

Abstract—A structured implementation of Differential Evolution

(DE), which can be executed in parallel by using various networks
topologies, is presented in this paper. Even though Evolutionary
Algorithms (EAs) including DE have a parallel and distributed nature
intrinsically, Sequential DE (SqDE) is especially suited for the
structured implementation of DE. Therefore, the proposed Structured
DE (StDE) is based on SqDE. Through the numerical experiment
conducted on a variety of benchmark problems, the performances of
StDE realized on some different network topologies are compared
with the conventional SqDE that uses no networks. As a result, it is
shown that the number of generations spent by StDE to find optimal
solutions is smaller than the number of them spent by the above SqDE
in many benchmark problems. Therefore, the optimal solutions of
almost of the benchmark problems are found more efficiently by using
the proposed StDE realized on the network topologies rather than
SqDE.

Keywords—Evolutionary Algorithm, Differential Evolution,
Structured Differential Evolution, Parallel Algorithm

I. INTRODUCTION
VOLUTIONARY algorithms (EAs) have been the subject of
significant research in field of numerical optimization.

Differential evolution (DE) is a new minimization method [1],
capable of handling non-differentiable, non-linear and
multimodel objective functions. DE has been designed as a
stochastic parallel direct search method, that utilizes many
practical concepts borrowed from the broad class of EAs, for
solving real-parameter optimization problems. Comparing with
typical EAs such as Genetic Algorithm (GA), Evolutionary
Strategy (ES), and Particle Swarm Optimization (PSO), it has
been reported that DE exhibits an overall excellent
performance for a wide range of benchmark problems [2],[3].
Furthermore, because of its simple but powerful searching
capability, DE has been applied to numerous real-world
applications successfully [4]-[7].

The procedure of EAs for updating the individuals included
in the population is called a “generation model” or a
“generation alternation model”. EAs usually employ either of
two types of generation models [5], [8]. The first one is called a
“generational model” or a “discrete generation model”, while
the second one is called a “steady-state model” or a “continuous
generation model” [9]. The classic DE proposed originally by R.
Storn and K. Price has been based on the discrete generation
model [1]. According to the discrete generation model, the
classic DE holds two populations, namely the old one and the
new one. Then, by using a particular strategy, the individuals of
the new population are generated from those of the old one.

After that, the old population is replaced by the new one at a
time.

Inspired by the great success of the classic DE, a variety of
revised DEs have been developed for solving different types of
optimization problems such as noisy [10], constrained [4], and
multi-objective optimization problems [11],[12]. Furthermore,
self-adaptive DEs that have various learning mechanisms to
choose appropriate strategies and control parameters
[13],[14],[27],[28]. However, many of the conventional DEs
have been also based on the discrete generation model as well
as the classic DE.

Recently, a new DE based on the continuous generation
model is proposed [9],[15],[16]. The new DE is sometimes
called “Sequential DE (SqDE)” [16]. According to the
continuous generation model, SqDE holds only one population.
Therefore, SqDE renews the individuals of the population one
by one. SqDE generates a new individual called the “trial
vector” from an existing individual called the “target vector” in
the same way with the classic DE. After that, if the target vector
included in the population is not better than the trial vector, the
target vector is replaced by the trial vector immediately. Since
the excellent newborn individual, namely the trial vector, can
be used soon to generate offspring, it can be expected that
SqDE finds good solutions faster than the classic DE [9].

Evolutionary Algorithms (EAs) including DE have a parallel
and distributed nature intrinsically [19]. Therefore, various
parallelization techniques of EAs have been proposed [19],[29].
Incidentally, parallel DE is also implemented by using Parallel
Virtual Machine (PVM) [21]. However, throughout this paper,
the structured EA is distinguished from the parallel EA. The
structured EA consists of multiple structured populations
connecting each other in accordance with a particular network
topology. On the other hand, the parallel EA means every
program of EA executed in parallel on multiple processors.
Therefore, the structured EA can be realized by not only a
single processor but also multiple processors connected by
network.

In this paper, the structured DE (StDE) is proposed and
evaluated in its performance. The StDE is one of a parallel
implementation of SqDE, and uses multiple populations
connected by some network topologies, namely the ring, the
torus, the hypercube and so on. Through the numerical
experiment, it is shown that the average of generations spent by
StDE to find the optimal solutions using network topologies are
smaller the average of them spent by SqDE not using any
network topologies. Consequently, almost of optimal solutions

A Structured Differential Evolutions
for Various Network Topologies

Takashi Ishimizu and Kiyoharu Tagawa

E

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 4, 2010

1

are found more efficiently using network topologies.

