
 

 

  
Abstract—Data Encryption Standard was a main public 

encryption standard for more than 20 years, but now it is considered 
insecure. However, there are still numerous proposals of new 
lightweight cipher designs similar to DES, some of them only 
consisting of 4 Feistel rounds. It is known that there exist generic 
distinguishers for 4-round Feistel cipher, but their complexity scales 
exponentially with the cipher size. In the theoretical analysis, an ideal 
round function is considered. In this article we focus on a model of 
Feistel ciphers with design similar to DES. The round function 
consists of bit expansion, S-box application, and permutation of bits. 
We show that practical DES-like designs cannot have only 4-rounds, 
even if the S-boxes are key-dependent, due to the impossible 
differential attacks. 
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I. INTRODUCTION 
ATA Data Encryption Standard (DES) [4] was a public 

symmetric encryption standard for more than 20 years. 
Now it is considered insecure due to short 56-bit keys and only 
64-bit block size, and due to linear [11] and differential [2] 
attacks. It was replaced by the Advanced Encryption Standard 
(AES) [12], but in many legacy applications it is still in use, 
either in the original form, or as TDEA, known also as Triple 
DES.  

Many applications in the areas of mobile computing, 
e-health services, wireless sensor networks, etc. require a 
simple way to secure communication channels. AES, as a 
current symmetric encryption standard provides robust and 
secure encryption. Its nice mathematical description provides 
alternative variants that can be adapted where public standard 
is not suitable [5]. However, AES and its variants can be too 
complex and costly for some applications, e.g., when only 
80-bit security is required. The balancing issues between 
cipher security and implementation costs are the main object 
of study of the lightweight cryptography. Lightweight 
cryptography focuses on a simple cipher designs that provides 
enough security with lower costs in hardware or software 
implementations. 

The question of general lower bounds on implementation of 
ciphers with given security criteria is an open problem, 
although some results are known for specific types of Boolean 
functions that are important building blocks of the ciphers [6]. 
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Thus, design of lightweight ciphers is mostly influenced by the 
known standard cipher designs, including the DES. There are 
many promising lightweight variants of DES such as DESL 
[9]. 

In [13], an extremely lightweight version of DES is 
proposed with only 4 rounds of Feistel encryption. It is already 
known that such a design is insecure from the theoretical point 
of view [14], due to collision attacks. However, the complexity 
of these attacks is /4(2 )nO , where n  is the block size. Thus, 
it might seem that problems with 4-round DES-like cipher can 
be avoided by large enough block size. In this paper we show a 
practical key-reconstruction attack on generalized 4-round 
DES-like cipher. Its complexity depends on the S-box size and 
expansion factor, both of which cannot be increased too much 
(due to implementation constraints). This leads to a conclusion 
that 4-round DES-like cipher constructions are inherently 
insecure and should not be used in practice. 

II. PRELIMINARIES 
In this section we summarize basic notations and definitions. 
First, we introduce the DES-like ciphers as a generalization of 
the design of the original Data Encryption Standard. Then we 
provide basic preliminaries on differential cryptanalysis and 
impossible differential attacks. 

A. DES-like ciphers 

Let 2 2 2: B K Bn n ne Z Z Z× →   be a block cipher operating on 

Bn -bit blocks and having Kn  bit key. We construct function 
e  as a composition of partial functions that denote the 
individual steps of the encryption algorithm. 

We call e  a generalized DES cipher, if it has a Feistel 
structure, and its round function consists of bit expansion, key 
addition, S-box evaluation and bit permutation layers. 

A cipher with Feistel structure works as follows: 
 

1. Split the input string into left and right half, 
2. Transform right part with a (key-dependent) round 

function F  and XOR it into the left part, 
3. Swap the two parts. 

 
This is repeated r  times, where each repetition of this 

process will be denoted as a round (of encryption). 
Mathematically, let ( | )x l r=  denote the input string. 
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Then ( | ( ))ky r l F r= ⊕  is an output string of one Feistel 

round ( ⊕  denotes XOR operation on bit strings). 
Let 2Bn m=  for some positive integer m , and let 

n m≥ , and let s  be an integer that divides both m , and n . 

Let 2 2: ( )Kn n rKS Z Z→  denote a key schedule algorithm. 

This algorithm provides r  subkeys 1 2, , , rk k k…  given a 

master key k . I.e., 1 2( ) ( , , , )rKS k k k k= … . Subkeys are 
used to define key dependent round functions for Feistel 
cipher. 

