

Abstract—The following paper proposes a solution for the

adaptive video streaming problem based on a construction of a
pyramid of hypercubes. The hypercubes are built as residues between
successive downsampling and upsampling operations over chunks of
video data. The described mechanism allows a great deal of
flexibility with minimum overhead, is both general and
mathematically elegant and may be further refined for better
transmission control.

Keywords—adaptive video streaming, entropy coding, hypercube
residue, realtime video protocols

I. INTRODUCTION
HERE are a number of video file formats, encoders and
decoders and internet video transmission methods

available today, each with advantages and disadvantages.
From the end user’s point of view, a video streaming service
should offer low latency (so they will not hear the neighbors
getting excited about a goal and actually seeing it seconds
later), high quality (low information loss and few coding
artifacts), possibility to move through a video and some extra
information contained in the video, like subtitles and chapters.

From the technical point of view, there are more layers
which work together in order to offer the entire service [1],
[2].

Starting, top to bottom, with the application layer, the outer
most box is the video file format or video container, which is a
meta-file containing information needed for a system to
interpret the actual video (or/and audio) data. Here is where
the information about aspect ratio, frame rate, key-frames, and
duration is stored, usually in discreet packets, which are useful
for streaming, and extra information, like chapters. The most
known containers are AVI, MP4, MOV, and FLV. AVI does
not offer the functionality to skip over un-downloaded video
segments and MOV and MP4 evolved to be the same, along
with FLV offering all is needed for video streaming.

This article moves from here lower, offering an alternative
to the encoding and decoding mechanism (codec) and
proposing a way to use the available protocols in order to offer
a stable high-quality low-latency unicast or multicast video
streaming service.

Today’s high quality video codec standard is H.265 or
HEVC (having predecessor the H.264 which is being used in
most of the popular video streaming sites, like YouTube)
which is a very advanced version of the initial MPEG. The

MPEG codec splits all the frames in a video sequence in more
types: I (initial, which contains all information in an image) P
(predicted, which contains the difference of information
between the predicted and actual frame) and B (bi-predicted,
which is constructed from the I and P or P and P frames). Each
of these frames is split in small 8x8 pixel blocks which are
compressed with a discreet cosine transform (like in JPEG).
Larger 16x16 pixel macro-blocks are used to estimate
movement of objects along 4 blocks, in order to predict more
accurately the P and B frames. The HEVC codec uses small
block dimensions of variable size (1-64 pixels), uses intra-
frame predictions (constructs the new frame considering
neighboring colors from inside the frame) and more accurate
intra-frame predictions estimating the objects movements
better.

The drawbacks of this entire mechanism are complexity and
single frame image quality. At the time when surveillance
cameras moved from Motion Jpeg to MPEG2, the recording
device could not handle the video from all the mounted
cameras and dropped frames. In a system where some frames
could be important (like a thief running in front of the camera)
this was not acceptable. The other larger disadvantage was that
the actual frames didn’t contain enough useful information.
The codec was designed to look good, by predicting, but when
a person’s face needed to be observed, no single frame could
offer the information because of the high compression.

That is why codecs like Motion JPEG (and the more
advanced form MxPEG) still have their place. They encode
each frame as JPEG images and use temporal coherence in
order to save space without losing quality. Thus every frame
contains information which could be useful in the case of a
split second event, but at the cost of bandwidth and memory.

These are the two major codec directions that are widely
used; both have the ability to move through video and to
stream, one inherently (MxJPEG, because it contains all the
images) and the other with the aid of key-frames, but none can
be used with an unreliable network. They can only be sent at
the quality they exist on disk, thus a fluctuation of connection
speed halts the entire playback.

Getting lower, to the transport layer, there are two major
protocols in use: TCP and UDP.

TCP is a connection oriented protocol aimed at being
reliable. Which means that every time a packet is lost,
corrupted, or comes in the wrong order, it is being resent. This
is useful for data transmission, but awful for live streaming, as

A Pyramidal Scheme of Residue Hypercubes for
Adaptive Video Streaming

Adrian Enache, Costin A. Boiangiu

T

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 128

the time lost with overhead and retransmission generates halts
in the playback. If a connection failure occurs, in order to
recreate the TCP connection takes a full 3 seconds.

