
 

 

  
Abstract—The paper presents theory of two FSMs that share 

internal states or input symbols. Modified definitions of FSMs are 
presented and two reciprocal meaningful transformations between the 
pair of FSMs sharing input symbols and the pair sharing internal 
states are constructed. Transformations are based on Mealy to Moore 
FSM and Moore to Mealy FSM transformations. Conditions of 
transformations are discussed and minimization of FSMs is shown. 
Practical aspects are discussed. 
 

Keywords— Finite State Machines, sharing inputs, 
transformation, sharing states.  

I. INTRODUCTION 

SMs are used as general models of behavior on the system 
analysis level, not only in digital design. FSMs model 

behavior of interfaces between two members of alliance 
[1][2][3]. We consider a pair of FSMs, each of them describes 
one direction of communication (Fig. 1). We suppose the 
standard definition of Mealy FSM: 
 

0Q,,,,, λδYXQA=               (1) 

 
where Q is an internal state set, X is an input symbol set, Y is 
an output symbol set, QXQ →×:δ  is a transition function, 

YXQ →×:λ  is an output function, Q0 is an initial state. 
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Fig. 1 FSMs model interfaces in system alliance 
 
FSMs are generally separated, but we consider the situations 

when two machines share some elements (internal states, input 
symbols, transition functions etc.). It may be necessary to 
adapt the definition (1) of the FSM if spoken about sharing. 
Firstly, we must specify the meaning of the term “sharing” and 
define which types of sharing make sense. We narrow our 
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reflection on the case of sharing inputs and internal states.  The 
aim is to find the algorithm that transforms two “independent” 
FSMs to the pair sharing internal states. But what does it mean 
that two FSMs share their internal states? We see the sense of 
“sharing” such the one FSM has knowledge about the state of 
the second one and it uses this knowledge. If the FSM A 
knows the internal state of FSM B, it has knowledge about the 
previous input of FSM B. So, we can formulate the task: to 
replace the pair of independent FSMs which has two same 
inputs (each one from P and Q members) by the pair with 
independent inputs and sharing internal states. We try to find 
the reciprocal transformations between pairs of FSMs. 

We consider two Mealy FSMs – A and B that share input 
symbols, Fig. 2 and 3(a). The XA and XB are set of input 
symbols related formally to the A and B FSMs. The definitions 
of the FSMs A, B are  
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Transition and output functions must be extended and they 

are defined:  
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            (3) 

 
We suppose indices of all symbols start from 0, for example 

the set of internal states contains elements  
 

{ } AA QnQ == − ,Q,,Q 1AnA0 K  .          (4) 
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Fig. 2 FSMs with sharing inputs 
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Each of transformed FSMs (A’ and B’) has its own input 
symbol set. Transformed FSMs share internal states that is 
FSM A’ has a knowledge about internal state of B´ one and 
vice versa. 
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Fig. 3 replacement of FSM pair 

 
The extended definition of FSMs A´ and B’ are  
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Transition and output functions of transformed FSMs have 

the second internal state as a new argument instead of adjacent 
input symbol: 
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             (6)  

  
 

II.  TRANSFORMATIONS OF PAIR OF FSMS SHARING INPUT 

SYMBOLS 
The transformation is derived from the principle of the 
conversion of Mealy FSM to the Moore one.  There are two 
well known algorithms of this transformation, the first one uses 
the disruption of current states [5] and the second one makes a 
disintegration of target states. We have inspired by the former 
method.   
 

A. Transformation of Mealy to Moore FSM 

We have a Mealy FSM with QA set of internal states and an 
equivalent transformed Moore FSM with the set QA’. The new 

set of internal states contains states QAi which are marked with 
[Qi,Xi] symbols (QAi = [Qi,Xi]). In other words, we insert a 
new state [Qi,Xi] into QA’ set if a transition from Qi 
conditioned by Xi input symbol exists in the original Mealy 
FSM. The output function of Moore FSM is transformed by 
the formula: 

 
)X,Q(])X,Q([ iiii MealyMoore λλ = .         (7) 

 
The conversion of the transition function is given after this 

manner: 
 

]X),X,Q([)X],X,Q([ jiijii MealyMoore δδ =      (8) 

 

B. Transformation of pair of FSMs 

Two FSMs A and B are given with shared inputs, according 
to the definitions (2) and (3). Our assumption is the both ones 
are fully defined and synchronized by the common clock 
signal. Transformed pair of FSMs A’, B’ has a form according 
to the definition (5), (6). 