II. SEQUENTIAL DE (SQDE)

A. Representation
The optimal solution of the real-parameter optimization

problem is represented by a D-dimensional real parameter
vector),,(10 −= Dxx Lx that minimizes the value of the
objective function f(x). Besides, the value of each decision
variable ℜ∈jx is usually limited to the range between the

lower jx and the upper jx boundaries. Therefore, the

real-parameter optimization problem can be formulated as

⎢
⎢
⎣

⎡
−=≤≤

= −

.1,,0,tosubject
),,()(minimize 10

Djxxx
xxff

jjj

D

L

Lx
 (1)

Sequential Differential Evolution (SqDE) [16]is used to
solve the optimization problem shown in (1). As well as
conventional real-coded GAs [23] and DE [1], each tentative
solution is represented by a real-parameter vector and called an
“individual”. Furthermore, DE holds NP individuals within the
population. Therefore, an individual)1,,0(−= Pi Ni Lx is
represented as

.1,,0,,where
),,,,(

,

,1 , ,0

−=≤≤
= −

Djxxx
xxx

jijj

iDijii

L

LLx

Let rand[l,h] denote the random number generator which
returns a uniformly distributed random number from within the
range between l and h),(ℜ∈hl . The members of an initial
population Pi ∈x are generated randomly by using the
random number generator as

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
++<=

++<=

}
}

];,rand[:
{);;0:(for

{);;0:(for

jjj,i

P

xxx
jDjj

iNii

B. Strategy of DE
Differential mutation is a unique genetic operator of DE.

Furthermore, a set of three genetic operators, namely,
reproduction selection, differential mutation and crossover, is
called the strategy of DE [1]. SqDE is also uses the strategy of
DE [9], [15], [16]. Even though various strategies have been
contrived for DE [3], four basic strategy named
“DE/rand/1/bin”, “DE/rand/1/exp”, “DE/best/1/bin” and
“DE/best/1/exp” are described and used in this paper. That is
because those basic strategies are powerful enough for solving
real-world application [3].

For each of the individuals)1,,0(−= Pi Ni Lx within the
population, which is also called the target vector, three different
individuals, say 1base , rxx and)21base(2 rrir ≠≠≠x , are
selected from the current population. The individual xbase is
called the base vector. In case of “DE/rand/1/bin” and

“DE/rand/1/exp”, the base vector and the other two individuals
are selected randomly, on the other hand, in case of
“DE/best/1/bin” and “DE/best/1/exp”, the base vector is
selected from the best vector among the population and the
other two individuals are selected randomly.

Then a new individual),,(,1,0 iDii uu −= Lu which is called
the trial vector, is generated from the above four individuals
through an assigned strategy. In case of “DE/rand/1/bin” and
“DE/best/1/bin”, the procedure of strategy is given by (2). On
the other hand, in case of “DE/rand/1/exp” and
“DE/best/1/exp”, the procedure of the strategy is given by (3).

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
−+=

=∨<
++−≤=

}
;: else

);(:
)]1,0(rand[if

){;1;0:(for

,,

2,1,base,,

ijij

rjrjFjij

rR

xu
xxSxu

jjC
jDjj

 (2)

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+=
=

≠
≠∧≤

+=
−+=

=

}
;)%1(:

;:
{)(while

);]1,0(rand[while}
;)%1(:

);(:
{do

;:

,,

21base

Djj
xu

jj
jjC

Djj
xxSxu

jj

ijij

r

rR

j,rj,rFj,j,i

r

 (3)

where),...,,...,(,1,,0 iDijii uuu −=u .

If an element of the trial vector ui comes out of the
range[jj xx ,] by using the strategies shown in (2) and (3), it is

returned to the range as:
],rand[:, jjij xxu = .

In the strategies of DE shown in (2) and (3), the subscript
]1,0[−∈ Djr is selected randomly. Therefore, the trial vector

ui will be different from the target vector xi at least one element.
Besides the population size NP, the scale factor]1,0(+∈FS
and the crossover rate]1,0[∈RC are the control parameters of
DE specified by the user in advance.

C. Procedure of SqDE
The procedure of the SqDE [16] can be described by using

the following pseudo-code. Since SqDE is based on the
continuous generation model, only one population Px ∈i is
used. If a newborn trial vector ui is excellent, it is added to the
population immediately. Therefore, in case of SqDE, the
excellent trial vector ui can be used soon to generate succeeding
trial vectors.

[Pesudocode for SqDE]

;)(Evaluate
) ; ;0:(for

; generateRandomly

i

p
i

f
iNii

x

Px
++<=

∈

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 4, 2010

2

14

0

2

115

4

6

5

3

12

13

8

10

79

11

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Fig. 1 Ring network Fig. 2 Torus network

4 5

6 7

0 1

2 3

4 5

6 7

0 1

2 3

12 13

14 15

8 9

10 11

12 13

14 15

8 9

10 11

Fig. 3 Hypercube network

 ;best Output the
}

}
;:))()((if

);(Evaluate
(3);or (2) from Generate

{) ; ;0:(for
{) ; ;0:(for

i

Px

uxxu
u

u

∈

=≤

++<=
++<=

i

iii
i

i
P
M

ff
f

iNii
gGgg

III. STRUCTURED DE (STDE)

A. Network Topology
For designing parallel or structured EAs, some network

topologies are used. In network topologies, multiple
population are connected mutually with some network
topologies, namely, the ring, the mesh, the binary tree, the
hypercube and so on. Besides, each processor can send
messages to adjacent processors. In this paper, we use three
network topologies, the ring, the torus and the hypercube.