The other protocol, UDP, is developed having just that in
mind: it is better to lose a frame during a stream than to wait
for the respective frame to be retransmitted. Thus UDP is very
simple, packet oriented (it doesn’t have to wait to establish a
connection), that just sends the package to the destination
without caring if it actually arrives. It has the advantage that it
can be used in multicast scenarios, where the server sends only
one copy of the file to a group IP address and the routers and
switches take care of multiplying the file to all the computers
being interested in the file.

With all the advantages mentioned of UDP over TCP in
streaming videos, sites like YouTube use protocols over HTTP
(like: Adobe Dynamic Streaming or DASH) which are on top
of TCP. So it is not as much streaming as downloading the
next chunk faster than it is played and selecting from a series
of qualities in order not to fall behind.

The proposed system aims to incorporate as much as
possible from both approaches, whilst being fine-tuned for
streaming at adaptive quality and taking advantage of
protocols developed specially for streaming, like RTSP (used
for sending commands) with RTP (used for sending the actual
video data) and RTCP (used for sending feedback information
useful in changing the maximum quality sent by the server).

At the IP level, this approach can be used to send different
quality video streams to the users in the same group of a
multicast address, as each user takes only as much as it can.

II. PROBLEM FORMULATION
Thus the problem we are addressing is finding a method of

optimally transmitting video streaming data to the client such
that we only pass a minimum amount of data, while also taking
into consideration fluctuating channel bandwidth limitations.
In this sense, the current paper presents a different method
based on sending chunks of frame data to the streaming client.
This is done by gathering a series of frames from the video
input and processing them, the result being then transmitted
incrementally as different level of detail structures [3].

The proposed method also presents an implicit way of
handling adaptiveness to the transmitting channel bandwidth.
This is due to the fact that the main algorithm tries to split high
frequency details on different levels. These details are sent in
an importance-based fashion resulting in the fact that, even if
not all the data gets transmitted successfully, the user can still
get a less detailed view of the video data. This idea is loosely
based on [4] where single image’s color components are
compressed by downscaling and restoring the original image
scale with a predicted residue from other color components. It
also expands a paragraph that describes video transmission by
splitting in resolutions from [5].

III. PROBLEM SOLUTION
We start by taking a known video format and extracting all

the uncompressed frames from it. We number these frames
from 1 to N . We will divide this interval []N,1 of frames
into smaller, variable size subintervals that will be used as
input for our algorithm.

We first define the dimensions of the matrices (named here
frame cubes) that we are going to construct using those
subintervals. As seen in Fig. 1, we create the 3-dimensional
matrix featuring the frames from a whole subinterval. This
means that a frame cube has a width W and height H , both
inherited from the starting frame format. These 2 dimensional
sizes will remain constant because the format of the input does
not change during the playback. The 3rd dimensional size of
the cube is duration D , expressed as the length of the
associated subinterval. As such, we will have the input data
represented as a series of frame cubes that are then processed
by the server and transmitted to streaming clients.

We use the following notation to represent the frame cubes:
- []()1,1,, CHW starting on frame 1, ending on frame

11 , CDC =

- []()21 ,1,, CCHW + with 12 CCD −=
- …
- []()NCHW n ,,, with 1+−= nCND

A. Algorithm
The main processing algorithm on the server consists of

applying multiple iterations to the starting frame cube. One
such iteration (seen in Fig. 1) contains the following steps:

1. Apply a downscale operation on the input frame cube A,
resulting in another smaller frame cube B

2. Apply an upscale operation on frame cube B. This
operation creates frame cube C that has the same
dimensions as frame cube A, but differs slightly in data
that was lost during the downscale operation

3. Compute a residue frame cube as the difference of frame
cubes R = C – A

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 129

Using this process, we continue applying it to the smaller

frame cube B that resulted from the previous iteration, creating
each time a new residue cube R. The iteration stops either after
a given number of steps have occurred, or when the
dimensions of the resulting frame cubes are lower than a set
threshold.

Consider that we take a frame cube []()1,1,, ++ ii CCHW

with ii CCD −= +1 , and apply the algorithm with a scaling
factor of 2. This means that we get a residue frame cube series
with dimensions
() () ()nnn DHWDHWDHW 2/,2/,2/,...,2/,2/,2/,,,
and a base frame cube having the dimensions equal to half the
smallest residue cube ()111 2/,2/,2/ +++ nnn DHW . We
mark these residue frame cubes R0, R1 … Rn based on the
power of the scaling factor that was applied.

