
Virtualization of Links with Partial Isolation and a
Packet-Wise Policy
Tomasz Fortuna and Andrzej Chydzinski

Abstract— In this paper a proposition of the packet scheduling
algorithm for virtualization of links is presented. The algorithm is
based on the time-limited polling model with a constant maximum
server attendance time. Such design allows for computing throughput
and delay guarantees for the scheduling algorithm and assures that
the influence of one virtual link on the performance of other links is
limited (i.e. the partial link isolation is provided). Contrary to typical
polling models, the scheduling algorithms uses a packet-wise policy,
which enables serving packets in a round-robin manner within one
operating cycle. This optimization allows for a less CPU-demanding
implementation and decreases the queueing delay of the virtual links.

Keywords— partial performance isolation, virtualization of links,
work-conserving scheduling, packet-wise scheduler

I. INTRODUCTION

Virtualization of networking resources is considered as
a possible catalyst for Internet development acceleration. Vir-
tualization allows for merging of several disparate networking
layers into single one, based on the same physical medium
[2]. Using this technology, the users are able to design a net-
working topology with desired QoS parameters and use it with
a chosen network stack. Reconfiguration does not require any
alteration for the physical layer, which can be shared between
all topologies, which therefore reduces required hardware and
maintenance costs.

This paper deals with packet scheduling, which is one of
two mechanisms required for link virtualization (another one
being the packet classification). Namely, packets arriving at
a physical node are classified according to a special header,
which enables handling them distinctly, depending on the
virtual network they belong to. Secondly, packets leaving the
node need to be ordered onto a common physical link. While
the classification is a simple O(1) operation, the scheduling
can get quite complex. Parameters of the physical link (the
throughput and propagation delay) cannot be altered, but the
final parameters of the virtual links depend on the algorithm
used for scheduling.

There are many different types of schedulers in use today,
but not all of them are fit for the described purpose. This
is because creating virtual links requires certain guarantees
of their parameters (to make possible guaranteeing quality of
service on higher levels of network stack).

The ideal scheduler creates a virtual link which is in-
distinguishable from a real physical medium. In particular,

This is extended version of the paper [1] presented during ITCN’13
conference, Antalya, Turkey, October 8-10, 2013.

The authors are with the Silesian University of Technology, Institute
of Informatics. Address: Akademicka 16, 44-100 Gliwice, Poland, e-mail:
Tomasz.Fortuna@polsl.pl, Andrzej.Chydzinski@polsl.pl

it provides the full performance isolation, meaning that the
parameters and rate of the traffic on one virtual link does not
influence the performance of all the remaining virtual links.

Unfortunately, the full performance isolation comes at
a cost, i.e. the schedulers having this property are non-work-
conserving, which means that they may not fully utilize the
physical link. In some cases, in spite of having packets to sent,
the physical link is idle, which causes resources to be wasted.

Exemplary scheduler with full isolation is proposed in [3]
and is a part of the IIP System design [4], a proposed Future
Internet architecture, built using the devices described in [5].
This scheduler attends cyclically all input queues connected
with virtual links and transmits packets from each queue for
a configured, constant period of time. What is important, each
queue is attended for a constant time even if there are no
packets in the queue or there is too little time left to send the
next packet.

Time during which the scheduler serves a link is called
a “work phase” of this link. All repeated phases form a “cy-
cle”. By having the constant phase and cycle times, a full
performance isolation is easily achieved and the transmission
parameters of one virtual link are completely uninfluenced by
the other links.

To deal with the resource wastage in the full isolation
schedulers, a partly work-conserving scheduler has been pro-
posed in [6]. Its design allows some prioritized, heavy loaded
links to benefit in situations where other links do not utilize
fully their assigned throughput. This is achieved at a cost of
loosing the perfect isolation. However, some boundaries for the
performance characteristics are preserved and the algorithm is
still useful for scheduling QoS traffic. Therefore, we may say
that this scheduler provides the partial performance isolation.

In this paper we focus on possible optimizations of the
scheduler with the partial isolation, [6]. We redesign the
scheduler (up to some extent) and show, how this affects
the virtual links parameters (especialy the latency). Moreover,
we argue that the new design is much more implementation-
friendly.

