

Abstract—This paper presents an improvement of a classic

Dijkstra algorithm to the domain of sampling based motion. The
algorithm uses an image, obtained by a camera. The algorithm
processes the image to convert it into a matrix, presenting the
labyrinth with obstacles and walls. Afterwards the algorithm finds the
shortest path to a final target in the labyrinth. In contrast to the
classical Dijkstra’s algorithm, the presented algorithm compares the
size of the robot to the size of the obstacles on the way. A simulation
of the algorithm is developed to visualize the movement of the robot.
Experimental results, obtained by the simulation, are presented. The
potential of the proposed results is apparent both in terms of
reliability and quality of solutions found.

Keywords—Dijkstra algorithm, Labyrinth, Mobile robot, Path
planning, Wave moving process.

I. INTRODUCTION
OTION planning is one of the significant tasks in
intelligent control of mobile robots.

Motion planning of the robot is often decomposed into path
planning and trajectory planning. The aim of the trajectory
planning is to schedule the movement of a mobile robot along
the planned path [8]. One of the critical problems for the
mobile robots is path planning which is still an open one to be
studied extensively. Path planning allows robots find the
optimal path between two points.

Path planning research covers a wide area of robotics
research because it enhances robotic navigation systems in
both static and dynamic environments. With the perfect path
planning system, mobile robots can navigate by itself without
human intervention to reach the targeted destination [3].

The basic steps in path planning are:

The work presented in this paper was supported within the Startup
Scientific Project № 1, 2015, Technical University of Varna, “Research and
development of algorithms for control of mobile robots under extreme
conditions in virtual reality”.

V. Naumov is with the Department of Automation of Manufacturing,
Technical University of Varna, Bulgaria, e-mail: velko.naumov@abv.bg

M. Karova is with the Department of Computer Science and Technology,
Technical University of Varna, Bulgaria, e-mail: mkarova@ieee.bg

D. Zhelyazkov is with the Department of Computer Science and
Technology, Technical University of Varna, Bulgaria, e-mail:
d.zhelyazkov.7331@gmail.com

M. Todorova is with the Department of Automation of Manufacturing,
Technical University of Varna, Bulgaria, e-mail: mgtodorova@tu-varna.bg

I. Penev is with the Department of Computer Science and Technology,
Technical University of Varna, Bulgaria, e-mail: ivailo.penev@tu-varna.bg

V. Nikolov is with the Department of Computer Science and Technology,
Technical University of Varna, Bulgaria, e-mail: v.nikolov@tu-varna.bg

V. Petkov is with the Department of Automation of Manufacturing,
Technical University of Varna, Bulgaria, e-mail: v.petkov@tu-varna.bg

- First step. Choosing a map representation that is
appropriate to the application;

- Second step. Reducing the robot to a point-mass, which
allows planning in the configuration space.

This allows the application of generic shortest path finding
algorithms, which have applications in a large variety of
domains. Algorithms to find a shortest path are important not
only in robotics, but also in network routing, video games and
gene sequencing.

Therefore a big number of algorithms and methods have
been researched for finding of the shortest path between the
start and the goal points. The approaches can broadly be
categorized into on-line and off-line techniques. Some of the
commonly used algorithms are: Djikstra algorithm, A*
algorithm [7], wavefront-based planners, breadth-first search
(BFS), depth-first search (DFS), rapidly exploring random
trees and etc [3], [5]. They are shortly summarized below.

Dijkstra’s algorithm is one of the simplest algorithms.
Starting from the initial vertex where the path should start, the
algorithm marks all direct neighbors of the initial vertex with
the cost to get there. It then proceeds from the vertex with the
lowest cost to all of its adjacent vertices and marks them with
the cost to get to them via itself if this cost is lower. Once all
neighbors of a vertex have been checked, the algorithm
proceeds to the vertex with the next lowest cost [6].

A* is like Dijkstra’s algorithm in that it can be used to find a
shortest path. A* algorithm is the most popular choice for path
finding, because it is fairly flexible and can be used in a wide
range of contexts. It is one of a family of graph search
algorithms that follow the same structure. These algorithms
represent the map as a graph and then find a path in that graph.
Depending on the environment, A* algorithm might
accomplish search much faster than Dijkstra’s algorithm.