Let Pr denote the number of processors. In case of the ring
network, each processor Pp)0(Prp <≤ is connected to
processor P(p-1) mod Pr and P(p+1) mod Pr. Fig. 1 shows the ring
network with 16 processors.

Let Pp,q).0(Prqp <≤ denote processor qPrpP + . In

case of the torus network, each processor Pp,q is connected to
processors qPrpP ,mod)1(− , qPrpP ,mod)1(+ , PrqpP mod)1(, −

and PrqpP mod)1(, + as shown in Fig. 2.

Let ⊕ denote binary operator that calculate exclusive OR for

each bit. In case of the hypercube network, each processor Pp is
connected to processors kpP 2⊕)log0(Prk <≤ . For example,

processor P5 (P0101) is connected to processors P4 (P0100), P7
(P0111), P1 (P0001) and P13 (P1101) in case of Pr = 16 as shown in
Fig. 3.

B. Procedure of StDE
The procedure of the Structured DE (StDE) can described by

using the following pseudo-code. In the StDE, we use two
generation parameters gl and gs. gl denotes the number of local
generations. In the local generation, each processor executes
SqDE for gl times in parallel without communication each
other. gs denotes the number of super generations. Let x(p)
denote the best Px ∈i at processor Pp. In the super generation,
each processor executes the local generation and sends the best
vector x(p) to one of adjacent processors for gs times.
Incidentally, the procedure sending the best vector is called
“migration”, and gl also denotes the migration frequency. As
the stopping condition for StDE, the generations gl and gs are
limited to the maximum numbers GL and GS respectively.

[Pesudocode for StDE]

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

≤

≠∈

≤

≤

∈
≤

−

−

　

　

　

); ..., ,(among best theoutputs
;processorsother from) ..., ,(receives

;processor to Send
 parallelin executes) < (1 Each

/* generationsuper theend */
}

}
/*migration theend * /

; with)(of one Replace
 ; processorsadjacent theofon from Receive

 ;processorsadjacent theof one to Send
/*migration begin the * /

/* generation local theend * /
}

 }
 ; :=

))()((if
);(Evaluate

 (3);or (2) from Generate
 {)++ ; < 0; := (for

 {)++ ; < 0; :=(for
/* generation local begin the * /

 { parallelin executes) < (0 Each
 {)++ ; < 0; := (for
/* generationsuper begin the */

}
);(Evaluate

)++ ; < 0; := (for
; generateRandomly

{ parallelin executes) < (0 Each

)1()(
0

)1()(
0

0
)(

)()(

)(

)(

Prp

Prp

p
p

qp
jj

q
q

p

ii
ii

i
i

P
l L l l

p
sSss

i
P

i

p

P
P

P
PrpP

P
x

ff
f

iNii
gGgg

PrpP
gGgg

f
iNii

PrpP

xxx
xx

x

xxxPx
x

ux
xu

u
u

x

Px

The end of each super generation, each processor Pp sends

x(p) to one of adjacent processors. The adjacent processor
depends on the type of network topologies, namely the ring, the
torus, the hypercube and the hierarchical network.

In case of the ring network, processor Pp)0(Prp <≤

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 4, 2010

3

sends x(p) to the adjacent processor P(p+1) mod Pr and receives x(p-1)

mod Pr from processor P(p-1) mod Pr at each super generation.
In case of the torus network, processor Pp,q).0(Prqp <≤

sends)(qPrp +x to adjacent processors PrqpP mod)1(, + if gs

mod 2 = 0, and processor Pp,q sends it to adjacent processor

qPrpP ,mod)1(+ if gs mod 2 = 1 at gsth super generation.

In case of the hypercube network, processor Pp sends x(p) to
the adjacent processor Prsgp

P log mod 2⊕
 at gsth super generation.

For example, processor P0 sends x(0) to processors P1, P2, P4
and P8 at 1st, 2nd, 3rd and 4th super generation, respectively.

In case of the hierarchical network, which is also called the
weighted hypercube network, processors are connected as
hypercube, and Pp sends x(p) to the adjacent processor

Prkp
P log mod 2⊕

 where 02 mod =k
sg and 02 mod 1 ≠+k

sg .

