
 

 

  
Abstract—Electronic voting systems are being implemented in 

several countries to provide accuracy and efficiency for the electoral 
processes with an increased level of security. The Secure National 
Electronic Voting System (S-Vote) is adopted in this study for its 
state-of-the-art technologies, privacy, and secure processes. The S-
Vote system is a homomorphic e-voting system that uses zero 
knowledge (ZK) proof protocol to preserve the voter’s privacy. 
Unfortunately, The ZK proofs’ is a complex and time consuming 
protocol which affects the scalability of any homomorphic e-voting 
system. This study investigates the parallel implementation of the S-
Vote verification and tallying processes to reduce the time of vote 
verification checks especially the ZK proofs verification. Basically, 
the vote verification process consists of ZK proof, digital signature, 
and voter eligibility checks. I implement parallelism using java 
multithreaded programs for parallel program execution. It proposes 
three parallel implementation schemes for the vote verification and 
tallying processes which are task, master/slave, and data. The task 
parallelism spawns a separate thread to perform one of the 
verification process checks (tasks). The master/slave scheme spawns 
a thread for each voting kiosk package (client) that performs all the 
checks. The data parallelism scheme spawns a number of threads 
equal to the number of physical cores of the tallying machine. Each 
thread performs the whole verification process checks where the 
voting kiosk packages are dynamically distributed among them. The 
obtained results show that the data parallelism scheme is the best. It 
has the highest relative speedup and efficiency with lowest 
processing cost. It can verify and tally 64,000 ballots in about 44 
minutes with 27.5 relative speedup and 86% efficiency while using 
32 threads running on the multi-core tallying machine with 32 cores.  
The data parallelism scheme reduces ZK proof time. It has a linear 
speedup with respect to the number of cores and can be used to 
extend the use of S-Vote system for large electoral processes. For 
example, using a tallying machine with 128 cores can reduce the 
verification and tallying processes time for a country as big as Jordan 
from 25.4 days to 5.7 hours. 
 

Keywords—electronic voting, homomorphic encryption, parallel 
programming and multithreading, zero-knowledge proof.  
 

 
This work was supported by the University of Jordan, Faculty of 

Engineering and technology.  
I. A. Saadeh is with the Housing Bank for Trade and Finance and this 

work is the master thesis research in Network and Computer Engineering 
Master Program at the University of Jordan (phone: +962790163680; e-mail: 
srsaadeh@yahoo.com).     

G. A. Abandah is professor in the Computer Engineering Department, 
University of Jordan, Jordan-Amman, (phone: +962798159900; e-mail: 
abandah@ju.edu.jo). 
 

I. INTRODUCTION 
any democratic societies suffer from election fraud, 
suppression, falsification, and mock elections [1]. They 

have serious problems throughout their election processes 
including voter lists manipulation, ballots stuffing, voter 
intimidation, and vote buying. On other hand, voting centers 
are often heavily staffed to administer identity check, voting 
eligibility, and ballot dispersal.  

Some staff members unfaithfully enforce regulations for the 
benefit of their favorite candidates. Identity check is intricate 
business in cultures where women or men cover their faces. 
Moreover, primitive techniques are often used to disallow 
multiple voting such as cutting edge of ID card or dipping 
voter’s finger in special ink.  

These societies look forward to new fair election systems 
that can overcome the traditional election systems weaknesses, 
prevent electoral fraud, and improve voter participation and 
trust. The electronic voting systems can become a popular 
alternative if they satisfy they satisfy the following main 
challenges [2]. 
1. Accuracy: count only the valid votes without being 

tampered with and exclude any invalid vote from the final 
tally. 

2. Democracy: allow only eligible voters to vote and every 
voter to vote only once. 

3. Privacy: do not reveal any voter’s choice or allow any voter 
to prove how he voted. This is to avoid voter intimidation 
and vote selling. 

4. Verifiability: allow anyone to check that each vote was cast 
by an eligible voter and all votes are correctly counted. In 
case of electoral disputes, provides means for rechecking 
the results. 

