
 
Abstract—This paper considers recursive tracking of one mobile 

target using a sequence of time difference of arrival (TDOA) and 
frequency difference of arrival (FDOA) measurement pairs obtained 
by distributed sensor network in a three dimension situation. As the 
conventional target tracking using TDOA measurement is not 
accurate enough to estimate the target location, we use the TDOA 
and FDOA measurement signals together to estimate the location and 
the velocity of a target at discrete times. Although, the Kalman filter 
shows remarkable performance in calculation and location 
estimation, the estimation error can be large when the priori noise 
covariances are assumed with improper values. We proposed an 
adaptive extended Kalman filter (AEKF) to update the noise 
covariance at each TDOA/FDOA measurement and estimation 
process. Although many methods derive the estimates of position and 
velocity with iterative numerical techniques, the proposed AEKF 
method can be a good alternative to update the noise covariance 
guess under conditions of measurement error. The simulation results 
show that the algorithm efficiently reduces the position error and it 
also greatly improves the accuracy of target tracking.  It is proven 
that the AEKF algorithm deals with the nonlinear nature of the 
mobile target tracking problem successfully. 
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I. INTRODUCTION 
ASSIVE  target location and tracking have been of 
considerable interest in many fields, including radar, 
sonar, microphone arrays, sensor network, and wireless 

communication [1] . The target location and tracking system 
intercepts the electromagnetic signals radiated from an 
unknown target and analyses the intercepted signals to identify 
the type of an unknown target and estimate its position and/or 
velocity. Recently, demand for more accurate mobile target 
location has grown for establishing appropriate methods for 
location and tracking activities. Although various physical 
quantities can be utilized for estimating the unknown position 

of a target such as range, angle and Doppler shift, most of 
them are mainly based on different measurement information 
including Time of Arrival (TOA), Time Difference of Arrival 
(TDOA), Angle of Arrival (AOA), Received Signal Strength 
(RSS), and in various combinations [2]. Both time based (e.g., 
TOA and TDOA) and angle based (e.g., AOA) schemes have 
their own advantages and limitations [3].However, other, more 
advanced methods, require joint processing of the signals 
intercepted at two or more sensors - these are methods based, 
for example, TOA/TDOA methods require at least three non-
collinearly located Base Stations (BSs) to produce a two-
dimensional fix, while AOA schemes need only a minimum of 
two BSs. TOA/TDOA schemes generally have better accuracy 
while AOA schemes are highly range dependent when the 
mobile station is far away from the BS, a small AOA 
measurement error will result in a large localization error [4]. 
When there is relative motion between the sensors and the 
target, frequency difference of arrival (FDOA) can be used to 
estimate the velocity of a moving target as well as the target 
position. Hence, TDOA and FDOA measurements have been 
jointly utilized to simultaneously estimate target position and 
velocity [5]. 

Most importantly, target tracking uses only TDOA 
measurements which are not accurate to estimate the target 
location when the number of receivers is not enough [6,7,8]. 
To solve this problem, we use the TDOA and FDOA 
measurement signals together to estimate the location and the 
velocity of the target. The Kalman filter is well-known for 
solving the problem of the target location. To overcome the 
nonlinear problems, the extended Kalman filter (EKF) 
estimates the state through a linearization process [9,10]. The 
EKF uses priori guess to estimate the process and measurement 
noise covariance. As the circumstances change at different 
times, it’s difficult to track the position precisely when the 
priori values are estimated with too much error from the real 
values [11,12]. In order to overcome these problems, we 
propose an adaptive extended Kalman filter (AEKF) for precise 
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position tracking. Using the adaptive factor, the process and 
measurement error covariance can be modified to approach the 
real values, and then is used to deal with the TDOA and FDOA 
measurement signals together to estimate the location and the 
velocity of the target. The remainder of the paper is organized 
as follows. Section II provides problems of conventional 
methods. In section III, we introduce the system modeling for 
target localization. Section IV designs the adaptive extended 
Kalman filter (AEKF) algorithm for geolocation. The 
simulation results show the improved tracking accuracy in 
section V. Finally, the conclusions are given. 