For example processor P0 sends x(0) to processors P1, P2, P1, P4,
P1, P2, P1, P8 at 1st, ..., 8th super generations, respectively.

For comparative study, we also use the no networks. In case
of the no networks, at the end of each super generation, each
processor doesn't send x(p). Namely, each processor executes
the local generation for SL GG × times without
communication.

IV. NUMERICAL EXPERIMENT

A. Benchmark Problems
In order to evaluate the performance of StDE, the following

nine benchmark problems are employed. f1, f2 and f3 are
unimodal functions, and f4 ,... , f9 are multimodal functions. f1
and f3 have D=16 dimensional real-parameters, and the other
functions have D=8 dimensional real-parameters. Besides, the
objective function values of their optimal solutions x* are
known as follows: fm (x*)=0 (m=1, ..., 9).

• Sphere function (De Jong’s 1st function)

.1,,0,12.512.5

,)(
1

0

2
1

−=≤≤−

= ∑
−

=
Ddx

xf

d

D

d
d

L

x

• Rosenbrock’s function (De Jong’s 2nd function)

.1,,0,048.2048.2

),)1()(100()(
2

0

222
12

−=≤≤−

−+−= ∑
−

=
+

Ddx

xxxf

d

D

d
ddd

L

x

• Step function (De Jong’s 3rd function)

⎣ ⎦

.1,,0,12.512.5

),6()(
1

0
3

−=≤≤−

+= ∑
−

=
Ddx

xf

d

D

d
d

L

x

• Quartic function (De Jong’s 4th function)

,1,,0,28.128.1

),)1,0Gauss(()(
1

0

4
4

−=≤≤−

+= ∑
−

=
Ddx

dxf

d

D

d
d

L

x

where Gauss(0,1) denotes the Gaussian white noise. The

Gaussian white noise makes sure that the algorithm doesn’t
get the same value on the same point.
• Shekel’s function (De Jong’s 5th function)

,1,,0,536.65536.65

,

)(

1002.0

1)(
24

0
1

0

6
,

5

−=≤≤−

−+

+

=

∑
∑=

−

=
Ddx

axi

f

d

i
D

d
idd

L

x

the parameters for this function are:

⎪
⎪

⎩

⎪
⎪

⎨

⎧

==
=

−−
==

=
−−

=

++

+

odd) is (if
}4,3,2,1{, and

}20,15,10,5,0{ where
}40,20,0,20,40{

even) is (if
}4,3,2,1{, and

}4,3,2,1,0{ where
},40,0,20,40{

,1,2

,5,
,

d
kaa

i

d
kaa

i

a

idkid

idkid
id

• Rastrigin’s function

.1,,0,12.512.5

),10)2cos(10()(
1

0

2
6

−=≤≤−

+−= ∑
−

=
Ddx

xxf

d

D

d
dd

L

πx

• Bohachevsky's function

.1,,0,12.512.5
),7.0) 4cos(4.0

)3cos(3.02()(

1

2

0

2
1

2
7

−=≤≤−
+−

−+=

+

−

=
+∑

Djx
x

xxxf

d

d

D

d
ddd

L
π

πx

• Ackley’s function

.1,,0,768.32768.32

exp,20) 2cos(1exp

12.0exp20)(

1

0

1

0

2
8

−=≤≤−

++⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−−=

∑

∑
−

=

−

=

Ddx

x
D

x
D

f

d

D

d
d

D

d
d

L

π

x

• Schaffer’s function

.1,,0,100100
),1))(50((sin

)()(

1.02
1

22

2

0

25.02
1

2
9

−=≤≤−
++×

+=

+

−

=
+∑

Ddx
xx

xxf

d

dd

D

d
dd

L

x

B. Experimental Results about Strategies
StDE is coded by Java language, which is a very popular

language supporting multiple threads, and executed on a
personal computer equipped with a multi-core processor (CPU:
Intel(R) CoreTM i7 @3.33[GHz]; OS: Microsoft Windows XP).

In order to evaluate the probability of finding the best
solution, StDE are applied 256 times to the nine optimization
problems f1, ..., f9 with five network topologies, namely the ring,
the torus, the hypercube, the hierarchical network and the no
networks simulated with 16 processors and with four strategies,
namely “DE/rand/1/bin”, “DE/rand/1/exp”, “DE/best/1/bin”
and “DE/ best/1/exp” respectively.