An extension of A* that addresses the problem of expensive
re-planning when obstacles appear in the path of the robot, is
known as D*. Unlike A*, D* starts from the goal vertex and
has the ability to change the costs of parts of the path that
include an obstacle. This allows D* to re-plan around an
obstacle while maintaining most of the already calculated path.
A* and D* are computationally complex when the search
space is large.

The wavefront propagation algorithm has emerged as the
dominant method for path planning in discrete grid maps [2].
The strategy is based on the propagation of wavefronts that
encode the distance from the robot’s current location to any
point in its environment. The wavefronts propagate from the

Robot Path Planning Algorithm
Velko Naumov, Milena Karova, Danislav Zhelyazkov, Mariana Todorova, Ivaylo Penev, Ventsislav

Nikolov, and Vilian Petkov

M

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 9, 2015

ISSN: 2074-1294 96

source located on the centre right of the map. Each wavefront
generated is designated a higher value than the previous. The
shortest path can be determined by selecting any point on the
map and then tracing the highest descent of wavefronts back to
the source.

BFS is a systematic way of searching a graph: that is,
visiting every node. The root of the BFS search tree is the
node in the graph at which starts the search. The fringe is the
list, initially empty, of all nodes queued for expanding or
examining. The visited list is the list, initially empty, of all
nodes already visited, which prevents the search from going in
circles.

DFS and BFS are very closely related to each other. The big
advantage of DFS is that it has much lower memory
requirements than BFS, because it is not necessary to store all
of the child pointers at each level. The decision to choose one
over the other should be based on the type of data and what
you are looking for.

A more recent development known as Rapidly-Exploring
Random Trees (RRT) addresses this problem by using a
randomized approach that aims at quickly exploring a large
area of the search space. Although RRT quickly finds some
solution, smooth paths usually require additional search
algorithms that start from an initial estimate provided by RRT
[6].

Great attention has been given to Genetic algorithms [3],
[4], [8]. These algorithms are not only capable to find optimal
paths that satisfy the optimization criteria but are also
adaptable and robust not only in the static but also in the
dynamic environments. Compared to traditional approaches,
these methods have been proven as robust and effective search
techniques that can be used to optimize the robot path planning
(RPP) problem.

Path planning in spatial representation often requires the
integration of several approaches. This can provide efficient
and accurate navigation of a mobile robot.

An algorithm for planning the path of a mobile robot in a
labyrinth is presented in this paper. It processes an image,
obtained by a camera, to convert it into a matrix, presenting
the labyrinth with obstacles and walls. The shortest path to a
final target is found using the presented algorithm. It is based
on the Dijkstra’s algorithm. The difference is that it compares
the size of the robot with the size of an obstacle. The presented
algorithm is tested in labyrinth with varying sizes. The
performed simulations and obtained experimental results are
presented and analyzed.

II. BUILDING VIRTUAL LABYRINTH
In the presented algorithm the robot’s environment is

obtained by a camera (Fig. 1) and has the following properties:
1. every pixel of the image is analyzed and a map is

created as a two-dimensional array;
2. every pixel is transformed to a symbol according to

Table I;
3. the pixels’ coordinates correspond to the symbols

positions in the map.
This project is divided into 2 major areas: visual detection

of virtual labyrinth and path planning.

Fig. 1 Labyrinth scenes and robot movement

Table I. Relation between colors and symbols

RGB color meaning symbol
>200,>200,>200 light space ‘ ’
>200,<100,<100 nuance

red
start / robot ‘*’

<100,>200,<100 nuance
green

end / exit ‘o’

other other obstacle /
wall

‘W’

When green or red pixel occurred some additional

computations are made to find the minimal and maximal
values of coordinates of the robot position and the labyrinth
exit (Eq.1).

