a triangle or trapezoid (fig. 6). 

 

 
Fig. 6 membership functions to fuzzify short-time zero-

crossing rate 

 

Pitch intensity was mapped onto frequency so that it fuzzily 

discriminates between voiced and unvoiced speech units, as 

well as among different voiced phonemes. 

 

 
Fig. 7 membership functions to fuzzify short-time pitch 

 

For each phoneme analyzed, rules regarding energy, zero-

crossing rate, pitch, and membership in either a vocalic or a 

consonantal utterance unit were compiled. 

 

 
Fig. 8 fuzzy rules to infer the voiced attribute of an uttered 

speech segment 

 

A center of gravity method is then applied to fuzzify the 

final decision, so that, frame by frame, the uttered speech is 

segmented into vocoidal and contoidal speech units. 

 

 
Fig. 9 fuzzy rules to infer the voiced/unvoiced attribute of an 

uttered speech segment 
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IV. EXPERIMENTAL RESULTS 

To evaluate the performance of this approach to 

phonetically segmenting uttered speech, an experimental 

environment was modeled using MATLAB.  The whole 

experimental system consists of a feature-extraction subsystem 

and a fuzzy-logic inference engine. 

 
 

 

Fig. 10 experimental environment for smart segmentation of 

uttered speech running in MATLAB modeling environment 

 

The inference engine was set up in a separate modeling 

environment (FUDGE) that enables the user to model 

membership functions and rules.  Then, after simulation to 

fine-tune the inference engine, the configuration dataset is 

transferred to the MATLAB-coded engine that manages 

decision logic. 

A set of tests was run on isolated words (the set of uttered 

digits from ZERO to NINE).  Results for the segmented word 

SIX are shown in fig. 11 

 

 
Fig. 11 sequence of segments of the uttered word SIX, 

showing starting and stopping points for the vowel ‘i’ and the 

consonants ‘s’ and ‘x’:  two wrong segments are also 

endpointed 

 

The segmentation process demonstrate to be very effective. 

Some errors occur,  but they are easily recoverable introducing 

a time duration criteria such as. 
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IF segment_duration 

IS shorter THAN n_frames 

AND 

antecedent_frame = conseguent_frame  

THEN segment BELONGS TO PREVIOUS 
 

Such rule acts like a smoothing fuzzy filter on the symbolic 

sequence outputted by the segmentation engine. After this 

postprocessing, a correct segmentation has been achieved (fig. 

12). 

 
Fig. 12  sequence of segments of the uttered word SIX, showing 

starting and stopping points for the vowel ‘i’ and the 

consonants ‘s’ and ‘x’:  two wrong segments are also 

endpointed 

V. CONCLUSION 

Segmentation of speech in phonetic units is a very important 

task for successful implementation on most important speech 

application, including speech recognition, speech synthesis 

and, speaker identification. Because such applications are 

more and more required in embedded systems, smart 

processing approaches need to be investigated. 

Time domain computation demonstrate to be effective at 

very low computational cost. Low computational cost can be 

achieved also using fuzzy decision logic because the fuzzy 

logic inferential engine can be run efficiently on a low-end 

microcontrollers. 

The experimental results demonstrate that the combination 

of time-domain speech-feature measurement and fuzzy 

decision logic is simultaneously effective and very efficient. 

Computational complexity was kept to a minimum to allow 

low-cost implementation in deeply embedded systems for 

speech-based applications such as voice control. 

Next steps of this research will be focused on the 

classification of voiced and unvoiced phones, keeping the 

computational cost as low as possible. 
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