During the experiments, the following control parameters of
every StDE are fixed: the population size NP=32, the scale

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 4, 2010

4

factor SF=0.9 and the crossover rate CR=0.5. As the stopping
condition, the maximum generation is specified as GL=8 and GS
=1024. As a result, the total number of generations becomes

8192=× sL GG .
Table I shows the average of generations to find the optimal

solutions with the ring, the torus, the hypercube, the
hierarchical network, and the no networks for f1, ..., f9
respectively. The standard deviations of generations are also
shown in the parentheses in Table I. From Table I, it is shown
that the type of network topology doesn't much influence the

Table I Average of generations to find the optimal solutions for benchmark problems
 networks DE/rand/1/bin DE/rand/1/exp DE/best/1/bin DE/best/1/exp

ring 554.1 (12.7) 290.0 (6.2) 329.5 (7.9) 245.6 (5.4)
torus 562.9 (13.6) 289.3 (6.8) 333.2 (8.4) 245.9 (5.5)

hypercube 567.0 (12.8) 289.0 (7.1) 335.2 (7.9) 246.1 (5.2)
hierarchical 561.6 (11.9) 290.0 (8.2) 333.7 (6.2) 245.0 (5.4)

f1

no networks 706.0 (16.8) 324.4 (6.8) 373.5 (10.4) 269.4 (6.3)
ring 1639.8 (62.1) 1208.9 (204.0) 962.1 (35.8) 852.6 (89.9)
torus 1665.8 (53.8) 1195.3 (177.1) 995.3 (33.0) 833.1 (101.1)

hypercube 1668.1 (59.1) 1200.5 (187.2) 998.0 (35.5) 836.6 (93.9)
hierarchical 1637.0 (44.6) 1177.3 (190.6) 990.8 (34.2) 842.8 (96.4)

f2

no networks 2350.7 (64.8) 2470.8 (213.8) 1238.8 (62.6) 1480.1 (165.7)
ring 842.0 (40.6) 231.8 (10.7) 471.2 (28.1) 194.4 (8.0)
torus 966.6 (48.3) 228.9 (11.7) 537.3 (31.3) 195.4 (7.8)

hypercube 1039.3 (50.0) 230.6 (10.9) 558.8 (31.9) 195.3 (7.2)
hierarchical 988.2 (47.6) 231.8 (11.5) 527.6 (33.6) 194.7 (8.2)

f3

no networks 1308.0 (61.2) 276.9 (11.0) 562.7 (36.8) 222.7 (9.2)
ring 466.5 (121.3) 449.8 (129.8) 357.3 (103.2) 414.5 (135.9)
torus 467.2 (134.5) 470.2 (167.7) 356.1 (118.1) 414.0 (167.4)

hypercube 470.7 (143.6) 437.6 (162.6) 354.4 (124.5) 413.0 (176.9)
hierarchical 467.0 (128.0) 454.7 (172.6) 370.3 (104.9) 418.6 (154.0)

f4

no networks 1860.2 (721.9) 1571.9 (614.2) 1135.3 (447.6) 1211.0 (475.6)
ring 643.6 (97.3) 413.3 (73.4) 426.5 (95.1) 344.7 (94.5)
torus 794.3 (106.9) 452.4 (72.2) 487.2 (80.3) 365.8 (81.4)

hypercube 845.2 (130.6) 449.0 (69.6) 542.4 (92.9) 371.6 (63.1)
hierarchical 794.9 (114.0) 439.6 (87.0) 504.7 (91.9) 355.2 (79.9)

f5

no networks 1732.2 (206.8) 935.0 (132.2) 620.2 (195.7) 523.9 (91.0)
ring 706.4 (50.5) 313.5 (13.0) 326.2 (21.3) 217.8 (10.6)
torus 794.7 (62.2) 320.8 (14.3) 348.8 (21.8) 228.7 (11.6)

hypercube 818.3 (65.9) 324.0 (12.9) 355.2 (24.0) 227.8 (12.3)
hierarchical 782.6 (60.7) 320.2 (13.8) 343.9 (22.7) 223.9 (11.3)

f6

no networks 872.2 (55.7) 339.5 (15.1) 318.2 (18.7) 220.8 (10.0)
ring 223.2 (7.1) 170.4 (5.7) 140.3 (4.7) 133.8 (4.7)
torus 224.0 (6.6) 170.7 (5.7) 140.8 (4.7) 133.9 (4.7)

hypercube 223.9 (7.1) 171.0 (5.3) 140.0 (5.0) 133.6 (4.2)
hierarchical 223.5 (7.3) 170.2 (5.7) 140.1 (4.9) 133.5 (4.6)

f7

no networks 245.4 (7.8) 184.8 (5.9) 149.2 (5.5) 142.7 (5.2)
ring 398.9 (7.7) 303.4 (5.8) 246.7 (5.2) 236.8 (5.0)
torus 400.4 (7.3). 304.2 (5.8) 246.8 (5.8) 237.2 (5.0)

hypercube 400.2 (7.4) 304.4 (6.5) 247.0 (5.8) 237.6 (4.9)
hierarchical 400.1 (7.4) 304.2 (5.8) 246.3 (5.8) 237.2 (4.7)

f8

no networks 410.6 (7.8) 317.4 (6.7) 248.6 (6.4) 244.4 (5.8)
ring 1141.3 (13.1) 775.0 (8.3) 690.5 (10.4) 592.0 (6.7)
torus 1152.5 (12.3) 780.2 (8.0) 695.9 (9.7) 594.8 (6.9)

hypercube 1153.2 (11.0) 779.9 (7.7) 697.5 (8.8) 595.3 (6.4)
hierarchical 1150.3 (12.6) 778.3 (8.3) 695.7 (9.5) 594.4 (5.7)

f9

no networks 1204.4 (21.0) 845.3 (13.0) 701.7 (14.2) 630.5 (10.1)