The rest of the paper consists of a description of the
scheduler model in Section II, followed by Section II-A, which
presents the basic analytical background. The deficiencies
of the scheduler are highlighted in Section II-B. Then, in
Section III, a possible solution is demonstrated. Section IV
contains results of simulations for some selected scenarios.
Finally, remarks concluding the paper are gathered in Section
V.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 49



II. DESCRIPTION OF THE MODEL

Fig. 1 depicts the model of the scheduler [6].

A/B-type

λ2
b2

C

...

λ3
b3

λN
bN

λ1
b1

Fig. 1. The model of the scheduler.

There are N incoming packet streams connected to N sepa-
rate input queues, with limited capacities of b1, · · · , bN pack-
ets. The packets from these queues are transmitted cyclicly
through an output physical link with capacity of C bits per
second, thus creating N virtual links. Each link, say i-th, has
defined its maximum work phase length, Wi. This means that
the i-th link may be attended for Wi seconds or less during
each cycle.

We assume that all the arrival packet streams conform to
the Poisson distribution with rates λ1, . . . , λN . If the queue is
full at time when a new packet arrives, the packet is dropped.
There is no service position outside the queues, so the packet
being sent still occupies a position in the input queue.

Finally, we distinguish two link types – A and B – which
differ in the way their service time is handled:

• for a type A link, the work phase duration is constant
and equal to Wi, irrespective of the input queue content
(it may be empty),

• for a type B link, the work phase ends immediately when
the input queue becomes empty during its work phase.

Therefore, for an A-type link the work phase is unaltered,
while the work phase of a B-type link may be shorter than
Wi, if a queue underflow (empty buffer) occurs.

Packet Packet Packet

Packet

W1

W2

Cycle

...

Time

Fig. 2. AA or BB scheduler behavior with non-empty buffers.

Summarizing, the complete scheduler configuration consists
of a set of defined bi’s, Wi’s and link types. For example, a

Packet Silence

Packet

W1

< W2

Variable cycle

...

Time

Type A

B
u

�

e
r
 u

n
d

e
r

�

o
w

Type B

W1

Fig. 3. AB scheduler behavior with a buffer underflow.

scheduler with four virtual links of types A, B, A, A will be
called the ABAA scheduler.

In packet networks, packets are atomic units which cannot
be further divided. If the remaining link phase time Wi is
too short to fit a transmission of the next packet from the
queue, the packet will have to remain buffered for the next
cycle, and will be transmitted as the first packet in the next
phase of the relevant link. In this case the scheduler keeps the
physical medium unused, waiting for the remaining Wi time
to end. This non-work-conserving behavior causes some loss
of the physical link throughput. The scheduler behavior with
non-empty input queues is depicted in Fig. 2. Fig. 3 shows
behavior of AB scheduler with a queue underflow.

The idea of the A-type links comes from the IIP System
scheduler – the pure A-type scheduler works in the same way
as the one proposed in [3] (see also [7] for its analysis). The
B-type link policy is similar to the exhaustive, time-limited
disciplines studied with vacation queues, e.g. [8]-[12].

A. Performance guarantees

Important property of the scheduler with A or B-type links
is that it is possible to give boundaries of their performance pa-
rameters. Namely, the maximum link response time (latency),
Tmax is given by:

Tmax =
MTU

C

+

(⌈
bj/

⌊Wj · C
MTU

⌋⌉
− 1

) N∑
i=1

Wi +
∑
i̸=j

Wi

+

(
bj −

(⌈
bj/

⌊Wj · C
MTU

⌋⌉
− 1

)
·
⌊Wj · C
MTU

⌋)
MTU

C
. (1)

Second guaranteed property is a minimal virtual link
throughput under a heavy load, given by:

γmin =
Wj −MTU/C∑N

i=1 Wi

. (2)

In these formula, MTU stands for the Maximum Transmission
Unit, a size of the largest possible packet. Both formulas are
derived in [6].

Described scheduler privileges A-type links in cases where
there is usually a low traffic on B-type links with occasional
packets bursts. This paper focuses on possible optimizations

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 50



of the mixed type scheduler (containing both A and B-type
links), which do not affect performance guarantees.