5. Security: always satisfy reliability, availability and data 
integrity requirements. Additionally, satisfy the accuracy, 
democracy and privacy requirements and prevent inside or 
outside attackers from undermining these requirements.  

6. Flexibility: support various election types such as 
parliaments, municipalities, student boards, plebiscites, 
referendums, etc. Support any eligible voter to vote 
irrespective of his native language, special needs or literacy 
level. Allow him to vote in any voting center that is 
convenient to him. One more aspect; is the flexibility of 
changing the hardware devices when new or better devices 
are available. 

Israa A. Saadeh and Gheith A. Abandah 

Parallel Implementations of S-Vote Electronic 
Voting Verification and Tallying Processes 

M 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 106



 

 

7. Cost effectiveness: use economic software and hardware 
components that are important for large-scale elections. 

8. Scalability: efficiently carry out various sizes of elections 
that achieve flexibility, provide better return on investment 
and facilitate mass quantities production. 

Electronic voting schemes are based on blind signatures, 
homomorphic encryption, or mix-net [3]. The most popular 
schemes are based on homomorphic e-voting [4]. These 
schemes count votes without decrypting them. Such systems 
preserve the voter privacy, but have efficiency problem in vote 
validity check. Vote validity check often uses zero-knowledge 
(ZK) proof to verify that each encrypted vote contains valid 
data without revealing the vote itself [4]. 

Unlike traditional paper based elections, it is impossible to 
monitor all electronic operations performed on data from 
ballot casting to tallying. Accordingly, the validity of votes 
must be proved by the voters and could be publicly verified. 
The concept of election verifiability that votes have been 
recorded, tallied, and correctly declared is called end-to-end 
verifiability [5]. This verification process unfortunately takes 
too long computation time that limits the application of e-
voting, especially in large-scale elections. 

An example of homomorphic-based e-voting system is the 
Secure National Electronic Voting System [6]. S-Vote 
achieves the e-voting requirements described earlier, but it is 
not suitable for large electoral processes due to the long time 
needed in the verification and tallying processes. 

The objective of this study is to reduce the time needed in 
these processes using parallel implementation. We employ 
multithreading programing techniques to exploit the 
parallelism in these processes and execute them in acceptable 
time on parallel computer. The details of this study are in the 
master thesis of the first author under the same title and is 
available through https://theses.ju.edu.jo. 

Section II reviews the related work, Section III presents the 
theoretical background, Section IV describes our 
implementation of S-Vote, Section V suggests three alternative 
parallel implementations of S-Vote, Section VI presents the 
results of evaluating these implementations, and Section VII 
summarizes the conclusions and suggests future work. 

II. RELATED WORK 
There has been a number of e-voting systems used in 

different countries with varying success degrees based on mix-
nets and homomorphic voting.  Mix-net voting employs a mix 
network to shuffle the encrypted votes before decrypting them 
so that the votes cannot be traced back to the voters [7]. 
Homomorphic voting exploit homomorphism of certain 
encryption algorithms [8]. Homomorphic voting tallying 
process costs one single decryption operation for each 
candidate, so it is more efficient. 

The homomorphic cryptosystem of Paillier provides 
efficient public key cryptography. Its additively homomorphic 
property can be utilized by secure electronic voting systems 
[9]. Unfortunately, verification is bottleneck of homomorphic 

e-voting systems for the cost of its long calculation time.  
Many researches aimed to overcome this bottleneck. 

Reference [8] proposes homomorphic e-voting scheme that 
adjusts vote format and the corresponding validity check 
mechanism. A smaller number of checks in larger ranges 
replaces the large number of checks in small ranges. 

Reference [10] reduces the cost of computation and 
communication by one fourth to one half. So it is still not 
efficient enough for large-scale election processes. An 
interesting technique called batched bid validity check was 
designed in [11] to improve efficiency of bid validity check.  It 
is not a new technique; it is an extension of the traditional 
batch verification techniques. Meanwhile, this technique has 
three drawbacks: Firstly, it employs different sealing and 
parameter settings and cannot guarantee whether it can suit the 
frequently employed Paillier encryption or its distributed 
version in homomorphic e-voting schemes. Secondly, it 
supports one-candidate Yes/No election. Thirdly, it is still not 
efficient enough for large-scale election applications.  