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 4, 2010

5

number of generation to find the optimal solutions except in
case of the no networks. Using any network topologies, almost
of optimal solutions are found more efficiently than in case of
the no networks. Therefore, we can conclude that the average
of generations to find the optimal solutions is reduced using
any processor networks. In addition, most of optimal solutions
are found efficiently with the strategy “DE/best/1/exp” except
f4. That is because the average of generation to find the optimal
solution is almost minimum in case of “DE/best/1/exp”.

However, ``DE/best/1/exp'' is not always efficient. Table II
shows the average generations to find the optimal solutions and
probability of finding the optimal solutions at g=512, 1024 and
2048 with the ring network for f5 (Shekel's function).

From the average of generations to find the optimal solutions,
the strategy “DE/best/1/exp” is most efficient. On the other
hand, from the probability of finding them at 1024th generation,
the strategy “DE/rand/1/exp” is high probability to find,
namely 245/256 = 95.7%.

In addition, the network topologies don't always work
efficiently. Table III shows the average generations to find the
optimal solutions and probability of finding them at g=512,
1024 and 2048 in case of “DE/rand/1/exp” for f5. Considering
the probability of finding the optimal solutions at 2048th
generation, the optimal solutions are found in all trials, namely
256/256 = 100%, with the no networks.

Table II Probability of finding the optimal solutions

at several generations with the ring for f5
generations strategies average

generations g=512 g=1024 g=2048
DE/rand/1/bin 643.6 115 167 167
DE/rand/1/exp 413.3 222 245 245
DE/best/1/bin 426.5 93 93 93
DE/best/1/exp 344.7 176 183 183

(applied 256 times)

Table III Probability of finding the optimal solutions
at several generations in case of DE/rand/1/exp for f5

generations networks average
generations g=512 g=1024 g=2048

ring 413.3 222 245 245
torus 452.4 196 226 226

hypercube 449.0 202 231 231
hierarchical 439.6 217 251 251
no networks 935.0 0 184 256

(applied 256 times)

C. Experimental Results about Migration Policies
We consider the migration frequency of StDE. The end of

the local generations, each processor sends the vest vector to
another processor. Thus, in case of the number of the local
generations gl is small, namely in case of high migration

frequency, fine-grained communication among processors is
required. On the other hand, in case of gl is large, namely in
case of low migration frequency, StDE executes efficiently on
the coarse grained parallel computing systems, such as BSP
[30], CGM [31] and so on.

Fig. 4 shows the average generations to find the optimal
solutions with the ring network for f1 ,..., f9 at each migration
frequency. From these graphs in Fig.4, as the number of the
local generations gl is reduced, the average generations to find
the optimal solutions are decreasing. Therefore, there is a
trade-off relationship between migration frequency and the
average generations.

Next, we notice the probability of finding the optimal
solutions. The probabilities of finding the optimal solutions
with the ring network for f1, f3, f7 and f8 are 100% regardless of
the strategies or migration frequency. However, for the other
five functions, f2, f4, f5, f6 and f9, the probabilities of finding
them are not always 100%. Table IV shows the probability of
finding the optimal solutions with the ring network at 8192nd
generation for f2, f4, f5, f6 and f9, using the strategy “DE/best/
1/exp”. Note that in case of low migration frequency, namely
in case of 4≤lg , the average generations finding the optimal
solutions are small, but the probabilities of finding them are not
100% even at the 8192nd generation. Therefore, to find the
optimal solutions certainly, migration frequency should be
enough high, namely, it should be 8>lg .