B. Scheduler deficiencies

Implementing the described scheduler as a software solu-
tion for Xen Hypervisor is associated with certain problems
(see the related papers [13], [15], [16]). Popular computer
architectures (like x86 or x86 64) do not behave like real-
time systems. An interrupt scheduled to arrive at a certain
moment in time will usually suffer a variable delay before
being handled by the operating system. This delay is de-
pendent on the current CPU utilization or the CPU model
itself. The schedulers [3] and [6] and are defined in the time
domain, using defined periods of time. A direct approach to
implementation, i.e. using timer interrupts scheduled in future
to change currently attended link, will not work. Therefore,
the algorithm is rather required to either busy-wait for the
right time to swap phases, or use a hybrid approach, where
an interrupt is scheduled before the next phase swap and then,
for a small amount of time, busy-wait until the packet from
the next queue can be transmitted. This approach allows for
an accurate implementation of the scheduler, but comes with
a cost. The busy-waiting causes a single processor core to
be used exclusively for scheduler operations for some time.
This might not be a critical problem, as nowadays computers,
especially those used for virtualization, are equipped with
multiple CPU cores and dedicated computer systems can
allocate a single core only for scheduler operations. However,
this approach decreases the power-efficiency of used servers,
which is usually unacceptable in large data centers.

III. OPTIMIZED SCHEDULER

The implementation of the scheduler can be made more
efficient by defining its algorithm in a packet-wise manner,
instead of phase-wise.

Namely, instead of attending links for their full phase time
(or shortened in the case of the type B phase), a different
approach might be devised. At the beginning of the cycle, each
link is assigned a total service time equal to Wi – its maximum
phase duration. Then all links are attended in a round-robin
fashion. If a link has enough residual service time left in the
current cycle, it is allowed to sent a single packet, as shown in
Fig. 4. Naturally, sending a packet reduces the residual service
time.

Packet

Packet

Packet

Packet

Packet

Packet Time

Packet Packet

P
h

a
s
e
 1

 e
n

d

Cycle

...

Packet

P
h

a
s
e
 2

 e
n

d

Fig. 4. AA or BB scheduler behavior with full queues.

When the input queue becomes empty, the scheduler be-
havior remains the same: for B-type links the residual time is
zeroed, for A-type links the scheduler waits until a new packet
arrives or the time runs out. As long as the number of packets
of each link transmitted within a single cycle is not lower
than in the phase-wise approach, the scheduler guarantees
of minimal virtual link throughput will remain valid. The
moment of handling idle time within the cycle can therefore
be displaced to happen always at the end of the cycle.

Packet-wise approach has a slight impact on a maximum
link response time. By allowing packets from N phases to
mix within a single scheduler cycle, the i-th packet in the link
queue, which would be served within a current phase time, can
be additionally delayed. Instead of being sent after i− 1 link
packets, it can be preceded by a total of i ∗ N packets from
all links. Therefore maximum link response time boundary for
packet-wise scheduler has the last component in equation (1)
multiplied by N .

More generic equation, but less accurate, could instead
include a whole additional cycle during which the packet is
served. This allows for scheduler which guarantees perfor-
mance, yet is able to serve queues in a different manner:

Tmax =
MTU

C

+

(⌈
bj/

⌊Wj · C
MTU

⌋⌉) N∑
i=1

Wi +
∑
i̸=j

Wi

(3)

The advantages of the presented packet-wise approach are
the following:

1) The implementation. The scheduler is able to order
more packets to be transmitted during a single interrupt
by copying them to the network card buffer. When
an A-type link with an empty queue is attended, it
can be skipped, as long as the other virtual links can
transfer packets in this cycle. Timed interrupt will still
be necessary at the end of the cycle.

2) The scheduler achieves a lower latency in scenarios
with low bandwidth and occasionally arriving packets.
In the phase-wise approach, a packet arriving to an
empty queue has to wait for all other links to finish
their full phases. In the packet-wise approach, it will be
transmitted (pessimistically) when all other links have
sent single packets, and the current transmission finishes.
This pessimistic time, denoted as Tempty, can be easily
derived as:

Tempty = N
MTU

C
. (4)

3) In some settings, the probability of wasting physical
medium due to waiting for packets on an A-type link
is decreased, because the algorithm is able to transmit
packets of other links while the A-type queue is empty.

