
ProActive: Using a Java Middleware for HPC
Design, Implementation and Benchmarks

Brian Amedro, Denis Caromel,
Fabrice Huet

INRIA Sophia-Antipolis, CNRS, I3S, UNSA.
2004, Route des Lucioles, BP 93

06902 Sophia-Antipolis Cedex, France.
First.Last@inria.fr

Vladimir Bodnartchouk,
Christian Delbé

ActiveEon
2004, Route des Lucioles, BP 93

06902 Sophia-Antipolis Cedex, France
First.Last@activeeon.com

Guillermo L. Taboada
University of A Coruña

Faculty of Informatics, Spain
taboada@udc.es

Abstract—Although Java is among the most used programming
languages, its use for HPC applications is still marginal. This
article reports on the design, implementation and benchmarking
of a Java version of the NAS Parallel Benchmarks translated
from their original Fortran / MPI implementation. We have
based our version on ProActive, an open source middleware
designed for parallel and distributed computing. This paper gives
a description of the ProActive middleware principles, and how
we have implemented the NAS Parallel Benchmark on such Java
library. We Also gives some basic rules to write HPC code
in Java. Finally, we have compared the overall performance
between the legacy and the Java ProActive version. We show
that the performance varies with the type of computation but
also with the Java Virtual Machine, no single one providing
the best performance in all experiments. We also show that
the performance of the Java version is close to the Fortran
one on computational intensive benchmarks. However, on some
communications intensive benchmarks, the Java version exhibits
scalability issues, even when using a high performance socket
implementation (JFS).

I. INTRODUCTION

Message Passing Interface (MPI) is the dominant pro-
gramming model of choice for scientific computing. This
library proposes many low-level primitives designed for pure
performance. But for several years, the tendency has been
to look for productivity[13], and to propose efficient high-
level primitives like collective operations [9], object-oriented
distributed computing [6] and material to ease the deployment
of applications.

In order to perform an evaluation of Java capabilities for
high performance computing, we have implemented the NAS 1

Parallel Benchmarks (NPB) which are a standard in distributed
scientific computation. Many middleware comparatives and
optimization techniques are usually based on them [17], [7],
[10], [12], [8]. They have the characteristic to test a large set
of aspects of a system, from pure computation performance to
communication speed.

By using a Java-based middleware, instead of Fortran+MPI,
we want to demonstrate the performance which can be ob-
tained, comparing it to an equivalent native version. Our aim is
to identify the areas where Java still lacks some performance,
in particular the network layer.

1Numerical Aerodynamic Simulation

Our contributions are the following :

• An evaluation of the Java overhead for arithmetic com-
putation and array manipulation

• A report on common performance pittfals and how to
avoid them

• A performance comparison of an implementation of the
NPBs in Java and Fortran/MPI (PGI) on Gigabit Ethernet
and SCI

The rest of this paper is organized as follows. Section
2 gives some background: a short description about the
benchmarks used in our experiments, the ProActive library
(in particular the active object model), and the Java Fast
Sockets[18]. Section 3 presents some related work. In section
4, we discuss the implementation and some performance
issues. Section 5 presents the results obtained with the NAS
Parallel Benchmarks on two network architectures. Finally, we
discuss the future work and conclude in section 5.

II. BACKGROUND

A. The NAS Parallel Benchmarks

NAS Parallel Benchmarks (NPB) consists of a set of kernels
which are derived from computational fluid dynamics (CFD)
applications. They were designed by the NASA Ames Re-
search Center and test different aspects of a system.

Some are testing pure computation performance with differ-
ent kinds of problems like matrix computation or FFTs. Others
involve a high memory usage or network speed with large data
size communications. Finally, some problems try to evaluate
the impact of irregular latencies between processors (short
or long distance communications). Each of these five kernels
was designed to test a particular subset of these aspects. To
follow the evolution of computer performance, the NPB were
designed with several classes of problems making kernels
harder to compute by modifying the size of data and/or the
number of iterations. There are now 6 classes of problems:
S, W, A, B, C and D. Class S is the easiest problem and is
for testing purpose only. Class D is the hardest and usually
requires a lot of memory.

Here we will use the IS, FT, EP, CG and MG kernels with
the problem class C.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 3, 2009

49



B. The ProActive Library

ProActive is a GRID middleware (a Java library with open
source code under LGPL license) for parallel, distributed, and
concurrent computing in a uniform framework. With a reduced
set of simple primitives, ProActive provides a comprehensive
API to simplify the programming of Grid Computing applica-
tions: distributed on Local Area Network (LAN), on clusters
of workstations, or on Internet Grids.

