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Theory of FSMs Sharing Internal States

Vit Fabera

reflection on the case of sharing inputs and internal states. The
Abstract—The paper presents theory of two FSMs that sha@m is to find the algorithm that transforms two “independent”
internal states or input symbols. Modified definitions of FSMs arESMs to the pair sharing internal states. But what does it mean
presented and two reciprocal meaningful transformations between {hgt two FSMs share their internal states? We see the sense of

pair of FSMs sharing input symbols and the pair sharing internagharing,, such the one FSM has knowledge about the state of
states are constructed. Transformations are based on Mealy to Mo

re ) )
FSM and Moore to Mealy FSM transformations. Conditions ot?'e 5900”9' one and it uses this .knowledge. If the FSM A
transformations are discussed and minimization of FSMs is showfl0ws the internal state of FSM B, it has knowledge about the

Practical aspects are discussed. previous input of FSM B. So, we can formulate the task: to
replace the pair of independent FSMs which has two same
Keywords— Finite State Machines, sharing inputs,inputs (each one from P and Q members) by the pair with
transformation, sharing states. independent inputs and sharing internal states. We try to find
the reciprocal transformations between pairs of FSMs.
We consider two Mealy FSMs — A and B that share input
SMs are used as general models of behavior on the systgymbols, Fig. 2 and 3(a). Thé, and Xg are set of input

analysis level, not only in digital design. FSMs modesymbols related formally to the A and B FSMs. The definitions
behavior of interfaces between two members of allianesg the FSMs A, B are

[1][2][3]. We consider a pair of FSMs, each of them describes

one direction of communication (Fig. 1). We suppose the A Xr XaYrOr

standard definition of Mealy FSM: <QA ATTBITATATA QA0>
B:<QB'xAvXB'YB'JB!/]B’QBO>

I. INTRODUCTION

(2)

A=(Q,X.Y,3,4,Qq) 1)
Transition and output functions must be extended and they
whereQ is an internal state seX,is an input symbol seY is are defined:
an output symbol set): Qx X - Q is a transition function,

A Qx X - Y is an output function, §s an initial state. Ont Qax Xpx Xg ~ Qp

O0g: Qg* XpXx Xg - Qg
At QaX Xax Xg = Yp
Member ESM Ag:i Qgx Xpx Xg - Yg

P B \
We suppose indices of all symbols start from 0, for example
FSM Member the set of internal states contains elements

A Q
— Qa :{QAO vQAn—l}' ”:|QA| . (4)

®)

Fig. 1 FSMs model interfaces in system alliance

FSMs are generally separated, but we consider the situations
when two machines share some elements (internal states, input
symbols, transition functions etc.). It may be necessary to
adapt the definition (1) of the FSM if spoken about sharing.
Firstly, we must specify the meaning of the term “sharing” and
define which types of sharing make sense. We narrow our
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Each of transformed FSMs (A’ and B’) has its own inpuset of internal states contains stat@swhich are marked with
symbol set. Transformed FSMs share internal states that[@,X;] symbols (Q;=[Q;,X{]). In other words, we insert a
FSM A’ has a knowledge about internal stateBofone and new state [QX]] into Q4 set if a transition from Q

vice versa. conditioned by Xinput symbol exists in the original Mealy
FSM. The output function of Moore FSM is transformed by
the formula:
Xa FSM
A > Y Amoore ([Qis Xi 1) = Avteary Qi Xi) - (7)
The conversion of the transition function is given after this
FSM manner:
B ——> Ys
Xe OMoord[Qi, X i, X j) =[Omeary(Qi Xi), X ] (8)
(@
B. Transformation of pair of FSMs
Xa FSM Two FSMs A and B are given with shared inputs, according
A ——> Ya to the definitions (2) and (3). Our assumption is the both ones
FSM are fully defined and synchronized by the common clock
B’ signal. Transformed pair of FSMs A’, B’ has a form according
Xg —> ——> Vs to the definition (5), (6).
The transformation is built on disintegration of present
(b) states. Steps are related to the FSM A, they are analogical if

we make a transformation of FSM B.
Output and transition functions of FSM A are dependent on

Fig. 3 replacement of FSM pair . i
the present internal statey@nd on the present input symbols