Having this cube represented as a hierarchy of residue frame
cubes (named residue hypercube) and a base cube, we can now
transmit to the client the base cube and a number of residue
cubes (hypercube slices) starting from highest index Rn to R0.
The client will use this data to synthesize the video frames.
The reason why we transmit residues in this order is because
of possible bandwidth limitations. If there were insufficient
bandwidth, the client would still receive enough information to
reconstruct the original frames at a lower quality (even to the
level of getting and rendering just the base cube).

In order to reduce the size of the transmitted data, on the
server side, we can compress both the residue frame hypercube
and the base frame cube beforehand. The compression ratio of
the base cube is small because of its small size and complex
information; however, the residues can be compressed to a
high degree because they contain small values (that actually
encode the small details lost in the downscale operation). As
such, various methods of entropy encoding can be used
successfully in order to compress the residues. One such

algorithm that works well is Huffman coding. Ideally, a
lossless compression algorithm should be used for the residue
hypercubes because information itself might be lost due to the
bandwidth limitations.

On the client side, we need to use the received residue
hypercube and base cube to synthesize the original frames as
best as we can. As seen in Fig. 2, we mainly apply the inverse
steps used on the server side.

This means that we need to decode/decompress the residue
hypercube and then, starting with the base cube B, upscale to
A0:

1. Add the corresponding residue frame cube in order to get
a frame cube of the current resolution.

2. Apply an upscale operation resulting in cube Ai
3. Iterate first 2 steps in order to consume all the received

residue hypercube slices
This synthesizing algorithm will result in a frame cube of

size ()iii DHW 2/,2/,2/ where i is determined by the
number of residue hypercube slices that have reached the
client in a useful timeframe. This timeframe can be expressed
as the difference between the current time and the time when
the rendering of the last frame cube had finished. The client
can also artificially cut the reconstruction process if the
timeframe ends. If this did not happen, the client renderer
would show stuttering or pausing for period of time until it can
render new frames.

After the synthesizing of the current cube has finished, the

client can render the frame cube (at the original frame rate,
doing any required interpolation). In this sense, the receiving

Fig. 2 Codec Workings

Fig. 1 Hypercube generation

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 130

and synthesizing of data happens in an asynchronous fashion
with respect to the actual frame rendering.

B. Implementation Details
There are a number of issues that arise when using the

proposed method.
First of all, considering that we have a dynamic range

[]max,0 V in the original frame data, the residue data will have

a dynamic range of []maxmax ,VV− . This effectively doubles
the range, which means that we need double the space to store
and transmit the residue hypercubes. In practice though, this
problem is resolved by the compression algorithm. Even
though we have a bigger value range, most of the residue data
values are small, because the interpolated frame resembles
very well the actual large frame.

However, we propose two mapping functions that can be
used in order to create a lossy version of the residue data.

Both of the functions are defined as
[) [)256,0512,0: →f and can be applied on input values

that were translated by maxV (which in our case is 256 because
we are working with RGB 8bit values). In other words, the
residue values which are distributed mainly around 0 will be
redistributed around 256. This means that we can apply an
importance sampling schema which takes in consideration the
prior knowledge of the distribution.

The first function that gave good results is based on a
Gaussian distribution with the highest density of values near
256. The function is presented in Fig. 3 and has the following
form:

256
256,256)(

25.1 −
== − xqexf qπ (1)

The second function is derived from the sigmoid function. It

is presented in Fig. 4 and has the following form:

256
256,5.0

1
1512256)(−

=−
+

−= −

xq
e

xf kq
 (2)

In addition we apply a first order derivative constraint on

the x=256 value. The constraint is:

1)(

256

=
+=xdx

xdf (3)

This means that the mapping for values close to 256 will be

one to one. This way the function keeps exact precision near
the midpoint 256 value (which is the original high 0 value
distribution) but loses more precision near the ends of the
interval, which are less important. This tends to perform better
than the Gaussian variant because of the “exactness” near the
peak distribution point.

Applying the derivative constraint, we get 4=k and the
final function form is:

The second issue that arises is that the residue values are

close, but not always equal to 0. For this problem we can again
apply a lossy transformation, such as thresholding low values
(e.g. anything lower than 5 can be considered a 0). This
transformation can be applied on top of the remapping that we
just discussed in order to get even higher compression rates
(because of the lower entropy).