ProActive uses standard RMI as a transport layer and
is thus bound to its limitations [11]. However, the RMI
transport overhead can be reduced through the use of a high
performance Java sockets implementation named Java Fast
Sockets (JFS)[18]. JFS provides high performance network
support for Java (currently direct Scalable Coherent Interface
–SCI– support). It also increases communication performance
avoiding unnecessary copies and buffering, by reducing the
cost of primitive data type array serialization, the process of
transforming the arrays in streams to send across the network.

Although our implementation of the NPBs uses some
ProActive specific features, it could easily be ported to another
middleware. Thus the insights gain from these experiments
will be valuable to the HPC community, irrespective of their
use of ProActive.

ProActive is only made of standard Java classes, and
requires no changes to the Java Virtual Machine, no pre-
processing or compiler modification; programmers write stan-
dard Java code. Based on a simple Meta-Object Protocol,
the library is itself extensible, making the system open for
adaptations and optimizations. ProActive currently uses the
RMI2 Java standard library as default portable transport layer.

The active object is the base entity of a ProActive applica-
tion. It is a standard Java object which has its own thread.
An active object can be created on any host used for the
application deployment. Its activity and localization (local or
distant) are completely transparent. Asynchronous requests are
sent to an active object. These requests are stored in the active
object’s request queue before being served according to a
service policy. By default, this service policy is FIFO, but
the user can create its own. A future object is a place holder
for the asynchronous request result with a wait-by-necessity
mechanism for synchronization. Some requests can be invoked
as immediate services: these requests will be served in parallel
of the main thread and other immediate services. For further
details about ProActive, the reader can refer to [4].

C. High Performance Java Sockets Support in ProActive

As the use of Java RMI as transport layer in Proactive has an
important impact on performance, it has been considered the
substitution of the current RMI transport protocol by a more
efficient one. The RMI transport overhead can be reduced
through the use of a high performance Java sockets imple-
mentation named Java Fast Sockets (JFS)[18]. JFS provides
high performance network support for Java (currently direct
Scalable Coherent Interface –SCI– support). It also increases

2Remote Method Invocation

communication performance avoiding unnecessary copies and
buffering, by reducing the cost of primitive data type array
serialization, the process of transforming the arrays in streams
to send across the network. Most of these optimizations are
based on the use of native methods as they obtain higher
performance. On SCI, JFS makes JNI calls to SCI Sockets,
SCILib and SISCI, three native communication libraries on
SCI. JFS increases communication throughput looking for
the most efficient underlying communication library in every
situation. Moreover, it is portable because it implements a
general “pure” Java solution over which JFS communications
can rely on absence of native communication libraries. The
“pure” Java approach usually leads in the lowest performance,
but the stability and security of the application (associated
trade-offs for the higher performance of the native approach)
is not compromised. The transparency to the user is achieved
through Java reflection: the Factory for creating Sockets can
be set at application start-up to the JFS SocketImplFactory,
and from then on, all sockets communications will use JFS.
This process can be done in a small Java application launcher
that will call the target Java application. This feature allows
any Java application, and in this particular case ProActive
middleware, to use JFS transparently and without any source
code modification.

III. RELATED WORK

Studies of Java for High Performance Computing can be
traced back to the JavaGrande Forum community effort[16].
The results, at that time, were disappointing and gave Java
a bad reputation. Since then, only a few works have been
dedicated to this task, although the technologies behind the
Java Virtual Machines and the computer architecture have
changed a lot over the years. A notorious performance hit
was the garbage collector, because of the pauses it introduced.
Nowadays, all JVMs come with multiple garbage collectors
implementation which can be chosen at start-time [2], [1].
Multi-core CPUs are now mainstream and might change
fundamentally the performance of Java. Indeed, a JVM is
multi-threaded and can take advantage of multiple cores to
perform background tasks like memory management or Just-
In-Time compilation.

A recent work is the DaCapo Benchmarks suite [5]. The
authors define a set of benchmarks and methodologies mean-
ingful for evaluating the performance of Java. As noted by
the authors, Java introduces complex interactions between the
architecture, the compiler, the virtual machine and the mem-
ory management through garbage collectors. As such, using
benchmarks and methodologies developed for Fortran/C/C++
might put Java at a disadvantage.