Let / /
2 2: n s m s

i Z Zσ ×  denote any Boolean function. We 
define S-box layer (containing s  parallel S-boxes) as a 

function 2 2: n mS Z Z× , where 
 

0 / 1 / 1( , , , , , )n s n s nS x x x x− −… … =  

               ( )1 0 / 1 / 1( , , ), , ( , , ) .n s s n n s nx x x xσ σ− − −… … …  

 
I.e., we apply s  S-boxes in parallel on ( / )n s -bit 

substrings of the input, producing corresponding ( / )m s -bit 
substrings of the output. 

Let : n mZ Zε → , n m> , such that for every my Z∈ , 

there is at least one nx Z∈  such that y xε= . Bit expansion 

function 2 2: m nE Z Z×  is defined as 

 ( )0 1 1 (0) (1) ( 1)( , , , ) , , , .m nE x x x x x xε ε ε− −… = …  

This means that each input bit is copied into output bits (in 
any order), and some of the input bits can occur in the output 
multiple times (are duplicated, triplicated, etc.). 

Let : m mZ Zπ →  be a bijection. Bit permutation function 

2 2: m mP Z Z×  is defined as 

 ( )0 1 1 (0) (1) ( 1)( , , , ) , , , .m nE x x x x x xπ π π− −… = …  

This means that each input bit is copied into output bits in 
the order prescribed by permutation π . 

Round function 2 2 2: m n mF Z Z Z× →  of a generalized DES 
cipher can be written as 

 ( , ) ( ( ( ) )),i iF x k P S E x k= ⊕  

where 2 2: n mS Z Z×  denotes the S-box layer, 2 2: m nE Z Z×  

is the bit expansion, and  2 2: m mP Z Z×  is the bit permutation.  
In non-mathematical terms, generalized DES is a Feistel 

cipher, with round function that first performs bit expansion 
(takes m  input bits, and reorders/copies them to n  output 
bits), XORs the expanded input with the round key, applies 
S-boxes in parallel, and finally mixes the output bits with bit 
permutation P . It is schematically denoted in Figure 2.  

B. Differential cryptanalysis 
Differential cryptanalysis was introduced by Biham and 

Shamir in 1991 [2]. They attack DES-like ciphers by studying 
the statistical distribution of differences during the encryption 
process. Classical differential cryptanalysis requires the 
knowledge of S-boxes to produce a statistical model of S-box 
differential response, i.e., the probability that a given change 
of S-box input produces a particular S-box output difference. 

A good overview of the standard differential cryptanalysis is 
provided in [7]. The first step in the attack is the study of 
S-boxes. The attacker computes a differential profile of the 
S-box 2 2: n mS Z Z×  by computing probabilities  

 , 1 / 2 { ; ( ) ( ) } ,n
a bp x S x S x a b= ⊕ ⊕ =  

for each , 0a b ≠ . Here ,a bp  is a probability that for a 

random input of the S-box and given input difference a  the 
S-box produces output difference b . The attacker examines 
the linear parts of the cipher (in DES-like cipher these are just 
expansions and bit permutations, and the Feistel scheme itself), 
and identifies differential trajectories. A differential trajectory 
is a path of some selected difference through the encryption 
scheme under condition that some specific input-output 
difference pairs are realized on S-boxes in this path. 
Multiplying differential probabilities gives a good estimate for 
the probability dp  that given input difference of the cipher 
causes the expected output difference (corresponding to the 
studied trajectory). If dp  is significantly higher than the 
probability that such an output difference can occur randomly, 
it can be exploited in the distinguishing attack, or even in key 
recovery attacks.  

A traditional differential cryptanalysis requires the 
knowledge of S-boxes and the structure of the cipher to 
compute the differential profiles and to search for suitable 
differential trajectories. When S-boxes are key dependent, or 
kept secret in other way, the standard techniques of differential 
cryptanalysis are thwarted (or at least they are not so 
straightforward). Still, in the later section we will show that in 
generalized DES we can adapt a method of impossible 
differentials [3], in a way that does not require the knowledge 
of concrete S-boxes. 

Impossible differential cryptanalysis is based on those 
differences which have zero probability to occur. In this case 
we do not work with individual trajectories and differences, 
but instead focus on the sets of differences. The attacker must 
identify a large set of impossible differences. E.g., suppose 
that some specific input difference can only change the even 
number of bits in the output. Then every output difference with 
odd Hamming weight becomes impossible, and the set of all 
output differences with odd Hamming weight becomes a set of 
impossible differences. This creates a distinguisher for the 
cipher, because in ideal case (a random permutation) half of 
the differences can have odd Hamming weight.  