II. PROBLEMS OF CONVENTIONAL METHODS 
Target localization is are a nontrivial problem because the 
measurements are nonlinearly related to the target location 
parameters. Due to this problem, the mean square error (MSE) 
is composed of two parts: the variance and the bias square. 
When the noise level is low and the observation period is short, 
the bias is not significant compared with the variance of the 
target position estimation [13]. Regardless of the localization 
algorithms used, the target location accuracy can be very 
sensitive to the accurate knowledge of the sensor positions and 
velocities. A slight error in receiver locations can lead to a big 
error in source location estimate. In application of target 
tracking, the location deviation has a great influence on 
performance of target tracking. Over the years, many 
algorithms have been proposed for the problem, including the 
iterative Taylor-series method, which a linearizing method is 
used to convert the system model to a linear least squares 
estimator with a nonlinear constraint. The Gauss-Newton 
iteration method is used to conquer the source localization 
problem. The conventional method cannot position target when 
the number of sensors is not enough for localization. In order to 
reduce this influence, B. Hao et al. put forward a bias reduction 
method for target localization using TDOA and gain ratios of 
arrival (GROA) [14]. However, the methods proposed by the 
above research can only be applied to the stationary target. For 
moving target, a new bias reduction algorithm using both 
TDOA and FDOA is proposed by H. W. Wei et. al. [15]. It can 
reduce the estimation error by adding new constraints to the 
original position equation. Motivated by the above short 
comings of algorithms based on TDOA and FDOA 
measurements, an update the noise covariance method based 
on extend Kalman filter for moving target  localization and 
tracking using TDOA and FDOA is proposed in this paper. 
 

III. SYSTEM MODELING FOR TARGET LOCALIZATION 
The localization method is based on using the time 

difference of arrival (TDOA) and the frequency difference of 
arrival (FDOA) signals collected from receiver sensors or 
UAVs receiver equipped with sensors under the interference 
noise. We assume a 3D Euclidean space. Multiple sensors are 
located to determine the position and the velocity of a moving 
target. The state of the target xk∈R9×1 at tk is given as 

 xk=Φxk-1+Γwk-1, (1) 

where xk=[uk
T,u̇k

T,ük
T] consists of the 3D position vector 𝒖𝒖𝑘𝑘 , the 

velocity vector u̇k, and the acceleration vector ük: 

 uk=[xkykzk]T, u̇k=[ẋkẏkżk]T, ük=[ẍkÿkz̈k]T. (2) 

The state transition matrix Φ is 

 Φ= �
I3×3 ∆I3×3 ∆2 2I3×3�
03×3 I3×3 ∆I3×3
03×3 03×3 αI3×3

� (3) 

where In×n  is an 𝑛𝑛 × 𝑛𝑛  identity matrix, 0n×n  is an n×n  zero 
matrix, and α  is a constant acceleration parameter. The 
transformation matrix of the process noise, Γ, is 

 Γ= �∆
2

2
I3×3 ∆3×3 I3×3�

T
, (4) 

where ∆=tk-tk-1 is a fixed time step and wk-1 is the following 
white Gaussian noise process 

 wk-1=�wx, k-1, wy, k-1, wz, k-1�
T
, (5a) 

 E�wk-1�=0, E �wk-1wk-1
T �=Qw, (5b) 

where the covariance matrix Qw=σw
2 I3×3 and σw is the standard 

deviation of the process noise. 