IV. IMPLEMENTATION

Our implementation of the NPB is done strictly in standard
Java, without relying on external libraries except for com-
munication. As we will show in this section, writing HPC
code in Java is possible but requires care and good knowledge
of the internals of the JVMs. Also, we have tried to be as

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 3, 2009

50



close as possible to the original NPB3.2-MPI implementation.
However, there are a few dissimilarities induced by both
the object oriented model (Java) and the distribution library
(ProActive).

Using the Object-Oriented SPMD layer provided by the
ProActive library [3], each SPMD MPI process has been
translated to an active object (remotely accessible Java object)
named Worker. Due to the ProActive principles, we have
also redefined the iterations in tail-recursive calls. Thus, each
kernel iteration is a ProActive request.

Table I gives a brief overview of the equivalences between
MPI and ProActive operations.

MPI ProActive

mpirun deployment

MPI_Init activities creation
MPI_Finalize

MPI_Comm_Size getMyGroupSize
MPI_Comm_Rank getMyRank

MPI_*Send method call
MPI_*Receive (setter and getter)

MPI_*Sendrecv exchange

MPI_Barrier barrier

MPI_Bcast method call on a group communication

MPI_Scatter method call with a scatter group

MPI_Gather result of a group communication

MPI_Reduce programmer’s method

TABLE I
TRANSLATION BETWEN MPI AND PROACTIVE

A. Exchange Operator

Due to its request queue, ProActive is not able to translate
directly some constructions which are frequently used with
MPI, like the irecv() / send() / wait() sequence. With MPI,
this sequence offers a way to exchange potentially a very
large amount of data between 2 processes, making an implicit
synchronization. With ProActive, the asynchronous request
service mechanism is not really adapted to such task and
should lead to some dead-locks, involving, in addition to an
explicit synchronization, to make a copy of data to exchange
(received data will first be copied into a request which will be
served later).

In order to avoid unnecessary copying of data, we take
advantage of the serialization step of a request, through a
special exchange operator. It allows two ProActive processes
to exchange data efficiently. The two processes will invoke the
exchange operator in order to exchange data with each other. It

is equivalent to a pair of irecv() / send() / wait()
calls by those two processes. Hence, the ProActive call:

exchange(tag,destRank,srcArray,srcOffset,
destArray,destOffset, len)

is equivalent to the MPI sequence:

mpi_irecv(dest_array,len,data_type,
dest_rank, tag,mpi_comm_world,
req)

mpi_send(src_array,len,data_type,
dest_rank,tag,mpi_comm_world)

mpi_wait(req,status,ierr)

Figure 1 explains the inner working of the operator: In this
example, two active objects (AOs) are exchanging a subset of
an array using the exchange operator, which works like a 2-
way array copy. Thus, both AOs creates a RequestExchange
object containing the details of the source and destination
arrays (ie. array pointers, offsets and length). Then, each
AO sends its RequestExchange object to the other one,
performing an implicit synchronization when serializing and
deserializing data. Indeed, the serialized data are directly read
in the source array without any intermediate copy. In the same
way, deserialized data are directly put in the destination array
without any intermediate copy.

Moreover the Exchange does not work exclusively with
arrays of primitives, but also with any complex data structure
which implements the java.util.Collection interface.

B. Basic arithmetic operations

Some of the primitives provided by the standard JVM for
numerical operations are not very efficient. Especially, simple
operations such as integer binary logarithm or binary powering
are not optimized by either the static compiler or the JIT.

For example, on the Table IV-B, we compare performance
between standard and optimized functions for pow and log.
It shows that HPC programmer should take care about arith-
metic operations and consider optimizing by-hand some of
its intensive computation loops. For efficient and higher level
mathematical computation, developer can use specialized li-
braries such as MKL3 which provides efficient primitives
for operations such as matrix computation and fast fourier
transformations.
However, due to license limitations, we did not use MKL in
our implementation, but only rewrote basic operations with
base-2 and integer optimizations. Note that is has been done
only in innermost loops.

C. Optimization of data structures memory footprint

HPC applications are often characterized by the use of large
data structures. Thus, developer of such application might be
aware of the actual memory footprint of the objects he deal
with.