Table IV Probability of finding the optimal solutions of

several migration frequency with the ring at 8192nd generation.
migration frequency strategies

gl=1 gl=2 gl=4 gl=8 gl=16
DE/rand/1/bin 254 256 256 256 256
DE/rand/1/exp 247 251 256 256 256
DE/best/1/bin 248 252 256 256 256

f2

DE/best/1/exp 240 244 256 256 256
DE/rand/1/bin 128 184 256 256 256
DE/rand/1/exp 40 136 216 254 256
DE/best/1/bin 152 124 256 256 256

f4

DE/best/1/exp 72 160 216 253 256
DE/rand/1/bin 30 62 121 167 230
DE/rand/1/exp 23 49 131 245 256
DE/best/1/bin 29 38 50 93 133

f5

DE/best/1/exp 21 40 89 183 248
DE/rand/1/bin 184 256 256 256 256
DE/rand/1/exp 248 256 256 256 256
DE/best/1/bin 216 256 256 256 256

f6

DE/best/1/exp 245 256 256 256 256
DE/rand/1/bin 256 256 256 256 256
DE/rand/1/exp 232 256 256 256 256
DE/best/1/bin 255 256 256 256 256

f9

DE/best/1/exp 248 256 256 256 256
(applied 256 times)

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 4, 2010

6

 Fig.4 Performance of StDE for the benchmark problems

0
100
200
300
400
500
600
700
800

1 2 4 8 16 32 64 128 256 512
Migration frequency

A
ve

ra
ge

 g
en

er
at

io
ns

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64 128 256 512
Migration frequency

A
ve

ra
ge

 g
en

er
at

io
ns

0
200
400
600
800

1000
1200
1400

1 2 4 8 16 32 64 128 256 512
Migration frequency

A
ve

ra
ge

 g
en

er
at

io
ns

0

500

1000

1500

2000

1 2 4 8 16 32 64 128 256 512
Migration frequency

A
ve

ra
ge

 g
en

er
at

io
ns

0

500

1000

1500

2000

1 2 4 8 16 32 64 128 256 512
Migration frequency

A
ve

ra
ge

 g
en

er
at

io
ns

0

200

400

600

800

1000

1 2 4 8 16 32 64 128 256 512
Migration frequency

A
ve

ra
ge

 g
en

er
at

io
ns

0

50

100

150

200

250

300

1 2 4 8 16 32 64 128 256 512
Migration frequency

A
ve

ra
ge

 g
en

er
at

io
ns

0
50

100
150
200
250
300
350
400
450

1 2 4 8 16 32 64 128 256 512
Migration frequency

A
ve

ra
ge

 g
en

er
at

io
ns

0
200
400
600
800

1000
1200
1400

1 2 4 8 16 32 64 128 256 512
Migration frequency

A
ve

ra
ge

 g
en

er
at

io
ns

0

0.2

0.4

0.6

0.8

1

1.2

DE/rand/1/bin
DE/rand/1/exp
DE/best/1/bin
DE/best/1/exp

f1

f2

f3

f4

f5

f6

f7

f8

f9

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 4, 2010

7

V. CONCLUSION
In this paper, the structured DE (StDE) is proposed and

evaluated in its performance. The StDE is one of a parallel
implementation of SqDE. The multiple populations of StDE are
connected with some network topologies, namely, the ring, the
torus and the hypercube. We show that the average of
generations to find the optimal solutions using the network
topologies, is smaller the average of them without the network
topologies. Therefore, almost of the optimal solutions are
found more efficiently using the processor networks. In
addition, most of the optimal solutions are found efficiently
with strategy “DE/best/1/exp”.

We also show that there is a trade-off relationship between
the migration frequency and the average generations finding
the optimal solutions. In case of high migration frequency, the
average generations finding the optimal solutions are small, but
the probabilities of finding them are not 100%.

In our feature work, we will evaluate the speedup of the
proposed StDE on actual multi-processor system with some
network topologies. Furthermore, we would like to apply the
proposed StDE to real-world applications.

REFERENCES
[1] R. Storn and K. Price, “Differential evolution – a simple and efficient

heuristic for global optimization over continuous space,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[2] J. Vesterstrom and R. Thomson, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems” in Proc. IEEE Congress on Evolutionary
Computation, 2004, pp. 1980–1987.

[3] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution – A
Practical Approach to Global Optimization. Springer, 2005.

[4] R. Storn, “System design by constraint adaptation and differential
evolution,” IEEE Trans. Evolutionary Computation, vol. 3, no. 1, pp.
22–34, 1999.

[5] C. Rotar, “Mutation Evolutionary Algorithm,” In Proc. 10th WSEAS Int.
Conf. on Evolutionary Computing (EC '09), 2009, pp.146–151.

[6] K. Tagawa, “Multi-objective optimum design of balanced SAW filters
using generalized differential evolution,” WSEAS Trans. System, Issue 8,
vol. 8, pp. 923–932, 2009.

[7] R. Oonsivilai and A. Oonsivilai, “Differential evolution application in
temperature profile of fermenting process,” WSEAS Trans. System, Issue
6, vol. 9, pp. 618–628, 2010.

[8] G. Syswerda, “A study of reproduction in generational and steady-state
genetic algorithms,” Foundations of Genetic Algorithms 2, Morgan
Kaufmann Publ., 1991, pp. 94–101.

[9] K. Tagawa, “A statistical study of the differential evolution based on
continuous generation model,” in Proc. IEEE Congress on Evolutionary
Computation, 2009, pp. 2614–2621.