  A signal is transmitted from the moving target, and the 
sensors receive the signal. Let m be the number of sensors. In 
this circumstance, the distance between the target and the i-th 
sensor (si), ri(xk) is given as 

 ri(xk)=|uk−si|, (6) 

When uk  is the position vector of the target and si  is the 
known position vector of si. Let Tij be the TDOA measurement 
between si and sj. If c is the signal propagation speed, then the 
range difference of arrivals between si and sj at time tk is 

 rij(xk)=cTij(xk)=ri(xk)−rj(xk), (7) 

where i = 1,2,⋯ , m , and j = 1,2,⋯ , m . To improve the 
tracking performance, we exploit not only the TDOA 
measurements but also the FDOA measurements. From the 
time derivative of (7), we can obtain 

 ṙi(xk)= (u̇k−ṡi)T(uk−si)
ri(xk)

, i=1, 2, ⋯, m, (8) 
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where u̇k is the velocity vector of the target and ṡi is the known 
velocity vector of si. The FDOA measurement is then 

 ṙij(xk)= (u̇k−ṡi)T(uk−si)
|uk−si|

−
�u̇k−ṡj�

T
(uk−sj)

�uk−sj�
. (9) 

The first sensor s1  acts as a reference sensor, and the 
TDOA/FDOA measurements between s1  and s𝑙𝑙 , 𝑙𝑙 = 2,⋯ ,𝑚𝑚 , 
are accumulated a full measurement vector 𝐙𝐙𝑘𝑘  at time 𝑡𝑡𝑘𝑘  : 

 Zk=Hk(xk)+Vk, (10) 

where 

 Hk(xk)=[h21(xk)h31(xk)⋯hm1(xk)]T (11) 

and hij(xk) is the true TDOA/FDOA measurement between si 
and sj at k as 

 hij(xk)= �
rij(xk)
ṙij(xk)�. (12) 

The white Gaussian noise process Vk is 

 E[Vk]=0, (13a) 

 E[Vk(Vk)T]=diag�σv
2σv̇

2�⨂Im−1×m−1, (13b) 

where the variances of TDOA measurement noise and FDOA 
measurement noise are denoted as σv and σv̇, respectively, and 
⨂ represents the Kronecker product. 

IV. LOCALIZATION USING ADAPTIVE EXTENDED KALMAN 
FILTER 

In this section, a brief introduction to the extended Kalman 
filter(EKF) will be given [16,17], and then adaptive EKF(AEKF) 
will be proposed. 

A. Extended Kalman Filter 
The traditional EKF algorithm is utilizing a set of equations as 

follows [18,19] : 

 Xk|k−1=ΦXk−1|k−1, (14) 

 Pk|k−1=Fk|k−1Pk−1Fk|k−1
T +Qk, (15) 

 Kk=Pk|k−1Hk
T�HkPk|k−1Hk

T+Rk�
−1

, (16) 

 vk=zk−h�Xk|k−1�, (17) 

 Xk|k=Xk|k−1+Kkuk, (18) 

 Pk|k=�I−KkH�Xk|k��Pk|k−1, (19) 

where 

 Fk|k−1= ∂f�Xk|k� ∂Xk|k� , (20) 

 Hk= ∂h�Xk|k� ∂Xk|k� . (21) 

B. Adaptive Extended Kalman Filter 
Compared with the EKF, the adaptive EKF employs a few 

simple iterative operations to reduce the bias and the estimation 
error after getting Xk in (14) and Pk in (15). Rk is computed by 
the time-varying noise statistics with adaptive factor. The 
corresponding recursive relations are 

 xk|k−1=Φxk−1, (22) 

 Pk|k−1=Ak|k−1Pk−1Ak|k−1
T +Qk−1, (23) 

 Xk|k
(1)=Xk|k−1, (24) 

 Pk|k
(1)=Pk|k−1. (25) 

For n=1, 2, …N, 

 Hk
(n)= ∂h�Xk|k

(n)� ∂Xk|k
(n)� . (26) 

 Kk
(n)=Pk|k−1�H(n)�

T
�H(n)Pk|k−1�H(n)�

T
+Rk−1

(n) �
−1

, (27) 