Java offers two ways to store data: primitive types, and
Objects. Primitive types only contain actual data whereas

3Math Kernel Library

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 3, 2009

51



Fig. 1. Data exchange operation between 2 Active Objects in ProActive

Sun IBM BEA gcc
1.6 1.6 1.6 4.3.2

pow(2,i) 305.28 256.58 201.82 107.5
1 << i 8.32 9.06 10.99 8.5
log(i)/log2 90.42 168.51 91.35 92.3
ilog2(i) 11.18 13.12 16.89 19.3

TABLE II
PERFORMANCE COMPARISON BETWEEN STANDARD ARITHMETIC

FUNCTIONS AND OPTIMIZED VERSIONS (VALUES ARE IN SECONDS)

Sun 1.6 IBM 1.6 BEA 1.6
byte[] 10 MB 10 MB 10 MB
Byte[] 80 MB 80 MB 40 MB
short[] 20 MB 20 MB 20 MB
Short[] 320 MB 320 MB 200 MB
int[] 40 MB 40 MB 40 MB
Integer[] 320 MB 320 MB 200 MB
double[] 80 MB 80 MB 80 MB
Double[] 320 MB 320 MB 200 MB

TABLE III
MEMORY FOOTPRINT COMPARISON BETWEEN PRIMITIVE TYPES AND

OBJECT TYPE WRAPPERS ON A 10 MILLIONS ELEMENT ARRAY WITH

DIFFERENT JVM VENDORS ON 64 BITS ARCHITECTURE

Objects have associated meta-data which are used by the JVM
to enforce language properties or features. For every primitive
type, there is an equivalent Object which acts as a wrapper
(double and Double, int and Integer...).

As shown on Table IV-C, there is an important difference
between primitive types and Objects. For this comparison we
have used a large array of 10 millions elements and measured
the memory usage. Although the Oracle JRockit 1.6 JVM
needs less memory for the same amount of data, Object
payload is important compared to primitive, especially for
integer or double. Thus, handling large data structures requires
using primitive types.

Allocation strategy of multi-dimensional arrays also has an

important impact on memory footprint, because Java does
not have support for true multidimensional arrays. Instead, it
relies on arrays of arrays to simulate them. This leads to non
rectangular arrays with variable shapes. Also, Java arrays are
actually Objects even if they only contain primitive type data.
It is very hard for a compiler to perform optimizations on such
array. Although some solutions have been proposed to address
these issues [15], none has made it in the official releases of
Java.

Table IV-C shows the memory usage of various JVMs when
allocating a 2-dimensions array of 20M elements (double
or byte). We also indicate the value measured on a C and
a Fortran versions compiled with gcc. We have measured
3 different allocations strategies : [2][10M], [10M][2M]
and [20M]. As expected, the lowest usage is obtained when
allocating a single dimension array, as the memory can
be allocated contiguously in memory. When allocating two-
dimensional arrays, we see that the Oracle JRockit JVM
performs sometimes better than the C version. We believe this
is because when instantiating the array in the Java version, the
bounds are known and thus the JVM has enough information
to manage memory in a more efficient way. For its part, Fortran
inlines all multi-arrays, regardless of the allocation strategy,
thus allowing optimal memory management.

Sun IBM BEA gcc f77
1.6 1.6 1.6 4.3.2

byte[2][10M] 19.1 19.1 19.1 19.2 19.1
byte[10M][2] 380 381 269 381 19.1
byte[2*10M] 19.1 19.1 19.1 19.2 19.1
dble[2][10M] 152 152 152 152 152
dble[10M][2] 456 457 345 381 152
dble[2*10M] 152 152 152 152 152

TABLE IV
MEMORY FOOTPRINT COMPARISON ON MULTI-ARRAY DECLARATION

STRATEGIES (IN MB) ON 64 BITS ARCHITECTURE

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 3, 2009

52



As we can see, to be memory-efficient we have to use one-
dimensional arrays. Also, In the Fortran implementation of
the NPBs, one dimensional arrays are often seen as 2 or 3
dimensional one. However, there is no direct support in Java
for such operations. When necessary, we have rewritten the
Java code to manipulate only one dimensional arrays, using a
simple flattening technique and adding methods to treat them
as multidimensional one.

The first versions of Java suffered from automatic bounds
checking of arrays. However, since the NPBs operate on arrays
with known size at runtime, most of the unnecessary checks
are removed by the Just-In-Time compiler [20].

D. JIT

Compared to Fortran or C, most of the optimization in
Java are not performed at compile time but at run time, by
the Just-In-Time compiler (JIT) [14] which usually comes in
two flavors: client and server. The main difference being that
the second one performs more aggressive optimization and
might incur a higher overhead. The decision of compiling
a method is mainly based on the number of invocations
already performed or the number of backward branches taken
in loops (both controlled by the CompileThreshold property).
One of the difficulties is to write code which will lead to high
performance after being compiled by the JIT. Thus, as the
JIT compiler mostly works on methods, our experience in the
development of the NPBs have confirmed that keeping small
methods (i.e avoiding inlining) lead to better performance.