(xrmin, yrmin : xrmax, yrmax);(xemin, yemin : xemax, yemax) (1)
The width of the exit and robot are also calculated (Eq.2).
k = max((xrmax–xrmin), (yrmax–yrmin), (xemax-xemin),(yemax-yemin))

 (2)
Thus the algorithm guarantees that the robot will go through

wide enough paths.
The previous data is integrated within the programming

model of the labyrinth. It is presented as a global object, called
data transfer object (DTO), accessible from any other part of
the application including all interface implementations. This
global object is a pure data object without any functionalities
and it is able to self-validate and convert itself to plain text.
The validation aims to refuse invalid or incorrect pictures.

The virtual labyrinth can be constructed either by analyzing
a picture or by a scanning stream. The virtual labyrinth after its
processing is shown in Fig. 2.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 9, 2015

ISSN: 2074-1294 97

Fig. 2 Virtual labyrinth shown as specially ordered characters

III. OPTIMAL PATH PLANNING ALGORITHM
The potential path is formed on version of Dijkstra’s

algorithm. The difference is, that the presented algorithm
compares the size of the robot with the size of an obstacle.

A wave starting from the end of the labyrinth is observed as
a final unit that is moving from one point to a next neighbor
point. The wave gradually marks all points (units) directed to
the final point – Fig.3. This idea is further developed in the
application and is called Gasolisation. The difference is that in
our case the robot, respectively the final, are with different
width compared to the width of the walls and paths. The
marking points are replaced with marking lines (sequences of
points) with length k. The current traversing line in fact does
not search neighbor points but the whole neighbor lines. If the
robot is found the main wave stops it’s spreading and a new
small wave starts to spread trying to mark the robot. If this
does not succeed then this means that the area locating the
robot is too narrow and then the small wave stops and the main
wave continues. Otherwise if the robot is successfully marked
the algorithm is completed. If the main wave cannot continue,
because the all lines are marked, then an exception is thrown
saying that a path is not found. The algorithm works on the
characters file, that represents the virtual labyrinth, and the
marking is done by using the symbols ‘^’, ‘>’, ‘v’ and ‘<’.

Fig. 3 The wave moving

The algorithm consists of the following basic steps:

• Creation of a queue – a set of ordered points;
• Extraction of elements from the queue;

Checking of all neighbor points for each point. The possible

neighbors are in four directions – up, right, down, left.
A neighbor point is free, if the following conditions are

satisfied:
- the point is not a part of an obstacle;
- the point is not marked.
A free point is marked and added to the queue.
All free points are marked by its neighbors. The order of

marking forms the shortest path.
The whole algorithm is as follows (Fig. 4):

void FindPath(Dot startDot, Dot finalDot) {
 Queue<Dot> justAQueue;
 justAQueue.Add(finalDot);
 while (Dot currentDot == justAQueue.Pop()) {
 Array<Dot> neighbours = currentDot.GetNeighbours();
 foreach (Dot neighbour in neighbours) {
 if(neighbor.isObstacle || neighbor.isMarked)
 next;
 currentDot.Mark(neighbor);
 if (neighbor == startDot)
 return;
 justAQueue.Add(neighbor);
 }
 }
 throw new NoPathFoundException();
}

Fig. 4 Path-finding algorithm

IV. SIMULATION STUDIES AND RESULTS
For the simulation of the algorithm an application is created.

The input of the application is an image of a labyrinth. The
application implements the algorithm to convert the image into
a text format and to move an object from an initial position to
a final target (exit of the labyrinth).

The algorithm is tested by labyrinths with varying sizes

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 9, 2015

ISSN: 2074-1294 98

(different width and height in pixels). Examples of two
labyrinths are shown in Fig. 5 and Fig. 6.

The following times are measured for each labyrinth:
• time for labyrinth construction (i.e. converting the

image into text format, suitable for processing);
• time for obtaining a solution (i.e. finding a path to the

target);
• time for the movement of the robot to reach the target.

The results are summarized in Table II.

Fig. 5 480x304 pixels labyrinth

Result: The algorithm solves the planning problem (converts

the image, finds a path and moves the object to the exit) for
0.2 seconds.

Fig. 6 1000 x 820 pixels labyrinth

Result: The algorithm solves the planning problem for 0.3

seconds.

