
 

 

 
Abstract—The following paper proposes a solution for the 

adaptive video streaming problem based on a construction of a 
pyramid of hypercubes. The hypercubes are built as residues between 
successive downsampling and upsampling operations over chunks of 
video data. The described mechanism allows a great deal of 
flexibility with minimum overhead, is both general and 
mathematically elegant and may be further refined for better 
transmission control. 
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I. INTRODUCTION 
HERE are a number of video file formats, encoders and 
decoders and internet video transmission methods 

available today, each with advantages and disadvantages. 
From the end user’s point of view, a video streaming service 
should offer low latency (so they will not hear the neighbors 
getting excited about a goal and actually seeing it seconds 
later), high quality (low information loss and few coding 
artifacts), possibility to move through a video and some extra 
information contained in the video, like subtitles and chapters. 

From the technical point of view, there are more layers 
which work together in order to offer the entire service [1], 
[2]. 

Starting, top to bottom, with the application layer, the outer 
most box is the video file format or video container, which is a 
meta-file containing information needed for a system to 
interpret the actual video (or/and audio) data. Here is where 
the information about aspect ratio, frame rate, key-frames, and 
duration is stored, usually in discreet packets, which are useful 
for streaming, and extra information, like chapters. The most 
known containers are AVI, MP4, MOV, and FLV. AVI does 
not offer the functionality to skip over un-downloaded video 
segments and MOV and MP4 evolved to be the same, along 
with FLV offering all is needed for video streaming. 

This article moves from here lower, offering an alternative 
to the encoding and decoding mechanism (codec) and 
proposing a way to use the available protocols in order to offer 
a stable high-quality low-latency unicast or multicast video 
streaming service. 

Today’s high quality video codec standard is H.265 or 
HEVC (having predecessor the H.264 which is being used in 
most of the popular video streaming sites, like YouTube) 
which is a very advanced version of the initial MPEG. The 

MPEG codec splits all the frames in a video sequence in more 
types: I (initial, which contains all information in an image) P 
(predicted, which contains the difference of information 
between the predicted and actual frame) and B (bi-predicted, 
which is constructed from the I and P or P and P frames). Each 
of these frames is split in small 8x8 pixel blocks which are 
compressed with a discreet cosine transform (like in JPEG). 
Larger 16x16 pixel macro-blocks are used to estimate 
movement of objects along 4 blocks, in order to predict more 
accurately the P and B frames. The HEVC codec uses small 
block dimensions of variable size (1-64 pixels), uses intra-
frame predictions (constructs the new frame considering 
neighboring colors from inside the frame) and more accurate 
intra-frame predictions estimating the objects movements 
better. 

The drawbacks of this entire mechanism are complexity and 
single frame image quality. At the time when surveillance 
cameras moved from Motion Jpeg to MPEG2, the recording 
device could not handle the video from all the mounted 
cameras and dropped frames. In a system where some frames 
could be important (like a thief running in front of the camera) 
this was not acceptable. The other larger disadvantage was that 
the actual frames didn’t contain enough useful information. 
The codec was designed to look good, by predicting, but when 
a person’s face needed to be observed, no single frame could 
offer the information because of the high compression. 

That is why codecs like Motion JPEG (and the more 
advanced form MxPEG) still have their place. They encode 
each frame as JPEG images and use temporal coherence in 
order to save space without losing quality. Thus every frame 
contains information which could be useful in the case of a 
split second event, but at the cost of bandwidth and memory. 

These are the two major codec directions that are widely 
used; both have the ability to move through video and to 
stream, one inherently (MxJPEG, because it contains all the 
images) and the other with the aid of key-frames, but none can 
be used with an unreliable network. They can only be sent at 
the quality they exist on disk, thus a fluctuation of connection 
speed halts the entire playback. 

Getting lower, to the transport layer, there are two major 
protocols in use: TCP and UDP. 