Another possible improvements of the basic algorithm lies
within the handling the time remaining at the end of the
work phase. Namely, the introduction of B-typed links made

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 51



the algorithm closer to the work-conserving schedulers, when
compared to pure A-type schedulers, but still, there are two
cases when the output link is wasted:

• in A-type links, when the input queue is empty,
• in both types of links, when the next packet in the queue

needs more time for its transmission than is left in the
current phase (tail-time).

While the former is important for maintaining the high
performance of A-type links (during their idle time, a packet
entering currently attended queue could be transmitted im-
mediately), the latter could be altered. Instead of waiting for
the phase to end – skip to the next phase. This alteration,
called later a tail optimization, changes the total cycle length,
making it shorter. Because only the idle time is dropped
from the cycle, the link guarantees will not degrade. This
modification may, however, complicate by far the analysis
of the scheduler, when the goal is finding the exact (not
boundary) performance characteristics, therefore it will not be
used a default configuration.

IV. RESULTS

In the following section we present simulation results which
underline the differences between both presented approaches
(phase-wise and packet-wise). They were obtained by means
of the OMNet++ simulator [14] in version 4.2.2.

Each performed experiment lasted 30s of the simulated time,
each queue had capacity of 20 packets, the phase durations
were all set to 30µs. There were two virtual links created - the
first of type B, the second of type A, served by a physical link
of 1Gbps capacity. To both virtual links traffic characterized
by Poisson distribution was offered, to the type A link with an
unchanging average rate of 50Mbps, to the type-B link of rate
increasing from 0 to 600Mbps in 30Mbps increments. Packet
sizes were constant and equal to 500 bytes.

Fig. 5 shows average transmission latency of the type-A
link. As can be seen, in the phase-wise scheduler, the latency
increases as the traffic on type-B link rises. This happens
because the average length of the B-type link phase is getting
longer as the load increases. Because of that, packets on link
A need to wait longer until the phase B finishes.

In the packet-wise approach, the type-A link latency rises
only slightly, as the packets get mixed into the B-type phase.

Fig. 6 shows a different effect on the other, B-typed, link.
In the beginning, for low link B bitrates, the latency is lower.
As the input rate increases and link B saturates the time it
is assigned within a cycle, the latency difference between the
two approaches disappears. The observed output rate of both
links is the same, as can be seen in Fig. 7. The maximum
packet latencies are shown in Fig. 8 and Fig. 9.

Figures 10 and 11 compare the average and maximum
latency between the packet-wise scheduler and the same
scheduler with tail optimization (described at the end of the
previous section). In the latter approach, the latency is lower.
The difference is the most noticeable if the average packet size
is only slightly too large to fill a full link phase.

Now, in Tabs. I-IV the performance of the new scheduler is
presented in 15 different scenarios of link configurations and

offered loads. Again, 30µ phase durations, 500 byte packets
and buffers for 20 packet were used, as well as the physical
link of 1Gbps capacity. Analogous table for the phase-wise
scheduler can be found in [6] (Tab. 1).

In particular, Tabs. I and II present performance results for
the packet-wise scheduler without and with tail optimization,
respectively.

Tabs. III and IV present the differences between results for
the packet-wise scheduler (without and with tail optimization,
respectively) and the phase-wise scheduler ([6], Tab. 1). Cells
with bold fonts represent test results better for the packet-
wise scheduler – a positive output rate difference and negative
latency difference.

As we can see, the packet-wise scheduler with tail opti-
mization outperforms the phase-wise scheduler in terms of
the throughput of the virtual links and in terms of the average
latency of the virtual links. As for the maximum latency,
the packet-wise scheduler is also better in most scenarios.
However, in some cases it may offer larger maximum latency.

Fig. 5. Average latency of the type-A link.

Fig. 6. Average latency of the type-B link.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 52