Reference [4] proposes two non-interactive ZK vote validity 
checks called Protocols 1 and 2. Both protocols can guarantee 
efficient validity of vote with an overwhelmingly large 
probability. Protocol 1 modifies and extends the batched bid 
validity check. It greatly improves the efficiency of the 
computation of the vote validity check when the voter can 
select only one candidate. Protocol 2 employs the batched ZK 
proof too, but it does not limit the number of selected 
candidates in a vote. Moreover, it needs fewer rounds of 
communication and has efficient computation. 

Reference [12] employed honest verifier ZK proof security 
model such that the privacy depends on a trust assumption that 
verifiers are honest. They also proposed a scheme to improve 
the efficiency of homomorphic e-voting system without 
optimizing the ZK proof itself. This scheme can only handle a 
small number of voters. The voters’ votes must be grouped. 
The tallying must separately be carried out in every group. 
After that, all results will be aggregated to get the final 
electoral results 

S-Vote uses Paillier homomorphic cryptography and the 
non-interactive ZK Protocol 2 described in reference [4]. S-
Vote relies on homomorphic cryptography, distributed key 
generation, ZK proofs, biometrics, smartcards, open source 
software, and secure computers to securely and efficiently 
implement the e-voting processes over the various stages of 
the electoral process [6]. 

Reference [9], provided constructions of e-voting system 
using BGN [5] and Paillier homomorphic cryptosystems.  The 
BGN constructions is only practical for small number of voters 
and small cipher-text size. Messages computing evaluating are 
performed in long time. He noted that all constructions are 
easily parallelized. He assumed that the running time can be 
reduced directly by using more computers. 

Reference [13] introduced Civitas mix-net e-voting system 
based on [14] cryptographic voting scheme1. The Civitas 
security is not free. Tradeoffs exist between the levels of 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 107



 

 

security provided by Civitas tabulation, the time required for 
tabulation and the tabulation monetary cost. it divided the 
votes into blocks. The blocks were exploited independently to 
decrease tabulation time by processing blocks in parallel and 
giving a set of tabulation teller machines for each block. 
Tabulation time then does not depend on number of voters. 
Therefore, performance can scale independently of the number 
of voters. 

Parallel processing is becoming more accessible as the 
processor manufacturers switch to the model where the 
microprocessor has multiple processing units (multicores) 
[15]. The number of cores per processor chip doubles every 
18-24 months following Moore’s law. Clearly, this change of 
paradigm has had a huge impact on the software development. 
Parallel computing can increase the application performance 
by the execution on multiple cores. However, programmers 
must reprogram serial application to exploit parallelism [16].  

There are two main approaches to parallelize a program: 
auto-parallelization approach where the sequential program is 
automatically parallelized using a parallel compiler [17], and 
parallel programming where programmer modify or develop 
the application to exploit parallelism. Thus, the program needs 
to recompile with parallel compiler and no manual 
modifications are required. However, the amount of 
parallelism reached using this approach is low due to the 
complexity of the required automatic transformation. In the 
parallel programming approach, the application is explicitly 
modified or developed to exploit parallelism. Generally, this 
approach obtains a higher performance than auto 
parallelization one but with the cost of more programing 
efforts. 

Reference [18] presented that the performance of a parallel 
application depends on the number of threads used to run on a 
multi-core system. He provided guidelines for finding the 
appropriate number of threads for getting best performance. 

Reference [19] provided tips of motivation showing the 
relationships between the problem and the various approaches 
to divide it into parts. These parts are intended to be executed 
simultaneously via threads to solve the problem 

III. THEORITCAL BACKGROUND 
This section gives a background on Paillier homomorphic 

cryptography and ZK proofs used in S-Vote and on parallel 
application development. 