TCP is a connection oriented protocol aimed at being 
reliable. Which means that every time a packet is lost, 
corrupted, or comes in the wrong order, it is being resent. This 
is useful for data transmission, but awful for live streaming, as 
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the time lost with overhead and retransmission generates halts 
in the playback. If a connection failure occurs, in order to 
recreate the TCP connection takes a full 3 seconds. 

The other protocol, UDP, is developed having just that in 
mind: it is better to lose a frame during a stream than to wait 
for the respective frame to be retransmitted. Thus UDP is very 
simple, packet oriented (it doesn’t have to wait to establish a 
connection), that just sends the package to the destination 
without caring if it actually arrives. It has the advantage that it 
can be used in multicast scenarios, where the server sends only 
one copy of the file to a group IP address and the routers and 
switches take care of multiplying the file to all the computers 
being interested in the file. 

With all the advantages mentioned of UDP over TCP in 
streaming videos, sites like YouTube use protocols over HTTP 
(like: Adobe Dynamic Streaming or DASH) which are on top 
of TCP. So it is not as much streaming as downloading the 
next chunk faster than it is played and selecting from a series 
of qualities in order not to fall behind. 

The proposed system aims to incorporate as much as 
possible from both approaches, whilst being fine-tuned for 
streaming at adaptive quality and taking advantage of 
protocols developed specially for streaming, like RTSP (used 
for sending commands) with RTP (used for sending the actual 
video data) and RTCP (used for sending feedback information 
useful in changing the maximum quality sent by the server). 

At the IP level, this approach can be used to send different 
quality video streams to the users in the same group of a 
multicast address, as each user takes only as much as it can. 

II. PROBLEM FORMULATION 
Thus the problem we are addressing is finding a method of 

optimally transmitting video streaming data to the client such 
that we only pass a minimum amount of data, while also taking 
into consideration fluctuating channel bandwidth limitations. 
In this sense, the current paper presents a different method 
based on sending chunks of frame data to the streaming client. 
This is done by gathering a series of frames from the video 
input and processing them, the result being then transmitted 
incrementally as different level of detail structures [3]. 

The proposed method also presents an implicit way of 
handling adaptiveness to the transmitting channel bandwidth. 
This is due to the fact that the main algorithm tries to split high 
frequency details on different levels. These details are sent in 
an importance-based fashion resulting in the fact that, even if 
not all the data gets transmitted successfully, the user can still 
get a less detailed view of the video data. This idea is loosely 
based on [4] where single image’s color components are 
compressed by downscaling and restoring the original image 
scale with a predicted residue from other color components. It 
also expands a paragraph that describes video transmission by 
splitting in resolutions from [5]. 

III. PROBLEM SOLUTION 
We start by taking a known video format and extracting all 

the uncompressed frames from it. We number these frames 
from 1 to N . We will divide this interval [ ]N,1  of frames 
into smaller, variable size subintervals that will be used as 
input for our algorithm. 

We first define the dimensions of the matrices (named here 
frame cubes) that we are going to construct using those 
subintervals. As seen in Fig. 1, we create the 3-dimensional 
matrix featuring the frames from a whole subinterval. This 
means that a frame cube has a width W  and height H , both 
inherited from the starting frame format. These 2 dimensional 
sizes will remain constant because the format of the input does 
not change during the playback. The 3rd dimensional size of 
the cube is duration D , expressed as the length of the 
associated subinterval. As such, we will have the input data 
represented as a series of frame cubes that are then processed 
by the server and transmitted to streaming clients. 