[10] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition-
based differential evolution for optimization of noisy problems,” in Proc.
IEEE Congress on Evolutionary Computation, 2006, pp. 6756–6763.

[11] S. Kukkonen and J. Lampinen, “GDE3: The third evolution step of
generalized differential evolution,” in Proc. IEEE Congress on
Evolutionary Computation, 2005, pp. 443–450.

[12] U. K. Chakraborty, Advances in Differential Evolution. Springer, 2008.
[13] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution

algorithm for numerical optimization,” in Proc. IEEE Congress on
Evolutionary Computation, 2005, pp. 1785–1791.

[14] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Trans. Evolutionary Computation,
vol. 13, no. 5, pp. 945–958, 2009.

[15] R.Thomsen, “Multimodal optimization using crowding-based differential
evolution,” in Proc. IEEE Congress on Evolutionary Computation, 2004,
pp.~1382–1389.

[16] V. Feoktistov, Differential Evolution in Search Solution. Chapter 6,
Springer, 2006.

[17] K. Tagawa and H. Takada, “Comparative study of extended sequential
differential evolutions,” in Proc. the 9th WSEAS International Conference
on Applications of Computer Engineering, 2010, pp. 52–57.

[18] C. Breshears, The Art of Concurrency – A Thread Monkey’s Guide to
Writing Parallel Applications, O’Reilly, 2009.

[19] E. Alba and M. Tomassini, “Parallelism and evolutionary algorithms,”
IEEE Trans. Evolutionary Computation, vol. 6, no. 5, pp. 443–462, 2002.

[20] L. F. Bic and M. B. Dillencourt, “Advantages of self-migration for
distributed computing,” International Journal of Computers, Issue 3, vol.
2, pp. 320–329, 2008.

[21] D. Zaharie and D. Petcu, “Parallel implementation of multi-population
differential evolution,” Concurrent Information Processing and
Computing, ISO Press, 2005, pp. 223–232.

[22] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” in Proc. 6th Symposium on Operating Systems Design and
Implementation, 2004, pp. 137–149.

[23] L. J. Eshelman and J. D. Schaffer, “Real-code genetic algorithms and
interval-schemata,” Foundations of Genetic Algorithms 2, Morgan
Kaufmann Publ., 1993, pp. 187–202.

[24] K. Tagawa, “A comparative study of distance dependent survival
selection for sequential DE,” in Proc. IEEE International Conference on
System, Man, and Cybernetics, 2010, to be published.

[25] K-Y. Wong, Y-M. Choi, and S-W. Lam, “The design, implementation and
application of the software framework for distributed computing,”
International Journal of Computers, Issue 3, vol. 1, pp. 109–116, 2007.

[26] J. Wan, W. Yu, and X. Xu, “Design and implementation of distributed
document clustering based on MapReduce,” in Proc. the 2nd Symposium
on International Computer Science and Computational Technology, 2009,
pp. 278–280.

[27] R.Gaemperle, S.D. Mueller and P. Koumoutsakos, “A Parameter Study
for Differential Evolution,” 2002, in Proc.3rd WSEAS International
Conference on Evolutionary Computation (EC’02), 2002, pp. 4841–4846.

[28] J. Teo and M.Y. Hamid, “A Parameterless Differential Evolution
Optimizer,” in Proc. 5th WSEAS/IASME International Conference on
System Theory and Scientific Computation THEORY (ISTASC '05), 2005,
pp.330–335.

[29] S. Selvi and D. Manimegalai, “Scheduling jobs on computational grid
using Differential Evolution algorithm,” In Proc. 12th International
Conference on Networking, VLSI and Signal Processing (ICNVS '10),
2010, pp.118–123.

[30] L.G.Valiant, “A bridging model for parallel computation,”
Communication of the ACM, vol.33, no.8, 1990, pp.103–111.

[31] F.Dehne, A.Fabri and A.Rau-Chapman, “Scalable parallel computational
geometry for coarse grained multicomputers,” in Proc. ACM Symposium
on Computational Geometry, 1993, pp. 298–307.

Takashi Ishimizu received his M.E. and Ph.D. degrees
from Nara Institute of Science and Technology (NAIST),
in 1997 and 2000, respectively. He is now an Assistant
Processor of the School of Science and Engineering,
Kinki University Japan. His main researches are parallel
algorithms and parallel complexity theory.

Kiyoharu Tagawa received his M.E. and Ph.D. degrees
from Kobe University Japan, in 1993 and 1997,
respectively. From 2005 to 2007, he served as an
Associate Professor of the Faculty of Engineering, Kobe
University. He is currently a Professor of the School of
Science and Engineering, Kinki University Japan. His
research interests include evolutionary computation,
concurrent programming, and real-world applications.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Issue 1, Volume 4, 2010

8