The extended definition of FSMs A" and B’ are XaOXa and XgXg. The transformed FSM A’ lost a
piece of information about the present (actual) input symbol
p;:< QA,iQB,!xA’YA’JA,!/]A’vQAO> Xg as a consequence of separation of input symbols. But it is
o o (5) able to obtain this knowledge by analyzing the target (next)
B/:<QB Qa" Xp.Ye,08 g 'QBO> internal state after the transition of the both FSMs (after the

clock transition). We have to apply the algorithm of the
Transition and output functions of transformed FSMs hawdisruption of source states of FSM B on that account so that
the second internal state as a new argument instead of adjatlemtpresent state of B’ implies the previous input symhgl X

input symbol: We insert a new state §Xg] into Qg’ for each transition
from the stateQg; 0 Qg initiated by input symboX g; O Xg.
On: QaxQg™Xp - Qa So if the FSM B’ is in the present states[@g] it means the
Op: QgxQyxXg - Qg’ ®) previous input symbol of B’ was exactlygX The same
AX QxQyx X = Ya disruption is applied to the FSM A.

The output function of FSM A assigns output symbol
by Aa(Qai» X ai» X gi) =Y, - Remember that the information

about input symbol ¥ is known after the transition of B’ to

. TRANSFORMATIONS OF PAIR OFFSMS SHARING INPUT h€ [Q3iaX_Bi]- Because the both FSMs A’ ar_u_j B’ h_ave common
SYMBOLS synchronization the FSM A’ makes transition simultaneously

The transformation is derived from the principle of thd0 the new state [QXa]. This state [@,Xa] of the A

conversion of Mealy FSM to the Moore one. There are twiWplicates previous input symbol.Xand the previous state

well known algorithms of this transformation, the first one usé@a- Due to these facts, both states[Ra] and [Qsi,Xg]

the disruption of current states [5] and the second one makég'glicate commonly the output symbol,Yof the FSM A".

disintegration of target states. We have inspired by the formfdgnce, the position of the correct output symbgli¥’shifted
method. to the right in the output sequence, analogous to the case if the

Mealy FSM is transformed to the Moore one. So, the outputs
i of FSM A and B are independent on the current input
A. Transformation of Mealy to Moore FSM symbols and they are like Moore machines. The output
We have a Mealy FSM wit, set of internal states and anfunctions are reduced:
equivalent transformed Moore FSM with the @gt. The new

A QgxQu*xXpg - Yp
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Ox([Qais X Al [Qem Xgnl: Xau) =
A A,: QAIXQB,_’ YA (9) =[0aQai: X pj» XBn): X aul
Ag: Qg*Qa' ~ Yg (14)
If the FSMs are in the initial states the output is emptyrhe transition and output functions do not depend on the
because they do not know the input symbol of the secomtément Q,, of the state of the FSM B’".
FSTI\f{'t | state set of FSM A’ i FSMA
e internal state set o is X a1 XardY a
Qa={ Qa0 OUQA; . X, (10
i =0...1Qa| =1 j=0...|X o] -1}
FSM B

where the G is the initial state.

X i Xeml Y gi
The output of the A’ is determined by equation: @ @

AN ([Qak: X ai ], [Qais X gj]) = Aa(Qak » X ai s X gj)

, _ (11)
An Qo Qo Fe £ isanemptysymbo)

Now we construct transition function. It is clear that a
transition from initial states is defined:

[QAj,XAu]

O (Qp0:Qr0 X ai) =[Qao: X ail (12)

We must derive transitions from the other states. It is
evident that if the transition is initiated by,Xinput symbol
the next state containsysymbol in its marking: [QenXgudl

Ox([Qair X Al [Qem X Bnl: Xau) =[Qaj: XAyl (13)

o ) ) Fig. 4 transformation of transitions
The remaining part of the next state is derived as follows.

The original FSMs accept input sequences,,&sm),

(Xaj:Xen) 5 -y (XaksXBo), (Xai,Xgp). The sequence of internal Example:
states of FSM A and FSM B are: Transform two FSMs A and B. Sets of input and output
symbols are givenX, = {a,b}, Xg = {c,d}, Ya = {X,Y,Z},
Qno: Qai, Qajy -+ Qaks Quis Ys = {U,V,W}. The transition graphs are on Fig. 5.