We use the following notation to represent the frame cubes: 
- [ ]( )1,1,, CHW  starting on frame 1, ending on frame 

11 , CDC =  

- [ ]( )21 ,1,, CCHW +  with 12 CCD −=  
- … 
- [ ]( )NCHW n ,,,  with 1+−= nCND  

A. Algorithm 
The main processing algorithm on the server consists of 

applying multiple iterations to the starting frame cube. One 
such iteration (seen in Fig. 1) contains the following steps: 

1. Apply a downscale operation on the input frame cube A, 
resulting in another smaller frame cube B 

2. Apply an upscale operation on frame cube B. This 
operation creates frame cube C that has the same 
dimensions as frame cube A, but differs slightly in data 
that was lost during the downscale operation 

3. Compute a residue frame cube as the difference of frame 
cubes R = C – A 
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Using this process, we continue applying it to the smaller 

frame cube B that resulted from the previous iteration, creating 
each time a new residue cube R. The iteration stops either after 
a given number of steps have occurred, or when the 
dimensions of the resulting frame cubes are lower than a set 
threshold. 

Consider that we take a frame cube [ ]( )1,1,, ++ ii CCHW  

with ii CCD −= +1 , and apply the algorithm with a scaling 
factor of 2. This means that we get a residue frame cube series 
with dimensions 
( ) ( ) ( )nnn DHWDHWDHW 2/,2/,2/,...,2/,2/,2/,,,
and a base frame cube having the dimensions equal to half the 
smallest residue cube ( )111 2/,2/,2/ +++ nnn DHW . We 
mark these residue frame cubes R0, R1 … Rn based on the 
power of the scaling factor that was applied. 

Having this cube represented as a hierarchy of residue frame 
cubes (named residue hypercube) and a base cube, we can now 
transmit to the client the base cube and a number of residue 
cubes (hypercube slices) starting from highest index Rn to R0. 
The client will use this data to synthesize the video frames. 
The reason why we transmit residues in this order is because 
of possible bandwidth limitations. If there were insufficient 
bandwidth, the client would still receive enough information to 
reconstruct the original frames at a lower quality (even to the 
level of getting and rendering just the base cube). 

In order to reduce the size of the transmitted data, on the 
server side, we can compress both the residue frame hypercube 
and the base frame cube beforehand. The compression ratio of 
the base cube is small because of its small size and complex 
information; however, the residues can be compressed to a 
high degree because they contain small values (that actually 
encode the small details lost in the downscale operation). As 
such, various methods of entropy encoding can be used 
successfully in order to compress the residues. One such 

algorithm that works well is Huffman coding. Ideally, a 
lossless compression algorithm should be used for the residue 
hypercubes because information itself might be lost due to the 
bandwidth limitations. 

On the client side, we need to use the received residue 
hypercube and base cube to synthesize the original frames as 
best as we can. As seen in Fig. 2, we mainly apply the inverse 
steps used on the server side. 

This means that we need to decode/decompress the residue 
hypercube and then, starting with the base cube B, upscale to 
A0: 

1. Add the corresponding residue frame cube in order to get 
a frame cube of the current resolution. 

2. Apply an upscale operation resulting in cube Ai 
3. Iterate first 2 steps in order to consume all the received 

residue hypercube slices 
This synthesizing algorithm will result in a frame cube of 

size ( )iii DHW 2/,2/,2/  where i  is determined by the 
number of residue hypercube slices that have reached the 
client in a useful timeframe. This timeframe can be expressed 
as the difference between the current time and the time when 
the rendering of the last frame cube had finished. The client 
can also artificially cut the reconstruction process if the 
timeframe ends. If this did not happen, the client renderer 
would show stuttering or pausing for period of time until it can 
render new frames. 

 
 
After the synthesizing of the current cube has finished, the 

client can render the frame cube (at the original frame rate, 
doing any required interpolation). In this sense, the receiving 

 

 
Fig. 2 Codec Workings 

 

 
Fig. 1 Hypercube generation 
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and synthesizing of data happens in an asynchronous fashion 
with respect to the actual frame rendering. 
 

B. Implementation Details 
There are a number of issues that arise when using the 

proposed method. 
First of all, considering that we have a dynamic range 

[ ]max,0 V  in the original frame data, the residue data will have 

a dynamic range of [ ]maxmax ,VV− . This effectively doubles 
the range, which means that we need double the space to store 
and transmit the residue hypercubes. In practice though, this 
problem is resolved by the compression algorithm. Even 
though we have a bigger value range, most of the residue data 
values are small, because the interpolated frame resembles 
very well the actual large frame. 