V. EXPERIMENTATION

A. Experimentation Methodology

We divide the five kernels in two categories. If the kernel
performs many calls with a particular communication scheme,
we define it as a communication intensive one; otherwise, it is
a computation intensive one. Following this study, each kernel
was run with different parameters:

• the JVM version and vendor: BEA (5 and 6), IBM (5 and
6) and Sun (5, 6 and 7),

• the initial and maximum heap size of the JVM,
• the number of nodes used (from 1 to 32),
• the kernel problem class size (class S or C)
• the network architecture (GbE or SCI)
Some values or combinations had no impact on the running

of the NPBs and are not presented in the remaining of the
paper. Also, to minimise the mean error, all the presented
values are the average of at least five runs.

The NPB ProActive implementation we have developed is
based on the NPB 3.2 version distributed by NASA. The
Fortran MPI version was compiled with the 64 bits PGI 7.1
compiler and run onto a MPICH 2. For our experiments, we
have used two clusters, described on Tab V.

On the SCI cluster, experiments have been run using one
process per node (single process configuration) or four pro-
cesses per node (quad process configuration). The transport
protocol for ProActive on the SCI cluster is JFS, which
achieves a latency of 6 microseconds and an asymptotic

GbE Cluster
Processor AMD Opteron 2218

2.6 GHz / 2x1 MB L2 cache / 667 MHz
50 nodes x 1 cpu per node = 50 cpus
50 cpus x 4 cores per cpu = 200 cores

Memory 4 GB
Storage 320 GB
Network Gigabit Ethernet (GbE)

4 Cisco-3750 GbE switches
OS RedHat Enterprise Linux 5

SCI Cluster
Processor Intel Xeon DualCore 5060

3.2 GHz / 4 MB L2 cache / 1066 MHz
8 nodes x 2 cpus per node = 16 cpus
16 cpus x 2 cores per cpu = 32 cores

Memory 4 GB
Storage 320 GB
Network Scalable Coherent Interface (SCI)

Dolphin D334 card
OS Linux CentOS 4.2

TABLE V
BENCHMARKED RESOURCES

throughput of 2398 Mbps. The native MPI library presents
a latency of 4 microseconds and an asymptotic throughput of
2613 Mbps. Thus, this high-performance interconnect cluster
can achieve significantly higher performance scalability.

B. Computation Intensive Applications

Computation intensive applications can be characterized by
a strong integer or float arithmetic, or by complex array manip-
ulation. The Fourier Transformation (FT), Integer Sort (IS) and
Embarrassingly Parallel (EP) kernels are such applications. In
the remaining of this section we discuss results on up to 32
nodes. We have ran the benchmarks on 128 nodes (256 for
EP) but the results were not different and are omitted here for
space reasons.

1) Fourier Transformation Kernel (FT): It is a test for
computation performance with a large memory footprint,
solving differential equation using FFTs. This kernel also tests
communication throughput by sending a few numbers of very
large messages. For a class C problem with 16 workers, each
worker sends 22 messages for a total amount of 180 MBytes.
Notice that the original Fortran implementation uses some
native operations on multi-dimensional arrays which are not
available on Java. Thus, we have implemented some of these
operations in Java, at a higher level, causing a large amount
of integer operations through array indices computation.

If we take a look at the Fig.2, we see that the kernel could
not start with a small number of nodes. While the MPI version
ran from 2 nodes, we see that the Java versions only starts from
8 nodes, except for the Sun 1.5 version which was only able
to start the kernel from 16 nodes. Actually, as this kernel deals
with very large data structures, we encountered numerous
“OutOfMemory” errors. Regarding the duration time, we can
see that the ProActive version has about the same behaviour
with 6 JVM out of 7. Compared to the MPI version, results

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 3, 2009

53



1 2 4 8 16 32
number of nodes

0

200

400

600

800

1000

1200

1400

1600

ti
m

e
 (

s)
Kernel FT on class C

IBM 1.5
IBM 1.6
Sun 1.5
Sun 1.6
Sun 1.7
BEA 1.5
BEA 1.6
MPI/PGI

1 2 4 8 16 32
number of nodes

5

10

15

20

25

30

35

40

45

ti
m

e
 (

s)