A. Paillier Homomorphic Cryptography  
S-Vote uses Paillier key pair cryptosystem for encrypting 

the voting vectors and decrypting the encrypted tallies. This 
system has homomorphic addition feature useful in preserving 
the privacy of votes [9]. Principally, it allows finding sum of 
the votes by multiplying their encrypted votes (as in (1)). Clear 
sum can then be decrypted from the encrypted sum (as in (2)). 

                   (1) 

  (2) 

For flexibility, S-Vote allows each voter to select up to O 
options of C candidates. The vote of each Voter i is encoded 
as a voting vector (mi,1, mi,2, …, mi,C) where mi,j = 0 or 1 for j = 
{1, 2, …, C}. When the voter choses Candidate j, then mi,j = 1 
otherwise it is 0. The voting vector is encrypted to (ci,1, ci,2, …, 
ci,c) where the homomorphic property allows finding the 
encrypted tally of Candidate j from N number of votes through 

 . (3) 

As a result, we can find the votes casted for Candidate j by just 
decrypting the encrypted tally  [9]. 

B. Zero-Knowledge Proof 
As S-Vote requires preserving the voter privacy, zero 

knowledge proofs are necessary to ensure that encrypted 
voting vectors carry valid votes. For instance, Voter i can 
cheat by submitting for his favorite Candidate j the vote ci,j = 
KV

+(100) instead of ci,j = KV
+(1). For this reason, the system 

requires that each voter must submit his ZK proof.  
The advantage of ZK proofs is allowing one party called 

prover to convince another party called verifier that he knows 
some secret or knowledge about specific object without 
revealing what is the object itself. 

Non-interactive zero knowledge proofs do not require any 
interaction between the prover and the verifier where a single 
message is sent from the prover to the verifier [20]. It is 
possible to dispose the interaction between prover and verifier 
when they share a common random public reference string. 
This is enough to perform zero-knowledge proof check 
without requiring interaction. 

The S-Vote system adopts an efficient honest verifier ZK 
protocol which is the non-interactive version of Protocol 2 [4]. 
In this protocol, each Voter i proofs the following two criteria: 

 , (4) 

 . (5) 

Equation (4) is a proof that every vote in the voting vector is 
either 1 (for) or 0 (against). Equation (5) is a proof of 
knowledge of Nth root and demonstrates that there are exactly 
O ones in the voting vector where G and N are part of the 
cryptosystem public key. Protocol 2 goes through below steps 
proving that encrypted value ci,j is within the set S of {0, 1}. 

Vote Casting: 

1. Suppose there are n voters and each voter has to choose O 
parties from the C candidates. 

2. Each voter Vi has his voting vector  (mi,1; mi,2; …mi,j …; 
mi,c) where mi,j = 0 or 1 for j={1; 2; ……; C}. A rule is 
followed: mi,j = 1 iff the voter Vi chooses the jth candidate.  

3. The voting vector is encrypted to (Ci,1; Ci,2; …Ci,j …; Ci,c) 
using homomorphic cryptography where n=pq is the RSA 
Modulus. 
 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 108



 

 

ZK Proof: 

The prover generates the proving values and challenge for 
proving that the encrypted vote Ci,j is in the set of {1,0} for 
j={1; 2; ……; C} that shall be sent to the verifier. A security 
parameter L is used and is chosen to be 40 according to Fiat-
Shamir heuristic [12], [21]. Since Fiat-Shamir is run for L = 20 
to 40 executions, the probability for an adversary to fool the 
verifier for all executions of L is very small and does not 
exceed 2-L. 
1. The prover randomly selects the following proving values 

for j={1; 2; ……; C}  where: 
 

 

(6) 
  (7) 
  (8) 
 

 (9) 

 

 
(10

) 
 

2. The prover generates another proving value for j={1; 2; 
……; C} where: 

 
3. The prover generates the commitments that shall be sent to 

the verifier  
 

 

(11) 

 

 
(12) 

Public Verification: 

The verifier calculates the commitments, checks the 
response, and returns true when they are matched in 
probability of 1-2-40 [4]. 
 