Link type Input rate [Mb/s] Output rate [Mb/s] Avg T [µs] Max T [µs]
No. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 A A 500 500 464.77 464.85 121 120 198 195
2 A A 800 200 466.64 199.81 162 7 200 64
3 A B 500 500 466.84 464.14 117 122 172 192
4 B A 800 200 466.64 199.81 162 7 200 64
5 A B 800 200 739.15 199.81 74 20 172 90
6 A B 200 200 199.71 199.78 6 13 55 86
7 A B 100 100 99.89 99.84 5 11 32 62
8 A A A 333 333 333 309.85 309.91 309.88 180 179 179 286 292 304
9 A A A 700 200 100 311.09 200.02 99.96 247 13 7 310 254 89
10 A A A 100 100 100 99.82 99.86 99.85 8 8 8 103 97 104
11 A B B 333 333 333 311.59 310.12 310.18 173 181 181 258 281 282
12 A B B 700 200 100 644.04 200.02 99.96 83 23 23 240 125 113
13 B B A 700 200 100 370.96 200.02 99.96 205 36 8 282 259 73
14 B A B 700 200 100 419.85 200.02 99.96 179 9 32 280 109 131
15 A B B 100 100 100 99.82 99.86 99.85 5 19 18 43 86 87

TABLE I
THE PERFORMANCE OF THE VIRTUAL LINKS IN THE PACKET-WISE SCHEDULER.

Link type Input rate [Mb/s] Output rate [Mb/s] Avg T [µs] Max T [µs]
No. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 A A 500 500 487.4 487.44 80 79 189 190
2 A A 800 200 486.36 199.82 155 7 193 58
3 A B 500 500 491.44 485.96 67 87 160 190
4 B A 800 200 486.36 199.82 155 7 193 58
5 A B 800 200 775.34 199.81 52 19 160 90
6 A B 200 200 199.71 199.78 6 13 47 81
7 A B 100 100 99.89 99.84 5 11 29 56
8 A A A 333 333 333 324.58 324.8 324.65 120 117 118 285 278 282
9 A A A 700 200 100 321.86 200.02 99.96 238 12 7 306 214 77
10 A A A 100 100 100 99.82 99.86 99.85 8 7 7 96 93 96
11 A B B 333 333 333 328.48 325.66 325.52 90 120 119 240 263 268
12 A B B 700 200 100 675.57 200.02 99.96 59 21 22 210 117 93
13 B B A 700 200 100 387.68 200.02 99.96 196 34 7 273 217 73
14 B A B 700 200 100 437.85 200.02 99.96 171 8 31 256 87 115
15 A B B 100 100 100 99.82 99.86 99.85 5 19 18 39 84 85

TABLE II
THE PERFORMANCE OF THE VIRTUAL LINKS IN THE PACKET-WISE SCHEDULER WITH TAIL OPTIMIZATION.

Link type Input rate [Mb/s] Output rate [Mb/s] Avg T [µs] Max T [µs]
No. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 A A 500 500 0.8 0.97 4 3 22 19
2 A A 200 800 -0.03 -0.01 1 -10 24 -25
3 A B 500 500 0.53 0.15 4 5 -4 16
4 B A 800 200 -0.03 0 1 -10 24 -31
5 A B 800 200 -1.05 0 1 0 -4 2
6 A B 200 200 0 0 -2 -7 -5 -6
7 A B 100 100 0 0 0 -8 -6 -2
8 A A A 333 333 333 0.82 0.91 0.86 8 7 7 20 26 38
9 A A A 700 200 100 -0.02 0 0 3 -24 -23 44 -10 -45

10 A A A 100 100 100 0 0 0 -22 -22 -22 -32 -29 -30
11 A B B 333 333 333 0.28 -0.02 -0.02 9 13 13 -8 15 16
12 A B B 700 200 100 -1.44 0 0 1 0 -1 0 -8 -1
13 B B A 700 200 100 -1.15 0 0 3 -3 -15 16 -1 -55
14 B A B 700 200 100 14 0 0 2 -12 -2 14 -27 11
15 A B B 100 100 100 0 0 0 -2 -2 -3 -20 -10 0

TABLE III
PERFORMANCE DIFFERENCES BETWEEN THE PACKET-WISE SCHEDULER AND THE PHASE-WISE SCHEDULER (TAB. 1 IN [6]).