The transformation is built on disintegration of present 
states. Steps are related to the FSM A, they are analogical if 
we make a transformation of FSM B. 

Output and transition functions of FSM A are dependent on 
the present internal state QAi and on the present input symbols 

AX∈AX  and BX∈BX . The transformed FSM A’ lost a 

piece of information about the present (actual) input symbol 
XB as a consequence of separation of input symbols. But it is 
able to obtain this knowledge by analyzing the target (next) 
internal state after the transition of the both FSMs (after the 
clock transition). We have to apply the algorithm of the 
disruption of source states of FSM B on that account so that 
the present state of B’ implies the previous input symbol XBi. 
We insert a new state [QBi,XBi] into QB’ for each transition 
from the state BQ∈BiQ  initiated by input symbol BX∈BiX . 

So if the FSM B’ is in the present state [QBi,XBi] it means the 
previous input symbol of B’ was exactly XBi. The same 
disruption is applied to the FSM A.  

The output function of FSM A assigns output symbol 
by AiBiAiAi Y)X,X,Q( =Aλ . Remember that the information 

about input symbol XBi is known after the transition of B’ to 
the [QBi,XBi]. Because the both FSMs A’ and B’ have common 
synchronization the FSM A’ makes transition simultaneously 
to the new state [QAj,XAi]. This state [QAj,XAi] of the A’ 
implicates  previous input symbol XAi and the previous state 
QAj. Due to these facts, both states [QAj,XAi] and [QBi,XBi]  
implicate commonly the output symbol YAi of the FSM A´. 
Hence, the position of the correct output symbol YAi is shifted 
to the right in the output sequence, analogous to the case if the 
Mealy FSM is transformed to the Moore one.  So, the outputs 
of FSM Á  and B́ are independent on the current input 
symbols and they are like Moore machines. The output 
functions are reduced:  
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If the FSMs are in the initial states the output is empty 

because they do not know the input symbol of the second 
FSM. 

The internal state set of FSM A’ is  
 

}10,10

],X,Q[Q{´ AjAiA0

−=−=

∪=

AA

A

XjQi

Q

KK

U
          (10) 

 
where the QA0 is the initial state. 

The output of the A’ is determined by equation: 
 

)symbolemptyanis()Q,Q´(

)X,X,Q(])X,Q[],X,Q´([
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εελ
λλ
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=
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Now we construct transition function. It is clear that a 

transition from initial states is defined:  
 

]X,Q[)X,Q,Q( AiA0AiB0A0´ =Aδ          (12) 

 
We must derive transitions from the other states. It is 

evident that if the transition is initiated by XAu input symbol 
the next state contains XAu symbol in its marking: 

 
],Q[)],X,Q[],X,Q([ AjBnBmAjAi´ AuAu XX =Aδ    (13) 

 
The remaining part of the next state is derived as follows. 

The original FSMs accept input sequences (XAi,XBm),  
(XAj,XBn) , …, (XAk,XBo), (XAl,XBp). The sequence of internal 
states of FSM A and FSM B are: 

 
QA0, QAi, QAj, …,QAk,  QAl,  
QB0, QBm, QBn, …,QBo,  QBp. 
 

The transformed FSMs accept the same input sequences, each 
accepts a part belonging to its input symbol set, ie. FSM A’ 
accepts XAi, XAj, …, XAk, FSM B’ accepts XBm, XBn, …, XBo. 
We wrote shorter sequences by intent. New sequences of 
internal states of FSM A’ and FSM B’ must be: 

 
QA0, [QA0,XAi], [QAi,XAj], [QAj,XAu] , …, [QAk,XAk] 
QB0, [QB0,XBm], [QBm,XBn], [QBn,XBu], …, [QBo,XBo]  
 
The situation is shown on Fig. 4 and in previous sequence. 

The QAj is determined with the transition function of original 
FSM A with arguments QAi,XAj, XBn. Thus, the transitions are 
transformed 

 

]),X,X,Q([
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δ
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=
       

 (14) 
 
 The transition and output functions do not depend on the 
element QBm of the state of the FSM B´. 
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Fig. 4 transformation of transitions 

 
 
Example:  
Transform two FSMs A and B.  Sets of input and output 
symbols are given: XA = {a,b}, XB = {c,d}, YA = {X,Y,Z},  
YB = {U,V,W}. The transition graphs are on Fig. 5. 
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Fig.  5 an example of the transformation 
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The transformed FSM A’ has seven states QA0, [QA0,a], 
[QA0,b], [QA1,a], [QA1,b], [QA2,a], [QA2,b]. The transformed 
FSM B’ has five states QB0, [QB0,c], [QB0,d], [QB1,c], [QB1,d]. 