It is generally more difficult to identify impossible 
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differentials in a cipher. To show that some set of differentials 
it is necessary to show that there is no way that the input 
difference can cause any of the impossible output differences, 
so the attacker must rule out every possible differential 
trajectory. However, it is relatively easy to identify impossible 
differentials in ciphers with small number of rounds, or weak 
diffusion. One of possible techniques to identify impossible 
differences for ciphers with more rounds is the technique of 
Φ  matrix used in [6]. 

Matrix Φ  associated with some Boolean transformation 

2 2: n nF Z Z→  is a n n×  Boolean matrix that contains 1 in 

position ,i jPhi  if and only if a change of input bit i  can 

cause a change of output bit j  for some input x . I.e., 

, 1i jΦ =  iff ( )( ) ( ) 0iF x e F x⊕ ⊕ ≠  for some x , where 
( )ie  is a bit vector with a single 1 at i -th position. Let   

denote the Boolean product of matrices (with AND instead of 
multiplications, and OR instead of addition). It is easy to show 
that PhiΦ  have zeroes in those positions, where the i -th 
input of F F°  cannot influence j -th  output of  F F° . Thus, 
zeroes in Boolean powers of Φ  identify potentially useful 
impossible differential sets. 

III. IMPOSSIBLE DIFFERENTIAL ATTACK ON 4-ROUND DES-
LIKE CIPHER 

In this section we apply the impossible differential attack to 
the generalized DES-like cipher. An attacker starts by 
encrypting two plaintext pairs, which have a suitably selected 
single-bit difference. By studying the propagation of this 
difference in the Feistel scheme, and in the round function, the 
attacker can efficiently characterize a large set of impossible 
output differences from the third round of the scheme. This 
set of impossible differences can then be used to eliminate 
wrong (partial) key hypotheses, and to reduce the keyspace in 
an efficient way (as long as the size of the S-box is small). 

A. Difference propagation on the Feistel scheme level 
Let us study the response of Feistel cipher to a single bit 

change in the left half of input. The situation is depicted in 
Figure 1. First we encrypt any plaintext ( , )L Rx x , getting 

ciphertext ( , )L Ry y . The attacker chooses a single bit 

difference 2
mZδ ∈ , i.e., ( ) 1Hw δ = . He then encrypts the 

plaintext ( , )L Rx xδ⊕ , obtaining ciphertext  

 * *( , ) ( , ).L R L L R Ry y y d y d= ⊕ ⊕  
A good cipher should provide a strong avalanche effect, 

i.e., the output differences Ld  and Rd  should be 
unpredictable (with approximately one half of bits equal to 
zero, and one half equal to one).  

If we study the encryption in more detail, we can see that in 
the first round the input to round function 

1kF  is the same in 

both encryptions ( Rx ). Thus, the difference δ  is unchanged, 
and is only swapped to the right side (and zero difference is 
swapped to the left side). In the second round the input to 
function 

2kF  is different during the two encryptions, it differs 

exactly by the difference δ . If we do not know more details 
about the structure of F , we cannot predict how will the 
outputs of  

2kF  differ. We will denote the output difference in 

this second round ∆ . The difference ∆  gets swapped to the 
right side, and the difference δ  back to the left side. In the 
third round the input difference to 

3kF  is ∆ , which is 

unknown, thus we do not know the output difference of 
3kF  as 

well. However, we know that ∆  on right side is unchanged 
and gets swapped to the left side. In the fourth round 
difference ∆  is further changed by the output difference 
of 

4kF . 

Once the attacker obtains the ciphertexts and learns 
differences Ld , and Rd , he can propagate them backwards. 

Difference Ld  is exactly the input difference of 
4kF , and we 

can see that 3Ld d⊕  is the output difference of 
3kF . 

 

 
 

Fig. 1 The propagation of a difference in a 4-round Feistel 
scheme. 
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Difference Rd  is the XOR sum of ∆  and the output 

difference of 
4kF . Thus, if the attacker somehow knows 

subkey 4k , he can compute ∆  in the following way: 
 

4 4

*( ) ( ).R k L k Ld F y F y∆ = ⊕ ⊕  

 
The difference ∆  is an output difference of 

2kF  provided a 

single bit input difference δ . If F  has a DES-like structure 
described in Section \ref{S2}, only some of differences ∆  are 
possible. Let us denote a set of impossible differences ∆  
by  , i.e.,  

 ( ){ }2 2
; ( ) ( ) 0 .X k kPr F X F X δ= ∆ ⊕ ⊕ = ∆ =  

   
 