A. Comparison to DRR scheduler

Fig. 12 and 13 depict results of experiments involving
a packet-wise, tail-optimised scheduler and a very popular
Deficit Round Robin (DRR) scheduler. In the experiment,

traffic sent through an A-typed link has a constant average rate
of 50Mbps. Traffic on a link-B gradually grows from 0Mbps to
720Mbps. Phase times and packet sizes are the same as in the
previous experiments – 30µs and 500B – splitting the physical

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 53



Link type Input rate [Mb/s] Output rate [Mb/s] Avg T [µs] Max T [µs]
No. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 A A 500 500 23.43 23.56 -37 -38 13 14
2 A A 200 800 19.69 0 -6 -10 17 -31
3 A B 500 500 25.13 21.97 -46 -30 -16 14
4 B A 800 200 19.69 0.01 -6 -10 17 -37
5 A B 800 200 35.14 0 -21 -1 -16 2
6 A B 200 200 0 0 -2 -7 -13 -11
7 A B 100 100 0 0 0 -8 -9 -8
8 A A A 333 333 333 15.55 15.8 15.63 -52 -55 -54 19 12 16
9 A A A 700 200 100 10.75 0 0 -6 -25 -23 40 -50 -57
10 A A A 100 100 100 0 0 0 -22 -23 -23 -39 -33 -38
11 A B B 333 333 333 17.17 15.52 15.32 -74 -48 -49 -26 -3 2
12 A B B 700 200 100 30.09 0 0 -23 -2 -2 -30 -16 -21
13 B B A 700 200 100 15.57 0 0 -6 -5 -16 7 -43 -55
14 B A B 700 200 100 17.86 0 0 -6 -13 -3 -10 -49 -5
15 A B B 100 100 100 0 0 0 -2 -2 -3 -24 -12 -2

TABLE IV
PERFORMANCE DIFFERENCES BETWEEN THE PACKET-WISE SCHEDULER WITH TAIL OPTIMIZATION AND THE PHASE-WISE SCHEDULER (TAB. 1 IN [6]).

Fig. 7. Rate of links.

Fig. 8. Maximum latency of the type-A link.

link evenly. DRR does not have a concept of A/B-typed links

Fig. 9. Maximum latency of the type-B link.

and treats them equally.
It can be seen that in the moment the B-typed link exceeds

its allotted bandwidth, the average latency of A-typed link
continues to grow for DRR scheduler case. When the packet-
wise scheduler (and phase-wise) is in use, it throttles ill-
behaved link as can be seen on Fig. 13.

Both schedulers in this scenario allow link A to transmit
without dropping its packets, therefore output rate for both
schedulers is exactly the same and depicted as a solid black
line on Fig. 13.

V. CONCLUSION

We have analyzed shortcomings of the recently proposed
mechanisms for creation of virtual links and suggested two
methods of optimization. The described methods can improve
the parameters of the created virtual links, especially in terms
of lowering the average latency and increasing throughput
without giving up scheduling guarantees.

Furthermore, the software implementation of the resulting
scheduler needs to wake up the CPU less frequently, which

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 54



Fig. 10. Average latency of the type-A and B link in scheduler with and
without the tail-time optimization.

results in a more efficient resource consumption within virtu-
alized environments.

Acknowledgement

This work was partially supported by the Polish National
Science Centre under Grant No. N N516 479240.

REFERENCES

[1] T. Fortuna, A. Chydzinski, Packet-wise Scheduler for Virtualization
of Links with Partial Performance Isolation, Proc. of International
Conference on Information Technology and Computer Networks, pp.
17-23, Antalya, October 2013.

[2] Kurt Tutschku, Towards the Future Internet: virtual networks for
convergent services, Elektrotechnik und Informationstechnik 126(7-8),
pp. 250–259, 2009.

[3] W. Burakowski et. al. Ideal device supporting virtualization of network
infrastructure in System IIP (in Polish), Proc. of KSTiT’11, Lodz,
Poland, pp. 818–823, September 14-16, 2011.

[4] W. Burakowski, H. Tarasiuk, A. Beben, G. Danilewicz, Proc. of SNPD,
Kyoto, August 2012. IEEE Computer Society, pp. 679–684, August 8–
10, 2012.

Fig. 11. Maximum latency of the type-A and B link in scheduler with and
without the tail-time optimization.

Fig. 12. Comparison of average latency of the type-A and B link between
packet-wise tail-optimized scheduler and DRR.

[5] A. Chydzinski, M. Rawski, P. Wisniewski, B. Adamczyk, I. Olszewski,
P. Szotkowski, L. Chrost, P. Tomaszewicz, D Parniewicz, Virtualization
Devices for Prototyping of Future Internet, Proc. of SNPD, Kyoto,
August 2012. IEEE Computer Society, pp. 672-678, 2012.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 55



Fig. 13. Comparison of link output rates for a packet-wise scheduler and
DRR.