Rk
(n)=�1− (1−δ) �1−δk�⁄ �Rk-1

(n)+ (1−δ) �1−δk�⁄  

 ��I−Hk
(n)Kk�vkvk

T�I−Hk
(n)Kk�

T
+Hk

(n)Pk|k−1
(n) �H(n)�

T
�, (28) 

 Xk|k
(n+1)=Xk|k

(n)+Kk
(n)�zk−h(n)�Xk|k

(n)�−H(n)×�Xk|k−1−Xk|k
(n)��, (29) 

 Pk|k
(n+1)=�I−Kk

(n)H(n)�Pk|k−1
(n) , (30) 
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where adaptive factor 0<δ<1. 

End for, 

 Xk|k=Xk|k
(n+1), (31) 

 Pk|k=Pk|k
(n+1). (32) 

Here, N is the maximum iterative number. The update 
algorithm of the AEKF reduces to that of the EKF in the case 
of a single iteration. Inevitably, the iteration will increase the 
filter time and improve the tracking precision. Compromise 
always has to be made between the tracking precision and 
computation cost. 

V. SIMULATION TESTS AND DISCUSSION 
In this section, through some simulation results, we 

demonstrate the effectiveness of the proposed TDOA/FDOA 
location finding using AEKF algorithm. We collected a dataset 
in city Taoyuan, Taiwan using a commercially available 
Bumblebee radars composes a sensor network of low-power 
Doppler radars that actively measure the target’s radial 
velocity. Each radar independently measures the Doppler 
velocity of a mobile target and transmits it to a PC-class base 
station then collects the estimated Doppler velocities by at least 
four radars and estimates the position and velocity of the 
mobile target by solving a system of nonlinear equation (10). 

The target tracking algorithm (AEKF) proposal described 
in this paper is one of the main modules of a complete 
framework designed to detect and track mobile target. This 
framework (Fig. 1) is composed by: 

• A mobile target detector that analyses TDOA/FDOA 
data stream detecting the presence of new target. 

• A target location that calculates TDOA/FDOA 
measurements and adds it to the AEKF algorithm. 

• The mobile target tracking module using the proposed 
AEKF in this paper. 

• A control module that takes care of suppressing 
tracked targets which have no longer interest (are miss-
tracked, or out of the detection field of view). 

 

 

Target Detector
Using TDOA/FDOA
Data stream Analysis

TDOA/FDOA 
Measurements 

Calculation
Equation (1)~(13)

Control
Module

Adaptive
Kalman Filter

Equation (20)~(30)Measurement 
Data

Data Noisy
location

Location
&

Estimation

Trajectory
tracking

 
Fig. 1. The TDOA/FDOA location and tracking framework to be 

considered 

 

This section examines the accuracy of the proposed AEKF 
algorithm in measurements of TDOA/FDOA. After collecting 
a set of data from Doppler radars (a bird-eye-view perspective 
overlaid on Google Maps in Fig. 2 labeled with red star 
symbol), we use TDOA/FDOA measurements and the 
proposed AEKF algorithm to estimate the mobile target’s 
position. The mobile target’ trajectory starts from position 
u=[850  , 10000 , 1000 ]T , and velocity u̇=[50   , 50    , 50 ]T , 
with constant acceleration, a=200 meters per second squared, 
then turned around and finally along the line with constant 
acceleration. Fig. 3 shows trajectory measurements of the altitude 
above the ground. 

 
Fig. 2. Doppler radars with red star overlaid on Taoyuan city Google 

Maps 

 
Fig. 3. Trajectory of the mobile target in 3D 

The maximum iterative number is n = 5 and δ=0.7. The 
trajectory of the mobile target of show the position estimation 
of the AEKF algorithm in the directions x, y, and z, 
respectively. Fig. 4 shown the position estimation (with red 
circles) and the true trajectory (with black circles). Fig. 4 
shows that the proposed algorithm can estimate more closely to 
the real position with mobile target. The red circle line is the 
AEKF algorithm estimate which updates the system and 
measurement noise covariance in the process. 