However, we propose two mapping functions that can be 
used in order to create a lossy version of the residue data. 

Both of the functions are defined as 
[ ) [ )256,0512,0: →f  and can be applied on input values 

that were translated by maxV  (which in our case is 256 because 
we are working with RGB 8bit values). In other words, the 
residue values which are distributed mainly around 0 will be 
redistributed around 256. This means that we can apply an 
importance sampling schema which takes in consideration the 
prior knowledge of the distribution. 

The first function that gave good results is based on a 
Gaussian distribution with the highest density of values near 
256. The function is presented in Fig. 3 and has the following 
form: 

 

256
256,256)(

25.1 −
== − xqexf qπ  (1) 

 

 
The second function is derived from the sigmoid function. It 

is presented in Fig. 4 and has the following form: 
 

256
256,5.0

1
1512256)( −

=−
+

−= −

xq
e

xf kq
 (2) 

 
In addition we apply a first order derivative constraint on 

the x=256 value. The constraint is: 
 

1)(

256

=
+=xdx

xdf  (3) 

 
This means that the mapping for values close to 256 will be 

one to one. This way the function keeps exact precision near 
the midpoint 256 value (which is the original high 0 value 
distribution) but loses more precision near the ends of the 
interval, which are less important. This tends to perform better 
than the Gaussian variant because of the “exactness” near the 
peak distribution point. 

Applying the derivative constraint, we get 4=k  and the 
final function form is: 

 

 
The second issue that arises is that the residue values are 

close, but not always equal to 0. For this problem we can again 
apply a lossy transformation, such as thresholding low values 
(e.g. anything lower than 5 can be considered a 0). This 
transformation can be applied on top of the remapping that we 
just discussed in order to get even higher compression rates 
(because of the lower entropy). 

Since this destroys data, it will generate possible artifacts at 
the synthesizing operation. In order to minimize this, we can, 
instead of replacing the thresholded values with 0, replace 
them with some special values. This operation would also 
lower data entropy, but it has the advantage that we know 
which values we have thresholded. Using this information, we 
can apply local methods to reconstruct the destroyed values. 
These methods should only be applied on all but the last 
residue addition operation because they would otherwise 
introduce other visible artifacts in the final frame cube. 

The last issue that appeared after running the demo 
implementation was that, in the case where the client does not 
receive the complete residue hypercube, hard scene cuts 

 

 
Fig. 4 Distribution that keeps the 256 point intact 

 

 
Fig. 3 Gaussian Distribution 
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become linearly interpolated. This may not be an important 
problem in itself, but we can limit the effect by setting 
subinterval cut points on the same frames as hard scene cuts. 
For hard scene cut detection a method based on Otsu maximal 
entropy can be used with good results; or for precision, we can 
rely on the already created pyramid to use pyramidal 
correlation [6]. 

IV. RESULTS 
For the implementation, the OpenCV C# wrapper “Emgu 

CV” was used for the frame extraction and manipulation. The 
technique that the demo uses is offline because the residue 
hypercube construction is saved to a file prior to transmitting 
slices from it. 

The input video subinterval had 149 frames in RGB 8bit 
format (640x360 resolution), that in jpeg form consumed 
7.23MB of data. The algorithm hence used 32bit integers as a 
base data type for the cube cells. The base cube has 73 frames 
(hence dimensions 320x180x73), built after one iteration, 
taking 1.45MB in jpeg format. The level 1 residue cube (with 
2 bytes per channel, compressed with gzip; dimensions 
640x360x149) takes 3MB. Thus the transmitted network size 
is 4.45MB. This gives us a compression ratio of 1.62 to 1 in 
this case. 