Qeo, Qem: Qany -+, Qeor Cop-
a,d/y FSMA
The transformed FSMs accept the same input sequences, each
accepts a part belonging to its input symbol set, ie. FSM A’
accepts X, Xaj, ..., Xax, FSM B’ accepts Xm, Xgn ..., Xgo.
We wrote shorter sequences by intent. New sequences of
internal states of FSM A’ and FSM B’ must be:

Qnos [QaoXail, [QaisXajl, [QajsXaul + ---5 [QakiXakl
Qgo: [Qeo:Xemls [QemXenl, [QenXad, ---» [QBo:XBd]

The situation is shown on Fig. 4 and in previous sequence.
The Qy is determined with the transition function of original
FSM A with arguments £,Xa; Xgn. Thus, the transitions are
transformed

Fig. 5 an example of the transformation
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The transformed FSM A’ has seven stateg, QQao,a],

[Qao.b], [Qar.a], [Qa1,b], [Qazal, [Quz,b]. The transformed
FSM B’ has five states £, [Qgo,C], [Qro,d], [Qs1,C], [Qr1.d]-
The calculation of one output and one transition of each

transformed FSM is shown:

An "([Qo +al [Qso ,c)=1a (Qao aC) =X
op (@ .all@o sclaF §a (Qo ,a0),al=[Qa1.a]
Ag ([@o ,cl.[Qo ,aD=1g (Qp ac)=U
g (@o cl[Qo .alc= Ps (Qo ,a.0),c]=[Qpo.C]

Issue 1, Volume 7, 2013

(6). Other characteristics of FSMs were discussed in section II.

A. Transformation of Moore to Mealy FSM

Transformation of Moore to Mealy FSM is simpler than the

reverse transformation. The set of internal state does not
change during the transformation process, the transition
function is the same. Output function of transformed Mealy

FSM is constructed using this rule:

A i+ Xi) = AMoore(Omoore Qi X
Mealy(Q| ) M (Om Q ) (15)

The transformed FSM B is on Fig. 6. FSM A’ is not shown OMealy(Qi» Xi) = Omoore(Qi, Xi) = Qi

because the picture is large.

[Qai,al,c/U
[Qai,a],d/U

[Qa,a],clV /

In other words an output assigned to the @gijiX; of

Mealy FSM is an output symbol assigned to thet@te where
Qi is a predecessor 0f.Q

B. Back Transformation of pair of FSMs
Let us consider two machines FSM A’ and FSM B’ share
internal states. Internal states are marked like in (1Q), @
are initial states.

We transform them back to the pair FSM A, FSM B sharing
input symbols. Machines FSM A and FSM B have identical set

[Qai b].dU of internal states as FSM A, FSM B'|Qa/=|Qal.
[Qaial,.c /W [Qai,b],d/W |Qs| =[Qs -
ne [Qayb],d/U |
[Qnidl,dNV : L FMA
[Qnib],c /U Qaisal,diVv | | |
" [Qai,a],c/V @Al, [QeuwXey] | |
Fig. 6 transformed FSM B’
FSM B’

The functionality of the transformed machines was verified by
the simulation. An example of output is printed in Table I.

Xgj» [QasXad

Table | an example of output

AA(Qak,X Al [QBIL X Bl) =Ym

Input A: aaaabbb
Input B: ddcccdd 28 ([Qe, X gil [Q Ak, X ail) =Yn
Output of FSM A: YYXYZYZ @
Output of FSM B: VVUUUWN
Transformed FSMs FSM A
Output of FSM A”™: eYYXYZY
Output of FSM B’: e VWUUUW [QasXad Xai, XgilYm
[ll. BACK TRANSFORMATION OF FSMS SHARING INTERNAL FSM B

STATES

The back transformation can be based on the Moore
machine to Mealy machine conversion if we assume the fact
that these machines are like Moore automata. It means output
functions only depend on internal states (9).

Transition functionsd, ,dg” have the form according to

[QBu,x Bv]

(b)

Fig. 7 derivation of the transformation
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We transform the transition

. o o "([Qgo .¢].[Qao .a].d)
Fig. 7 shows the principle how to construct th%orresponding transition of ESM A’ is
transformation. Let us suppose the FSM A’ is in the state 3a (Qo +al[Qo ,¢l,a) = [Qaz.al

[Qas: Xat]- We must change the transition of FSM A’ Hence,

td?;]([?AS’ *ﬁt]’[QB“’XBV]’X”) Ag (Qo clad)=1g'(Qso.dl.[Qa1.8) =V
o the transition

o ([Qgo .clad) =[Qpo.d]
OA[Qas: Xat ], X Xpgj)
of the back transformed FSM A and to find its output Back transformation of FSM B’ is on Fig. 8.
functionAa([Qas, Xat ], Xai, Xgj) . The target state of

[Qas:Xad] is the same, hence the transition function is
defined:

Oal[Qas: Xat], X ais Xpj) =

(16)
Oa (([Qas X atl:[QBu X By ] X Ai)