The calculation of one output and one transition of each 
transformed FSM is shown: 

 
X)ca,,Q()c],Q[],a,Q´([ A0B0A0 == AA λλ

 a],[Q a]),ca,,Q([)ac],,[Qa],,[Q´( A1A0B0A0 == AA δδ  

U)ca,,Q()a],Q[],c,Q´([ B0A0B0 == BB λλ  

c],[Q c]),ca,,Q([)ca],,[Qc],,[Q´( B0B0A0B0 == BB δδ  

 
The transformed FSM B´ is on Fig. 6. FSM A’ is not shown 
because the picture is large. 
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Fig.  6 transformed FSM B´ 
 
The functionality of the transformed machines was verified by 
the simulation. An example of output is printed in Table I. 
 

Table I an example of output 
 

Input A:  aaaabbb 

Input B: ddcccdd 

Output of FSM A: YYXYZYZ 

Output of FSM B: VVUUUWW 

Transformed FSMs 
Output of FSM A´: εYYXYZY 

Output of FSM B´: εVVUUUW 

 
 
III.  BACK TRANSFORMATION OF FSMS SHARING INTERNAL 

STATES 
The back transformation can be based on the Moore 

machine to Mealy machine conversion if we assume the fact 
that these machines are like Moore automata. It means output 
functions only depend on internal states (9). 

Transition functions ´´, BA δδ have the form according to 

(6). Other characteristics of FSMs were discussed in section II. 
 

A. Transformation of Moore to Mealy FSM 

Transformation of Moore to Mealy FSM is simpler than the 
reverse transformation. The set of internal state does not 
change during the transformation process, the transition 
function is the same. Output function of transformed Mealy 
FSM is constructed using this rule: 
 

Qj)X,Q()X,Q(

))X,Q(()X,Q(

iiii

iiii

==

=

MooreMealy

MooreMooreMealy

δδ
δλλ

      (15) 

 
In other words an output assigned to the pair ii X,Q of 

Mealy FSM is an output symbol assigned to the Qj state where 
Qi is a predecessor of Qj. 

 

B. Back Transformation of pair of FSMs 

Let us consider two machines FSM A’ and FSM B’ share 
internal states. Internal states are marked like in (10) . QA0, QB0 
are initial states. 

We transform them back to the pair FSM A, FSM B sharing 
input symbols. Machines FSM A and FSM B have identical set 

of internal states as FSM A’, FSM B’, 'AA QQ = , 

'BB QQ =  . 
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Fig. 7 derivation of the transformation 
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Fig. 7 shows the principle how to construct the 
transformation. Let us suppose the FSM A’ is in the state 
[QAs,XAt]. We must change the transition of FSM A’ 
 )X],X,[Q],X,Q([' AiBvBuAtAsAδ  

to the transition  
)X,X],X,Q([ BjAiAtAsAδ  

of the back transformed FSM A and to find its output 
function )X,X],X,Q([ BjAiAtAsAλ . The target state of 

[QAs,XAt] is the same, hence the transition function is 
defined: 
 

)X],X,[Q],X,Q((['

)X,X],X,Q([

AiBvBuAtAs

BjAiAtAs

A

A

δ
δ =

         (16) 

 
The construction of the output function is more 

complicated. We must find correspondent transition of FSM 
B’ from [QBu,XBv] state which is conditioned by XBj input and 
[QAs,XAt] state. Let be the target state [QBl,XBj]. Output 
function is defined 

])X,[Q],XQ(['

)X,X],X,Q([

BjBlAiAk,

BjAiAtAs

A

A

λ
λ =

.            (17) 

 
But, )X],X,[Q],X,Q([' AiBvBuAtAsAδ  transition is 

replaced with multiple transitions for all XBj. One transition for 
XBv is selected because previous input symbol was XBv. 

Outputs and transition from the initial state are transformed 
with extra formula: 

 

))XQ,Q('

),XQ,Q('('

)X,X,Q(

BjA0,B0

AiB0,A0

BjAiA0

B

AA

A

δ
δλ
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             (18) 

 
The transition from the initial state is defined: 

 

)X,Q,Q('

)X,X,Q(

AiB0A0

BjAiA0

A

A

δ
δ =

               (19) 

 
for all XBj. 