Since this destroys data, it will generate possible artifacts at
the synthesizing operation. In order to minimize this, we can,
instead of replacing the thresholded values with 0, replace
them with some special values. This operation would also
lower data entropy, but it has the advantage that we know
which values we have thresholded. Using this information, we
can apply local methods to reconstruct the destroyed values.
These methods should only be applied on all but the last
residue addition operation because they would otherwise
introduce other visible artifacts in the final frame cube.

The last issue that appeared after running the demo
implementation was that, in the case where the client does not
receive the complete residue hypercube, hard scene cuts

Fig. 4 Distribution that keeps the 256 point intact

Fig. 3 Gaussian Distribution

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 131

become linearly interpolated. This may not be an important
problem in itself, but we can limit the effect by setting
subinterval cut points on the same frames as hard scene cuts.
For hard scene cut detection a method based on Otsu maximal
entropy can be used with good results; or for precision, we can
rely on the already created pyramid to use pyramidal
correlation [6].

IV. RESULTS
For the implementation, the OpenCV C# wrapper “Emgu

CV” was used for the frame extraction and manipulation. The
technique that the demo uses is offline because the residue
hypercube construction is saved to a file prior to transmitting
slices from it.

The input video subinterval had 149 frames in RGB 8bit
format (640x360 resolution), that in jpeg form consumed
7.23MB of data. The algorithm hence used 32bit integers as a
base data type for the cube cells. The base cube has 73 frames
(hence dimensions 320x180x73), built after one iteration,
taking 1.45MB in jpeg format. The level 1 residue cube (with
2 bytes per channel, compressed with gzip; dimensions
640x360x149) takes 3MB. Thus the transmitted network size
is 4.45MB. This gives us a compression ratio of 1.62 to 1 in
this case.

V. FUTURE IMPROVEMENTS
A possible improvement would be to reduce the granularity

of the hypercube construction in terms of input frames. Such a
method would build different cube depths for different regions
of the input frame subinterval. E.g. if we detect regions with
less entropy, i.e. smaller number of colors in the same region,
a hypercube constructed for that region would need a lower
number of slices because there is not much data to be lost
when downsampling.

Another possible improvement can be based on changing
the color space from RGB to YCbCr and encoding the
chrominance channels with half the dynamic range, like in the
common jpeg images. The human eye is less sensitive to
chrominance, which means that the double range problem is no
longer present for Cb and Cr. The luminance channel would
still have double the dynamic range in residues so we can
choose to remap that with one of the provided functions. Also,
the hypercube itself can be compressed further in the manner
presented here [7] with better than jpeg2000[8] quality and the
local window size can be automatically set by interpreting the
standard deviation graph given by increasing windows around
a pixel in 3D space instead of 2D paper [9].

From the user experience point of view, methods other than
scaling can be used to generate better quality residues [10] or
we could try to preserve sharp lines by filtering in a different
domain [11]. Reference [12] discuses just the 3D data case
methods we need in order to display as much quality as
possible from less residues.

Finally, from a purely implementation-bound perspective, a
major improvement that may change the server behavior from

offline encoding to online would be to use GPGPU techniques
[13] in order to construct the residue hypercubes. This would
mean that all the resizing is done on the GPU and, considering
that most of the new graphical boards support 3D textures, this
operation can be completely offloaded. The CPU will just
need to run the online encoding scheme (in both the server and
client cases).

A. Network Transmission
The base layer can be transmitted using a TCP connection,

as it contains very little information and the probability of not
being able to send the video at that quality is very low. This
offers a stable very low quality video feed, without introducing
transmission errors, which at this phase can ruin the entire
cube.

The residual layers are sent through RTP over UDP. The
Realtime Transmission Protocol offers ways to restore the
packet sequence through the 16bit SequenceNumber field and
also to synchronize with the lower resolution layers through
the 32bit Timestamp field. Lost resolutions are approximated
with same resolutions from a past hypercube, if the scene
didn’t change; are dropped if it is a high resolution; or are
being retransmitted in the rare case of scene change and low
resolution loss and only if the connection speed can handle the
retransmission without stopping the video.

In Fig. 5 is an example where the upper left half of the
image lost the 4-th resolution layer. The change in quality is
dimmed by a small blur that is hardly visible.

On the client machine, based on the Time stamp and
Sequence Number, a high quality packet can be dropped, if the
player must display the following frames.

If a single user is receiving the video, RTCP is used to
analyze the quality of the connection, and in the case that the
client frequently drops high frequency cubes, the server stops
transmitting them, saving bandwidth and CPU power on the
server side also.