Kernel IS on class C

IBM 1.5
IBM 1.6
Sun 1.5
Sun 1.6
Sun 1.7
BEA 1.5
BEA 1.6
MPI/PGI

1 2 4 8 16 32
number of nodes

0

200

400

600

800

1000

ti
m

e
 (

s)

Kernel EP on class C

IBM 1.5
IBM 1.6
Sun 1.5
Sun 1.6
Sun 1.7
BEA 1.5
BEA 1.6
MPI/PGI

Fig. 2. Execution time of the computation intensive kernels (FT, IS and EP) for various JVMs on the Gigabit Ethernet cluster

are in the same order of magnitude.
2) Integer Sort Kernel (IS): It tests both computational

speed and communication performance. It performs a bucket
sort on a large array of integers (up to 550 MBytes for a class
C problem). Thus, this kernel is mainly characterized by a
large amount of data movements. On a class C problem with
16 workers, each worker sends to each other 65 messages for
a total amount of 22 MBytes.

On the Fig.2, we see that all the JVM implementations have
similar behaviours with an execution time which is not so far
from the native MPI results (by a factor smaller than 2).

3) Embarrassingly Parallel Kernel (EP): It provides an
estimation of the floating point performance by generating
pseudo-random floating point values according to a Gaussian
and uniform schemes. This kernel does not involve significant
inter processor communication. Regarding the implementation
in Java ProActive, some mathematical functions have been
rewritten for performance issues with base 2 computation. This
is the case with pow and log methods. A large amount of
the operations involved in this kernel are some very simple
operations such as bit shifting.

Figure 2 shows that the achievable floating point perfor-
mance of Java is now quite competitive with native Fortran.
With a problem class C, we can say that the overall behaviour
of the various implementations of Java are the same, with a
lack of performance for IBM 1.5. Furthermore, we note that
for this kind of problem, the Java results are slightly better
than the MPI ones.

C. Communication Intensive Applications

Communication intensive kernels are those which send a
large amount of messages. The Conjugate Gradient (CG) and
MultiGrid (MG) kernels are such applications.

1) Conjugate Gradient Kernel (CG): It is typical of un-
structured grid computation. It is a strong test for communi-
cation speed and is highly dependent on the network latency.
It deals with a very large amount of small messages (with a
problem class C on 16 nodes, 429, 248 messages smaller than
50 bytes are sent) and a large amount of mid-size messages
(86, 044 messages of 300 KBytes are sent). When running a
class C problem, CG kernel is composed of 75 iterations. In
fact, this characterizes the unstructured communications aspect

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 3, 2009

54



1 2 4 8 16 32
number of nodes

0

200

400

600

800

1000

1200

1400

1600

1800

ti
m

e
 (

s)
Kernel CG on class C

IBM 1.5
IBM 1.6
Sun 1.5
Sun 1.6
Sun 1.7
BEA 1.5
BEA 1.6
MPI/PGI

1 2 4 8 16 32
number of nodes

0

50

100

150

200

250

300

350

400

450

ti
m

e
 (

s)

Kernel MG on class C

IBM 1.5
IBM 1.6
Sun 1.5
Sun 1.6
Sun 1.7
BEA 1.5
BEA 1.6
MPI/PGI

Fig. 3. Execution time of the communication intensive kernels (CG and MG) for various JVMs on the Gigabit Ethernet cluster

of this kernel.
Regarding performance comparison, Fig.3 shows the perfor-

mance results on the Gigabit Ethernet cluster. We can see that
almost all the JVM implementations (except BEA on 1 node)
and native MPI version have about the same performance.
Actually, in the Java ProActive implementation, CG kernel
uses many of the exchange operators. Recall that it opti-
mizes the synchronization between processes and eliminates
unnecessary data duplications. It shows that to send a large
number of messages of varying size (429, 248 messages of
less than 50 bytes and 86, 044 messages of 300 KBytes), the
Java ProActive solution is as good as the native Fortran MPI
solution. When looking at the performance comparison on
the SCI cluster, presented on Fig.4, we see about the same
behaviour as for the Gigabit Ethernet cluster. More precisely,
the Fig.4(a) shows that MPI take a little more advantage of
the low latency cluster, but not blatantly. If we now put more
than 1 process per node, as the Fig.4(b) shows, we see that the
achievable floating point performance increase significantly for
MPI, but also for Java ProActive.