If transformed FSMs A’ and B’ are constructed using 
previous algorithm, machines FSM A and FSM B are 
deterministic. If states of FSM A’, FSM B’ are not marked 
with pairs [QBi, XBi] but more generally like QBi’ the necessary 
condition is that all transition to QBi’ state are initiated only by 
one input symbol. Then the transformation can be proceeded. 

We show two steps of transformations of FSM B’. For 
initial states:  

U)a],Q[],c,Q´([)ca,,Q( A0B0B0 == BB λλ  

c],[Q c],Q,Q('[)ca,,Q( B0A0B0B0 == BB δδ  

 
We transform the transition  

)da],,[Qc],,[Q´( A0B0Bδ  

Corresponding transition of FSM A’ is 
a],Q[)ac],,[Qa],,[Q´( A1B0A0 =Aδ  

Hence, 
V)a],[Qd],,[Q(')da,c],,[Q( A1B0B0 == BB λλ  

d],[Q)da,c],,[Q( B0B0 =Bδ  

 
Back transformation of FSM B’ is on Fig. 8. 

 
 

a,c/U 

FSM B 

a,d/V 

a,c/U 

[QB0,c] 

QB0 

[QB1,c]  [QB1,d] 

a,d/V 

b,c/U b,d /W 

a,c/U 

a,d/V  

b,c/U
V  a,c/W  

a,d/V 

b,c/U  

[QB0,d] 

b,d/W  

b,d/W  

a,c/W  
a,d/V  

b,c/U b,d/W 

b,c/U  

b,d/W 

 
 

Fig. 8 back transformation of the FSM B’ 

 

C. Minimization  

The back transformed FSM is not minimized. We can use the 
same techniques if classical FSM is minimized. We look at 
equivalent states which have the same output table (Table II). 
Three states QB0, [QB0,c] [QB0,d] can be equivalent and two 
states [QB1,c] [QB1,d] because their outputs are the same. 
States [QB0,c] [QB0,d] are equivalent because their transitions 
are the same and they can be combined (Table III). States 
[QB1,c] [QB1,d] could be combined if [QB1,c] [QB0,c] were 
equivalent and [QB1,d] [QB0,d] were equivalent. But mentioned 
pairs have different outputs so these pairs can not be 
combined. 

 
Table II non-minimized FSM B 

 
 Transitions Outputs 
 a,c a,d b,c b,d a,c a,d b,c b,d 

QB0 [QB0,c] [QB0,d] [QB0,c] [QB0,d] U V U W 
[QB0,c] [QB0,c] [QB0,d] [QB1,c] [QB1,d] U V U W 
[QB0,d] [QB0,c] [QB0,d] [QB1,c] [QB1,d] U V U W 
[QB1,c] [QB1,c] [QB1,d] [QB1,c] [QB1,d] W V U W 
[QB1,d] [QB1,c] [QB1,d] [QB0,c] [QB0,d] W V U W 
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Table III minimized FSM B 
 

 Transitions Outputs 
 a,c a,d b,c b,d a,c a,d b,c b,d 

QB0 [QB0,c] [QB0,c] [QB0,c] [QB0,c] U V U W 
[QB0,c] [QB0,c] [QB0,c] [QB1,c] [QB1,d] U V U W 
[QB1,c] [QB1,c] [QB1,d] [QB1,c] [QB1,d] W V U W 
[QB1,d] [QB1,c] [QB1,d] [QB0,c] [QB0,c] W V U W 

 
 

 

a,c/U 

FSM B 

a,d/V 

a,c/U 
[QB0,c] 

QB0 

[QB1,c] [QB1,d] 
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a,d/V  

b,c/U b,d/W 
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Fig. 9 minimized FSM B 
 

IV.  PRACTICAL ASPECTS 
Real application of this approach has not been constructed yet. 
Practical aspect of this transformation can be viewed in 
dynamics system. Let us suppose two machines according to 
Fig. 2 and Fig. 3(a). Machines are implemented in one 
reconfigurable chip. If one connection between one member 
and one FSM is corrupted, the pair of FSM sharing input 
symbol is dynamically transformed to the pair sharing internal 
states and this fault is masked. The approach can increase the 
reliability of interfaces in alliances. 

 

V. CONCLUSION 

The transformation of pair of FSMs with common inputs to 
the pair of FSMs having separated inputs and sharing internal 
states and the back transformation are presented. The effect is 
that the coupling between FSMs is shifted from the outside of 
FSMs into inside in the former transformation or from the 
inside into outside in the second transformation. The 
disadvantage of the transformations is the growth of count of 
internal states.  
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