Given two P-C pairs ( )( , ), ( , )L R L Rx x y y , and 

( )* *( , ), ( , )L R L Rx x y yδ⊕ , attacker can use set   to quickly 

discard some of the potential subkeys used in the last round. 
The attacker chooses subkey value Tk , and computes 

 *( ) ( ).
T TT R k L k Ld F y F y∆ = ⊕ ⊕  

If 4Tk k= , T∆  cannot belong to set  , otherwise there is 

a chance proportional to / 2mR  that T∆  belong to  . Thus, 

if T∆ ∈ , the attacker immediately knows that 4Tk k≠ . 
This allows the attacker quick computation of the last subkey, 
which is an efficient attack on cipher if the subkey leaks 
information about the key, and if the subkey is not longer than 
the full cipher key.  However, if the cipher has DES-like 
cipher, we can do much better by studying the structure of 
function F  in more details. 

B. Impossible differentials in a round function 
First, let us consider how the set   is constructed. The 

attacker chooses a single bit difference δ . Let us suppose that 
the bit which is changed has index i . The expansion function 
E  propagates the change to all positions j  such that 

( )j iε = . The only S-boxes that are influenced by the change 
are those, where the change is propagated to. We call these S-
boxes active, and other S-boxes inactive.  

Suppose that min { ; ( ) }ia j j iε= = . The attacker will 

choose i  in such a way that he gets at most a  active S-boxes 
(and s a−  inactive S-boxes). When S-box is inactive, its 
inputs do not change between encryptions. This means that 
also its outputs do not change. The output difference of 
inactive S-box can only contain zero bits. On the other hand, 
the output difference bits of the active S-box can be various 
different bitstrings. If an S-box is known, attacker can restrict 

the set of possible output differences by analyzing the set of 
output differences for a given input difference ∆ , i.e., 
{ ( ) ( )}S x S x⊕ ⊕ ∆ . In the worst-case scenario from the 
attacker's point of view, the S-box is unknown. Still, the 
attacker can consider that any non-zero bit string is a possible 
output difference from an active S-box. 

In this harder case, when the attacker does not know the 
S-boxes, we cannot, and do not need to, model the distribution 
of output differences from active S-boxes. Still, due to the 
presence of inactive S-boxes, we can be certain that the 
number of non-zero bits in difference is at most /a m s⋅  (out 
of possible m  bits).  

In the last step of the round function, the known zero-
difference bits from the output of inactive S-boxes are further 
distributed by permutation function P . A difference ∆ , 
which has non-zero bit in a position that is an output of 
inactive S-box after permutation P  is impossible difference 
for the whole round function. If permutation P  is secret, the 
attacker still knows the minimal number of zero bits that any 
output difference can have. The scenario with secret P  is 
however unlikely, as it can be easy to extract hidden wiring 
from hardware implementations, and it is much more difficult 
to implement key-dependent bit set of permutations than a 
single fixed permutation. 

Let us suppose that E , and P  are known, and S -boxes 
can remain hidden from the attacker. The attacker can 
characterize the set   by associating it with a bit mask µ , 
which has 0 in those positions that correspond to outputs of 
active S-box permuted by P , and 1 in a positions 
corresponding to per muted outputs of inactive S-boxes. The 
attacker can quickly test whether ∆ ∈ : compute bitwise 
AND between ∆  and µ . If it is non-zero, the difference ∆  is 

impossible. Moreover, the attacker can test ∆  in parts: 
compute bitwise AND just between a selected bits of ∆  and 
corresponding bits of µ . The non-zero result immediately 

 

 
 

Fig. 2 The propagation of a single-bit difference inside a 
DES-like round function. 
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tells us that difference ∆  is impossible, regardless of the rest 
of the bits that were not tested. 

Let us provide a small example. The simplified situation is 
denoted in Figure 2. The input difference 

00001000 0000 0000δ =  is expanded by E  into 

difference 000001001000 000000 000000 . This 
difference changes the inputs of the first two S-boxes, which 
become active S-boxes. The remaining two S-boxes are 
inactive. The bits of output difference corresponding to 
outputs of active S-boxes can potentially have both zero and 
non-zero value, denoted by '*' in the picture. The output 
differences are distributed by permutation P . Depending on 
the key, and on the actual inputs, we can observe any output 
difference in the form '**00 **00 *0*0 *00*'. For the attack, 
we characterize the impossible differential set by the bit mask 

1100110010101001µ = . 