2) MultiGrid Kernel (MG): It is a simplified multi-grid
problem. Topology is based on a vanilla hypercube (some
edges are added to standard hypercube). It tests both short
and long distance data communication with variable message
size. When running with a problem class C on 16 nodes, a
total of about 25, 000 messages are sent. Size distribution is
as follows: 5000*1KB, 4032*2 KB, 4032*8KB, 4032*32KB,
4032*128KB and 4032*512KB. Also, MG deals with much
larger data structures in memory than the CG kernel, causing
memory problems.

Regarding performance comparison, Fig.3 shows the per-
formance results on the Gigabit Ethernet cluster. Here, the
important size of data structures, previously mentioned, is
clearly visible. Indeed, when using only one node, the data
structures are too large to be handled by the JVMs. To be
able to perform a run, we need at least two nodes for the
BEA and IBM JVMs, and 4 nodes for the Sun, with default

garbage collector configuration. On the other hand, the native
MPI version is able to run using only one node. Looking at
the execution time, we see that Sun and BEA JVMs are twice
as slow as the MPI version. The IBM JVM performance is
even worse than other vendors VM . This lack of performance
can be explained by the large amount of double and integer
operations involved in.

When running on the SCI cluster, as shown on the Fig.4,
we see that the MPI implementation takes a better advantage
of the low latency cluster. When deploying one process per
core (4 processes per node), as shown on the Fig.4(d), we
obtain better results with the Java version, closing on the MPI
performance.

VI. CONCLUSION AND FUTURE WORK

In this paper we have reported on the design, implementa-
tion and benchmarks of a Java version of the NPBs using the
ProActive middleware for distribution.

First we have shown that care is needed when writing
HPC code in Java. The standard arithmetic methods have low
performance compared to C equivalent. But when replacing
them with an optimized version, it is possible to outper-
form equivalent native code. The memory overhead can be
important when manipulating multi-dimensional arrays. This
is easily addressed by using flattening techniques. Finally,
avoiding premature optimization (such as inlining) helps the
JIT and leads to better performance.

Second, we have compared the performance of a Java
implementation of the NPBs to a Fortran MPI one (PGI 7.1).
When considering strongly communicating applications, the
speed and scalability of the Java ProActive implementation
are, as of today still lower than MPI. On the MG and FT
kernels, the overhead factor ranged from 1.5-2 on 16 nodes to
2-6 on 32 nodes. The lack of scalability in those benchmarks
is mainly due to numerous small messages for which the
ProActive overhead is significantly higher than the MPI one.
We are working to reduce that overhead through size reduction

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 3, 2009

55



1 2 4 8
number of procs

0

500

1000

1500

2000

ti
m

e
 (

s)
Kernel CG on class C, 1 proc per node

MPI/PGI
Sun 1.6

(a)

4 8 16 32
number of procs

0

100

200

300

400

500

600

ti
m

e
 (

s)

Kernel CG on class C, 4 procs per node
MPI/PGI
Sun 1.6

(b)

1 2 4 8
number of procs

0

50

100

150

200

250

ti
m

e
 (

s)

Kernel MG on class C, 1 proc per node
MPI/PGI
Sun 1.6

(c)

4 8 16 32
number of procs

0

20

40

60

80

100

120

140

ti
m

e
 (

s)

Kernel MG on class C, 4 procs per node
MPI/PGI
Sun 1.6

(d)

Fig. 4. Execution time of the communication intensive kernels (CG and MG) on the SCI cluster

of the message context but are dependent on the RMI layer.
One solution would be to bypass RMI by defining a new
protocol adapted to small messages.

On computational intensive benchmarks (IS and EP) the
Java ProActive version performs is as effective as the Fortran
MPI version on up to 64 machines.

We have also shown that it is possible to take advantage of
high-performance interconnects (SCI) in a non-intrusive way.
Using a network layer, JFS, it is possible to transparently
use an SCI infrastructure without source code modification
or reconfiguration. The differences between the Java imple-
mentation and the MPI one are narrower on these systems,
showing the feasibility of this approach on high-performance
interconnects. Moreover, the communication bottleneck can be
further reduced using a mixed approach by putting several
processes on a multi-core node to take advantage of local
communications.

Overall, the results obtained are encouraging. We believe

that the overhead of Java is acceptable when performing
computational intensive tasks. Regarding communication in-
tensive tasks, the lower performance can be partially overcome
using mixed approach and optimized network layers. The HPC
community has already worked on the issue and produced
interesting results [19]. However, current JVM vendors have
not developed efficient enough solutions yet.

ACKNOWLEDGMENTS

Experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other
funding bodies (see https://www.grid5000.fr).