Table II. Results from tests of the algorithm with different

labyrinths
Width of

the labyrinth
(pixels)

Height of
the labyrinth
(pixels)

Labyrinth
construction
time (ms)

Time
for finding
a path (ms)

Whole
process
time (ms)

100 82 39 12 63
480 304 110 68 187
480 304 129 62 201
480 304 113 105 243

1000 820 171 106 300
1000 820 187 107 305
1600 1013 304 140 460

V. CONCLUSION
The results show, that the algorithm is able to move an

object in a labyrinth with large size (1600 x 1013 pixels) for
less than 500 ms. Such an image could be obtained by an usual
camera (for example the camera of a phone or a tablet).

There are at least two tasks to be performed in the future:
(1)The algorithm should be tested in real circumstances for

a real mobile robot to verify the applicability of the proposed
method.

(2)The effectiveness and feasibility of the algorithm should
be testified by different parameters: labyrinth types, path
distance, search speed of the optimal path.

(3)The proposed method can be transformed to dynamic
path planning method under an unknown environment.

A significant application of the presented algorithm exists in
the field of technology education. The algorithm has been
implemented in a real robot platform (in our case LEGO EV3
robot). This way we could demonstrate to students
fundamental concepts in computing and automation: path-
finding and search algorithms, robot programming, device
motion control, finite state machines, others. Furthermore the
algorithm is a suitable basis for comparison of different path
finding algorithms, for example breadth-first and depth first
search with A* algorithm.

REFERENCES
[1] A. Rodic, Navigation, “Motion Planning and Control of Autonomous

Wheeled Mobile Robots in Labyrinth Type Scenarios”, Volume 8,
Number 2, Intelligent Service Robotic Systems, IPSI Journal,
Transactions on Internet Research, TIR, ISSN 1820 - 4503, 2012, pp. 2-
9.

[2] A. Al-Jumaily, and C. Leung, “Wavefront Propagation and Fuzzy Based
Autonomous Navigation”, International Journal of Advanced Robotic
Systems, vol. 2, Number 2, ISSN 1729-8806, 2005, pp.093-102.

[3] N. Buniyamin, N. Sariff, W. A. J. Wan Ngah, and Z. Mohamad, “Robot
global path planning overview and a variation of ant colony system
algorithm”, International Journal Of Mathematics And Computers In
Simulation, issue 1, vol. 5, 2011, pp. 9 – 16.

[4] J. Su, and J. Li, “Path Planning for Mobile Robots Based on Genetic
Algorithms”, Proceedings of Ninth International Conference on Natural
Computation (ICNC), ISBN: 978-1-4673-4714-3, 2013, pp. 723-727.

[5] M. A. H. Ali, M. Mailah, and T. H. Hing, “Path Planning of Mobile
Robot for Autonomous Navigation of Road Roundabout Intersection”,
International Journal Of Mechanics, issue 4, vol. 6, 2012, pp. 203 –
211.

[6] N. Correll, “Introduction to Autonomous Robots”, 1st edition, ISBN-
13:978-1493773077, 2014.

[7] N. Sariff, and N. Buniyamin, “An Overview of Autonomous Mobile
Robot Path Planning Algorithms”, Proceedings of 4th Student
Conference on Research and Development, ISBN: 1-4244-0527-0,
2006, pp. 183-188.

[8] O. Hachour, Path planning of Autonomous Mobile robot, International
Journal of Systems Applications, Engineering & Development iss. 4,
vol. 2, 2008.

[9] S. Muldoon, L. Chaomin, F. Shen, and H. Mo, Naturally Inspired
Optimization Algorithms as Applied to Mobile Robotic Path Planning,
IEEE Symposium on Swarm Intelligence, ISBN: 978-1-4799-4458-3,
1994, pp. 1-6.

[10] http://www.redblobgames.com/pathfinding/a-star/introduction.html.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 9, 2015

ISSN: 2074-1294 99

	I. Introduction
	II. Building virtual labyrinth
	III. Optimal Path Planning Algorithm
	IV. Simulation studies and results
	V. Conclusion