V. FUTURE IMPROVEMENTS 
A possible improvement would be to reduce the granularity 

of the hypercube construction in terms of input frames. Such a 
method would build different cube depths for different regions 
of the input frame subinterval. E.g. if we detect regions with 
less entropy, i.e. smaller number of colors in the same region, 
a hypercube constructed for that region would need a lower 
number of slices because there is not much data to be lost 
when downsampling. 

Another possible improvement can be based on changing 
the color space from RGB to YCbCr and encoding the 
chrominance channels with half the dynamic range, like in the 
common jpeg images. The human eye is less sensitive to 
chrominance, which means that the double range problem is no 
longer present for Cb and Cr. The luminance channel would 
still have double the dynamic range in residues so we can 
choose to remap that with one of the provided functions. Also, 
the hypercube itself can be compressed further in the manner 
presented here [7] with better than jpeg2000[8] quality and the 
local window size can be automatically set by interpreting the 
standard deviation graph given by increasing windows around 
a pixel in 3D space instead of 2D paper [9]. 

From the user experience point of view, methods other than 
scaling can be used to generate better quality residues [10] or 
we could try to preserve sharp lines by filtering in a different 
domain [11]. Reference [12] discuses just the 3D data case 
methods we need in order to display as much quality as 
possible from less residues. 

Finally, from a purely implementation-bound perspective, a 
major improvement that may change the server behavior from 

offline encoding to online would be to use GPGPU techniques 
[13] in order to construct the residue hypercubes. This would 
mean that all the resizing is done on the GPU and, considering 
that most of the new graphical boards support 3D textures, this 
operation can be completely offloaded. The CPU will just 
need to run the online encoding scheme (in both the server and 
client cases). 

A. Network Transmission 
The base layer can be transmitted using a TCP connection, 

as it contains very little information and the probability of not 
being able to send the video at that quality is very low. This 
offers a stable very low quality video feed, without introducing 
transmission errors, which at this phase can ruin the entire 
cube. 

The residual layers are sent through RTP over UDP. The 
Realtime Transmission Protocol offers ways to restore the 
packet sequence through the 16bit SequenceNumber field and 
also to synchronize with the lower resolution layers through 
the 32bit Timestamp field. Lost resolutions are approximated 
with same resolutions from a past hypercube, if the scene 
didn’t change; are dropped if it is a high resolution; or are 
being retransmitted in the rare case of scene change and low 
resolution loss and only if the connection speed can handle the 
retransmission without stopping the video. 

In Fig. 5 is an example where the upper left half of the 
image lost the 4-th resolution layer. The change in quality is 
dimmed by a small blur that is hardly visible. 

On the client machine, based on the Time stamp and 
Sequence Number, a high quality packet can be dropped, if the 
player must display the following frames. 

If a single user is receiving the video, RTCP is used to 
analyze the quality of the connection, and in the case that the 
client frequently drops high frequency cubes, the server stops 
transmitting them, saving bandwidth and CPU power on the 
server side also. 

 

 
Fig. 5 Bottom-right half lost 4-th resolution layer (original image 

taken from “Wikimedia Commons”) 
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In the case of multicast, each user takes as much as it can 
handle. 

To complete the Realtime Transmission Protocols chains, 
RTSP can be used in order to offer the user ways to navigate 
through the video. Each hypercube can be viewed as a key-
frame, offering high granularity traversal. The low quality 
video being of small size can be feed to the user after just a 
few seconds of downloading. 

VI. CONCLUSION 
The proposed method of video streaming leverages the 

advantages of sending blocks of frames at different resolutions 
using a differential schema of encoding. The residue 
hypercubes are constructed using a number of complete frames 
and the slices are transmitted in order of importance over the 
channel. A network transmission method using TCP for low 
quality stable video, RTP over UDP for sending details, RTCP 
for quality logging for saving server power and RTSP for 
navigating is also provided. 

The coding and decoding are very non-CPU intensive and 
preserve quality of individual frames when transmitted at the 
top quality and when losing a residual layer, the quality loss is 
small. The video is quality adaptive at the client directly and in 
case of a very poor connection, it can save server resources 
also. 
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