REFERENCES

[1] Bea systems jrockit. checklist and tuning guide for optimizing
the bea jrockit jvm. http://www.oracle.com/technology/pub/articles/
dev2arch/2007/12/jrockit-tuning.html.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 3, 2009

56



[2] Sun microsystems. java se 6 hotspot[tm] virtual machine garbage
collection tuning. http://java.sun.com/javase/technologies/hotspot/
gc/gc tuning 6.html.

[3] L. Baduel, F. Baude, and D. Caromel. Object-oriented spmd. In
Proceedings of Cluster Computing and Grid, Cardiff, United Kingdom,
may 2005.

[4] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, and
R. Quilici. Grid Computing: Software Environments and Tools, chapter
Programming, Deploying, Composing, for the Grid. Springer-Verlag,
January 2006.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and analysis.
In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and
Applications, New York, NY, USA, Oct. 2006. ACM Press.

[6] D. Caromel. Toward a method of object-oriented concurrent program-
ming. Communications of the ACM, 36(9):90–102, 1993.

[7] K. Datta, D. Bonachea, and K. Yelick. Titanium Performance and Poten-
tial: An NPB Experimental Study. LECTURE NOTES IN COMPUTER
SCIENCE, 4339:200, 2006.

[8] M. Frumkin, H. Jin, and J. Yan. Implementation of NAS Parallel
Benchmarks in High Performance Fortran. In Proceedings of the 13th
International Parallel Processing Symposium and the 10th Symposium
on Parallel and Distributed Processing,(IPPS/SPDP’99), San Juan,
Puerto Rico, 1999.

[9] S. Gorlatch. Send-receive considered harmful: Myths and realities of
message passing. ACM Trans. Program. Lang. Syst., 26(1):47–56, 2004.

[10] W. Huang, B. Abali, and D. Panda. A case for high performance
computing with virtual machines. In Proceedings of the 20th annual
international conference on Supercomputing, pages 125–134. ACM
Press New York, NY, USA, 2006.

[11] F. Huet, D. Caromel, and H. E. Bal. A high performance java middleware
with a real application. In SC ’04: Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, page 2, Washington, DC, USA, 2004.
IEEE Computer Society.

[12] H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS
Parallel Benchmarks and Its Performance. National Aeronautics and
Space Administration (NASA), Technical Report NAS-99-011, Moffett
Field, USA, 1999.

[13] L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, and G. Zheng.
Programming Petascale Applications with Charm++ and AMPI. In
D. Bader, editor, Petascale Computing: Algorithms and Applications,
pages 421–441. Chapman & Hall / CRC Press, 2008.

[14] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell,
and D. Cox. Design of the java hotspotTMclient compiler for java 6.
ACM Trans. Archit. Code Optim., 5(1):1–32, 2008.

[15] J. E. Moreira, S. P. Midkiff, and M. Gupta. A comparison of three ap-
proaches to language, compiler, and library support for multidimensional
arrays in java. In JGI ’01: Proceedings of the 2001 joint ACM-ISCOPE
conference on Java Grande, pages 116–125, New York, NY, USA, 2001.
ACM.

[16] M. Philippsen, R. F. Boisvert, V. Getov, R. Pozo, J. E. Moreira,
D. Gannon, and G. Fox. Javagrande - high performance computing
with java. In PARA ’00: Proceedings of the 5th International Workshop
on Applied Parallel Computing, New Paradigms for HPC in Industry
and Academia, pages 20–36, London, UK, 2001. Springer-Verlag.

[17] S. Saini, J. Chang, R. Hood, and H. Jin. A Scalability Study of Columbia
using the NAS Parallel Benchmarks. Journal of Comput. Methods in
Sci. and Engr, 2006.

[18] G. L. Taboada, J. Touriño, and R. Doallo. Efficient java communication
protocols on high-speed cluster interconnects. In Proc. 31st IEEE Conf.
on Local Computer Networks (LCN’06), pages 264–271, Tampa, FL,
2006.

[19] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Ja-
cobs, T. Kielmann, and H. E. Bal. Ibis: a flexible and efficient Java
based grid programming environment. Concurrency and Computation:
Practice and Experience, 17(7-8):1079–1107, June 2005.

[20] T. Würthinger, C. Wimmer, and H. Mössenböck. Array bounds check
elimination for the java hotspotTMclient compiler. In PPPJ ’07: Pro-
ceedings of the 5th international symposium on Principles and practice

of programming in Java, pages 125–133, New York, NY, USA, 2007.
ACM.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 3, Volume 3, 2009

57