The construction of the output function is more
complicated. We must find correspondent transition of FSM
B’ from [Qgu,Xgy] State which is conditioned bygXinput and
[Qas:Xa] state. Let be the target state g{®g]. Output
function is defined

AA[Qpas: XAt X pi» Xgj) =

. a7
AR ([Qak, X i 1. [Qp1» X gjl)

But, Oa([Qas X at]i[Qpu:Xpyl: Xai) transition is b,c/U a.c/W
replaced with multiple transitions for alXOne transition for
Xgy is selected because previous input symbol wgs X

Outputs and transition from the initial state are transformed
with extra formula:

Fig. 8 back transformation of the FSM B’

C. Minimization

AnQao X aj ’XBj) = The back transformed FSM is not minimized. We can use the
An"Op"(Qao,Qso, Xai): (18) same techniques if f:lassical FSM is minimized. We look at
54" (Qao.0n0 X 1)) equivalent states which have the same output table (Table II).
B B0 A0, "B Three states £, [Qgo.c] [Qso.d] can be equivalent and two
states [@i,c] [Qg1,d] because their outputs are the same.
States [Qo,C] [Qgo,d] are equivalent because their transitions
are the same and they can be combined (Table IIl). States
[Qg1,¢] [Qg1,d] could be combined if [g,c] [Qgo,C] Were

The transition from the initial state is defined:

OaQpo. X ai» Xpj) =

Ia'(Qa0.Qs0: X ai) (19) equivalent and' [&,d] [Qgo,d] were equivalent. 3ut mentioned
pairs have different outputs so these pairs can not be
combined.

for all Xg;.

If transformed FSMs A’ and B’ are constructed using
previous algorithm, machines FSM A and FSM B are
deterministic. If states of FSM A’, FSM B’ are not marked

Table Il non-minimized FSM B

with pairs [@;, Xg;] but more generally like £ the necessary ac zzns't'ogi b.d ac C;fgpms b, bt
condition is that all transition togQ state are initiated only by Qg | [Qgo,cl | [Qe0,d] | [Qs0.C] | [Qe0d]| U V; U W
one input symbol. Then the transformation can be proceede{Qso.c] | [Qso.c] | [QBo0,0] | [QB1,c] | [Qer,d]| U Y U w
We show two steps of transformations of FSM B’. FqfQsod]|[Qso.c]|[Qeod]|[Qe1,]|[Qe1.d]| U \ u w
initial states: [Qs1,c] | [QB1,c] | [QB1,d] | [QB1,C] | [QB1,d]| W v U w
[Qg1.d] | [Qs1,¢] | [Qe1,d] | [Qso,C] [ [Qeo,d]| W \ U w

Ag (@o ac)=1g ([Qgo.Cl,[Qno.a) =U
o (@o ,a0)= P (Ao Qao0,c]=[Qpo:C]
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[1]
Table Il minimized FSM B
Transitions Outputs [2]
a,c a,d b,c b,d a,c a,d b, b,d
Qeo | [Qso:C] | [Qso,C] | [Qso,C] | [QsoC] | U Vv U W
[Qg0.,¢] | [QBo:C] | [@B0,C] | [Q1.C] | [QB1d]| U \Y U w 3]
[Qs1.c] | [QB1,c] | [QB1,d] | [QB1.C] | [Qs1,d]| W \Y; U w
[Qs1,d] | [Qe1,¢] | [QB1,d]| [QBo.C] | [QB0.C]| W Vv U w
[4]
(5]
[6]
[7]
[8]
[9]
[10]

a,c/W

Fig. 9 minimized FSM B

IV. PRACTICAL ASPECTS
Real application of this approach has not been constructed yet.
Practical aspect of this transformation can be viewed in
dynamics system. Let us suppose two machines according to
Fig. 2 and Fig. 3(a). Machines are implemented in one
reconfigurable chip. If one connection between one member
and one FSM is corrupted, the pair of FSM sharing input
symbol isdynamicallytransformed to the pair sharing internal
states and this fault is masked. The approach can increase the
reliability of interfaces in alliances.

V. CONCLUSION

The transformation of pair of FSMs with common inputs to
the pair of FSMs having separated inputs and sharing internal
states and the back transformation are presented. The effect is
that the coupling between FSMs is shifted from the outside of
FSMs into inside in the former transformation or from the
inside into outside in the second transformation. The
disadvantage of the transformations is the growth of count of
internal states.
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