C. Key extraction attack  
Once we compute the mask µ , we can focus on the attack 

on the last round subkey. We want to find all values of Tk  that 
do not lead to impossible differentials. We do not need to 
compute the whole output of 

TkF  to discard some key, it 

suffices to find some part of T∆  that can be compared with 

mask µ  and discarded. Key Tk  is XOR-ed to expanded input 

Ly , and *
Ly , respectively, before computing the output of S-

boxes. Thus, to compute the /m s  bits of T∆ , we only need 

to guess /n s  bits of Tk , and the contents of a single S-box. 
If the S-box is key-dependent, we guess the corresponding key 
bits that are used to generate the S-boxes. After computing the 
corresponding /m s  bits of the difference  T∆ , we check it 
with the corresponding part of the mask µ . If the difference 

T∆  is impossible, we know that the key guess was incorrect.  
We can separate the search for a correct subkey and 

S boxes: Just work with a single hypothesis for S-boxes, and 
try to find the correct subkey. If the S-box hypothesis is 
incorrect, the impossible differentials will eliminate all 
subkeys, otherwise a correct subkey will remain (and S-boxes 
are found). 

For each part of the key, we test only /2n s  hypotheses 
separately, for a total work of /2n ss , instead of 2n  tests, 
which is an exponential speedup. E.g. for classical DES, 

48n = , and to find the subkey using a whole T∆ , we would 

need 48 142 3 10≈ ⋅  tests. If we test 4-bit blocks of T∆  

separately, we only need 68 2 512⋅ =  tests. To prevent this 
attack, we would need to significantly increase the value 

/n s . However, the size of S-boxes is also exponential 
in /n s , thus it is not possible to increase the size due to 

implementation constraints.  
A single set of two P-C pairs ( )( , ), ( , )L R L Rx x y y , and 

( )* *( , ), ( , )L R L Rx x y yδ⊕  provides only a partial reduction 

in possible key space. Suppose that we test 4-bit blocks 
( / 4m s = ). If the corresponding part of mask µ  is 0000, we 
cannot eliminate any key hypothesis. We try to avoid such 
blocks, or to test two or more blocks together in such a case 
(so that the corresponding mask does not contain only zeros). 
If the corresponding mask has a single bit equal to one, we can 
eliminate approximately half of hypotheses. If the mask has all 
ones, only approximately 1 out of 16 hypotheses is not 
eliminated. Furthermore, the attacker can provide different sets 
of input P-C pairs, each of which will eliminate a fraction of 
remaining key hypotheses, until at most one will remain. The 
number of required sets of P-C pairs is logarithmic in the key 
space (comparable to /n s , instead of /2n s ). Thus the attack 
has very low complexity even for ciphers with large blocks 
and key sizes. 

After the attack on the last round is successful, we can either 
reconstruct the original key (depending on the key schedule), 
or adapt the attack to a simpler 3-round structure. 

IV. CONCLUSIONS 
The famous results of Luby and Rackoff [10] show that 

using Feistel construction one can transform a pseudorandom 
function into a pseudorandom permutation with three round 
Feistel cipher. These results were further extended to 4-round 
Feistel constructions and further by Patarin [14]. This does not 
however mean, that it is possible to use just 4-round Feistel 
scheme to construct a secure cipher, such as proposed in [13], 
due to a requirement that the round function is already an ideal 
pseudorandom function.  

In this article we study the impossible differential attacks on 
4-round DES-like cipher. We show that it is possible to mount 
a key recovery attack on such a cipher with complexity scaling 
with the size of the S-box, instead of with the block size. The 
attacker uses a slow diffusion of the Feistel scheme, and a 
limited local diffusion of a single round. The attack can work 
without the knowledge of the S-boxes, but can be made more 
efficient, if the S-boxes are known.  

It can be concluded that similar designs are inherently 
insecure and should not be used in applications that require 
secure communication. Still, the 4-round construction has 
relatively good avalanche, thus it might be possible to use it in 
place where only avalanche effect and not strong security is 
required, e.g., in steganographic systems [8].  

It is possible to strengthen the cipher by increasing the 
number of rounds, but it is not clear how many rounds are 
required to provide enough resistance against more 
sophisticated attacks than the one presented in this paper. To 
study more advanced attacks, graph techniques, similar to [6] 
can be adapted to search for impossible differential sets. 

From the security point of view, the best recommendation is 
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to use standard ciphers, such as AES [12] instead of custom 
designs, and try to conserve resources in other parts of the 
system. Alternatively, it is possible to consider replacing block 
cipher with a fast and simple stream cipher [1] (see also [15] 
for stream cipher overview). 
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