[6] T. Fortuna and A. Chydzinski, Scheduler for Virtualization of Links
with Partial Performance Isolation, Communications in Computer and
Information Science, Springer, Volume 370, pp. 446–455, 2013.

[7] M. Sosnowski and W. Burakowski, Analysis of the system with
vacations under Poissonian input stream and constant service times,
Proc. of Polish Teletraffic Symposium, pp. 9–13, Zakopane, December
6-7, 2012.

[8] K. K. Leung and M. Eisenberg, A Single Server Queue with Vacations
and Gated Time-Limited Service, IEEE Transactions on Communica-
tions, vol. 38, no. 9, pp. 1454–1462, 1990.

[9] K. K. Leung and M. Eisenberg, A single-server queue with vacations
and non-gated time-limited service, Performance Evaluation, Volume
12, Issue 2, pp. 115–125, 1991.

[10] H. Takagi and K. K. Leung, Analysis of a discrete-time queueing
system with time-limited service, Queueing Systems, Volume 18, Issue
1-2, pp. 183–197, 1994.

[11] T. Katayama, Waiting time analysis for a queueing system with time-
limited service and exponential timer, Naval Research Logistics vol.
48, issue 7, pp. 638–651, 2001.

[12] N. Tian and Z. G. Zhang, Vacation Queueing Models - Theory and
Applications, Springer, New York, 2006.

[13] B. Adamczyk, A. Chydzinski, On the performance isolation across
virtual network adapters in Xen, Proc. of International Conference
on Cloud Computing, GRIDs, and Virtualization. pp. 222-227, Rome,
September 25-30, 2011.

[14] http://www.omnetpp.org

[15] B. Adamczyk, A. Chydzinski, Performance Isolation Issues in Network
Virtualization in Xen, International Journal on Advances in Networks
and Services, vol. 5 no 1 & 2, pp. 139-148, 2012.

[16] T. Fortuna, B. Adamczyk, Improving packet reception and forwarding
within virtualized Xen environments, Communications in Computer
and Information Science, Springer, Volume 291, 153-160, 2012.

Tomasz Fortuna received his MSc degree in com-
puter science from the Silesian University of Tech-
nology, Gliwice, Poland, in 2011. He is interested
in a broadly defined information technology and
science including computer networks, databases, se-
curity and microelectronics. He is currently pro-
fessionally involved at Ministry of Internal Affairs
group COI as a systems architect for a government
database systems.

His academic work focuses on the aspects of
performance isolation in computer networks. He

designs and tests discrete-event network simulators of packet schedulers which
later are implemented within the Linux kernel and Xen hypervisor. He is an
author of articles on the topic of isolation in network schedulers and problems
of packet reception and transmission on the x86 hardware.

Andrzej Chydzinski received his MS (in applied
mathematics), PhD (in computer science) and DSc
(in computer science) degrees from the Silesian
University of Technology, Gliwice, Poland, in 1997,
2002 and 2008, respectively. He is currently a pro-
fessor in the Institute of Informatics of this uni-
versity. His academic and professional interests are
with computer networking, in particular with per-
formance evaluation of computer networks, Future
Internet design, active queue management in Internet
routers, mathematical modelling, queueing theory

and discrete-event network simulators.
Prof. Chydzinski authored and co-authored 4 books, about 40 conference

papers and about 40 journal articles, including papers in Telecommunication
Systems, Performance Evaluation, Pattern Recognition, Microprocessors and
Microsystems, Queueing Systems, Stochastic Models, Mathematical Problems
in Engineering, Applied Mathematical Modelling and other. He is also
reviewing articles for several high-quality journals, including IEEE/ACM
Transactions on Networking, Annals of Operations Research, Applied Math-
ematical Modelling, Queueing Systems, Mathematical Problems in Engineer-
ing, International Journal of Applied Mathematics and Computer Science,
Journal of Network and Computer Applications, Performance Evaluation and
other.

Prof. Chydzinski is a Technical Program Committee member for several
conferences. He was (and is) a leader of several scientific projects founded
by Polish state and European Union. Since January 2011 he has been an IEEE
Senior Member.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 8, 2014

ISSN: 2074-1294 56