 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 14

https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwiFrNbLh-bRAhXFjLwKHXajAesQFgggMAI&url=https%3A%2F%2Fcdict.net%2Fq%2Facceleration&usg=AFQjCNGpDGYkDmiy5s4nOE0KJNGKCmGWyA&sig2=OSpXGjvyJxlCZ2rFejZenA
https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwiFrNbLh-bRAhXFjLwKHXajAesQFgggMAI&url=https%3A%2F%2Fcdict.net%2Fq%2Facceleration&usg=AFQjCNGpDGYkDmiy5s4nOE0KJNGKCmGWyA&sig2=OSpXGjvyJxlCZ2rFejZenA


 
                                       (a) 

 
                                       (b) 

 
   
 (c)  

Fig. 4. Comparison of the position estimation with true trajectory in 
three axis 

Monte Carlo simulation results are presented here in order 
to demonstrate the tracking performance of the AEKF 
algorithm, and 100 runs were performed. The standard 
deviation of TDOA and FDOA measurement noise are set to 
be 18.5 m and 0.185 m/s respectively. TDOA and FDOA 
measurements are taken every 1 second during a period of 100 
seconds, amounting to 9 Doppler radars. Fig. 5(a) show created 
tracks in XYZ coordinates for TDOA/FDOA measurement 
(with red circles) and TDOA only (with black circles). The root 
mean squared error (RMSE) of the estimated positions and 
velocities, as shown in Fig. 5 (b) and (c). Simulation results 
show that x-axis is much more sensitive to disturbance than y-
axis and z-axis. This is because that the three Euler angles are 
all relatively very large in the whole process. It reduces the 
mean RMSE of position by about 32.53% and 39.09% in 
position and velocity compared with TDOA/FDOA and the 
TDOA only. It is evident that both the TDOA and the FDOA 

measurements are effective in reducing the position/velocity 
error compared with TDOA only.  

 
(a) Mobile target tracking with TDOA/FDOA measurements (red) vs. 

TDOA only (black).  

 

                    (b) Estimated position errors for the AEKF  
  

 

 

(c) Estimated velocity errors for the AEKF  
  

Fig. 5. Performance of mobile target tracking with TDOA/FDOA 
measurements for proposed the extended Kalman filter (AEKF) 
algorithm 

VI. CONCLUSIONS 
 

   The accuracy of the location estimate is related to the 
frequency of the target's signal, and TDOA and FDOA are 
determining the location of a target from its emissions the 
TDOA measurements are nonlinear, target position estimation 
using the TDOA measurement is performed by essentially 
linear operations, i.e., Kalman filter update. We proposed a 
bias compensation algorithm based on the adaptive extended 
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Kalman filter (AEKF) for distributed sensor network passive 
localization using TDOA and FDOA measurements. It extends 
the EKF approach originally developed for TDOA to 
incorporate FDOA measurements. Simulation results reveal 
that the proposed TDOA/FDOA measurements in AEKF 
outperforms the TDOA only in localization accuracy. The use 
of both the TDOA and FDOA measurements was shown to be 
effective in the mobile target tracking. It was further proven 
that the AEKF deals with the nonlinear nature of the mobile 
target tracking problem successfully. In this paper, we focused 
on geolocation enabling technologies. We described 
TDOA/FDOA measurements embedded in AEKF tracking 
algorithm enabling technologies that can yield higher accurate 
estimate and nicer convergence performance than the TDOA 
measurement only. The proposed algorithm is expected to be 
widely used in such as an Internet of Things (IoT) equipment 
and their services that will enhance the comfort level as well 
as increase efficiency. Another future work is to study the 
more realistic scenario that the locations and velocities of the 
sensors are not perfectly known, but are subject to some errors. 
The work presented in this paper has laid the foundation for 
this future work. 
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