Fig. 5 Bottom-right half lost 4-th resolution layer (original image

taken from “Wikimedia Commons”)

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 132

In the case of multicast, each user takes as much as it can
handle.

To complete the Realtime Transmission Protocols chains,
RTSP can be used in order to offer the user ways to navigate
through the video. Each hypercube can be viewed as a key-
frame, offering high granularity traversal. The low quality
video being of small size can be feed to the user after just a
few seconds of downloading.

VI. CONCLUSION
The proposed method of video streaming leverages the

advantages of sending blocks of frames at different resolutions
using a differential schema of encoding. The residue
hypercubes are constructed using a number of complete frames
and the slices are transmitted in order of importance over the
channel. A network transmission method using TCP for low
quality stable video, RTP over UDP for sending details, RTCP
for quality logging for saving server power and RTSP for
navigating is also provided.

The coding and decoding are very non-CPU intensive and
preserve quality of individual frames when transmitted at the
top quality and when losing a residual layer, the quality loss is
small. The video is quality adaptive at the client directly and in
case of a very poor connection, it can save server resources
also.

REFERENCES
[1] H.-J. Yang, H.-C. Lin, Y.-D. Wang, L.-H. Kuo, “Designing and

constructing live streaming system for broadcast,” in Proc. 2010
American conference on Applied Mathematics (AMERICAN-
MATH'10), Harvard University, Cambridge, USA January 27-29, 2010,
WSEAS Press, pp. 266-271.

[2] H. H. Soliman, H. M. El-Bakry, M. Reda, “Real-time transmission of
video streaming over computer networks,” in Proc. 11th WSEAS
international conference on Electronics, Hardware, Wireless and
Optical Communications, and in Proc. 11th WSEAS international
conference on Signal Processing, Robotics and Automation, and
proceedings of the 4th WSEAS international conference on
Nanotechnology (EHAC'12/ISPRA/NANOTECHNOLOGY'12), 2012,
pp. 51-62.

[3] A. Enache, C.-A. Boiangiu, “Adaptive video streaming using residue
hypercubes,” in Proc. 12th WSEAS International Conference on
Circuits, Systems, Electronics, Control & Signal Processing (CSECS
'13), Budapest, Hungary, December 10-12, 2013, pp. 173-179.

[4] W.-S. Kim, H. M. Kim, "Residue sampling for image and video
compression,” Visual Communications and Image Processing 2005,
Proc. of the SPIE, vol. 5960, pp. 12-18.

[5] L. Vandendorpe, B. Macq, “Optimum quality and progressive resolution
of video signals,” Annales Des Télécommunications, vol. 45, 1990, pp.
487-502.

[6] M. S. Kishore, K V. Rao, “A study of correlation technique on pyramid
processed images,” Sadhana, vol. 25, 2000, pp. 37-43.

[7] V. Swathi, M. Tech, K. A. Babu, “Low bit-rate image compression
using adaptive down-sampling technique,” International Journal of
Computer Technology and Applications, vol. 15, 2002, pp. 1679-1689.

[8] M. Rabbani, R. Joshi, “An overview of the JPEG 2000 still image
compression standard,” Signal Processing: Image Communication, vol.
17, 2002, pp. 3-48.

[9] C.-A. Boiangiu, A. Olteanu, A. V. Stefanescu, D. Rosner, A. I. Egner.
“Local thresholding image binarization using variable-window standard
deviation response,” in Proc. 21st International DAAAM Symposium,
20-23 October, 2010, Zadar, Croatia, pp. 133-134.

[10] X. Song, Y. Neuvo, “Image compression using nonlinear pyramid vector
quantization,” Multidimensional Systems and Signal Processing, vol. 5,
1994, pp. 133-149.

[11] C.-A. Boiangiu, B. Raducanu, “Effects of data filtering techniques in
line detection,” Annals of DAAAM for 2008, Proceedings of the 19th
International DAAAM Symposium, Vienna, Austria, pp. 0125–0126.

[12] J. B. T. M. Roerdink, “Morphological pyramids in multiresolution MIP
rendering of large volume data: survey and new results,” Journal of
Mathematical Imaging and Vision, vol. 22, 2005, pp. 143-157.

[13] R. Di Salvo, C. Pino, “Image and video processing on CUDA: state of
the art and future directions,” in Proc. of the 13th WSEAS international
conference on mathematical and computational methods in science and
engineering, 2011, pp. 60-66.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 133