 

(13) 

  (14) 

C. Parallel Application Development   
There are several aspects that must be considered when 

developing a parallel application. Mainly, designing the 
parallel algorithm, implementing the design using a parallel 
programing language, and evaluating and tuning the developed 
application. 

Designing a parallel algorithm usually follows three main 
steps: decomposition, scheduling, and mapping. 
Decomposition divides the application computations and data 
into parts that can be concurrently processed on parallel 
processors. There are some typical decomposition types such 
as task, data, recursive, and pipelined [22]. Scheduling is the 
assignment of problem partitions to processes or threads. It 
specifies the order in which the partitions are executed. 
Mapping is the assignment of threads onto physical computing 

units (cores) and is usually done by the runtime environment, 
but sometimes can be influenced by the programmer [23]. 

The parallel design is coded in a parallel programing 
language. However, the concurrency in parallel programs often 
Each voting vector is randomly introducing software bugs such 
as race conditions. Resource and data dependencies are 
scheduling constrains and may require a specific execution 
order of parallel tasks. In this case, synchronization and 
communication must be put in place [22]. 

Several metrics are used to evaluate a parallel application. 
The parallel execution time tp is the time between the start of 
the application on the first processor and the end of execution 
on all used processors. It should be smaller than the sequential 
execution time ts on one processor [24]. Generally, smaller 
parallel execution times are obtained when the workload is 
equally distributed among the cores (load balancing). In 
addition, smaller overhead of data exchange, synchronization, 
and idle times reduces the parallel execution time. Finding 
appropriate scheduling and mapping leads to good load 
balance and small overheads. 

The parallel speedup measures the increase in speed using 
multiprocessing and is the ratio of the sequential time to the 
parallel time SR = ts/tp. The efficiency measures how efficient 
the parallel implementation is in using the given parallel 
resources and is defined by the ratio of the speedup to the 
number of processors ER = SR/P. The cost is proportional to 
tp×P. Finally, the isoefficiency scalability metric specifies the 
rate of workload growth required to keep the efficiency fixed 
as P increases [25]. 

IV. S-VOTE IMPLEMENTATION DETAILS 
We implemented the voting, verification, and tallying 

processes of S-Vote including the technologies necessary for 
its secure implementation [6]. We developed a Java project 
using standard Java libraries and components from the 
homomorphic thep encryption project. These components 
implement Paillier cryptosystem along with its homomorphic 
operations, key generation, and zero knowledge proofs 
http://code.google.com/p/thep. 

A. Simulating Voting Process  
The voting process is responsible for vote casting and kiosk 

packages’ preparation. Fig. 1 shows the developed procedure 
used to simulate the S-Vote voting process. For 
experimentation, we created an eligible voters list consisting of 
two million national IDs (NID). The list is created once and is 
arranged in a hash table. 

1) Creating Clear Voting Vector: created by selecting O 
options out of C candidates (O number of ones) to produce the 
clear voting vector of Voter i Vi = (mi,1, mi,2, …, mi,C). 

2) Creating Encrypted Voting Vectors and ZK Proof (Mi): 
For each vote mi,j, this process generates encrypted votes ci,j = 
KV

+(mi,j) using the public key KV
+ and generates the ZK proof 

Pi,j. It generates first the commitments ui,j for proving that ci,j is 
in the set {0,1}, which must be sent to the verifier. It then uses 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 109



 

 

Fiat-Shamir technique to generate the challenge ei,j form ui,j for 
a non-interactive proof [21]. 

 
Fig. 1 Simulated S-Vote voting process. 

After that, it computes the prover response to ei,j from the 
random number ri,j then computes Vsi,j and Esi,j values to the 
verifier that are needed for the last part of the proof. As a 
result, Pi,j is a big integer vector of [ui,j, ei,j, Vsi,j, Esi,j] [6]. 
Finally, it generates for the voting vector an encrypted value 
Ci,o for the number of options Oi within the Vector Vi and its 
ZK proof Pi,o claiming that the voting vector has O options. 
Fig. 2 illustrates this process.  

NIDi . . .. . .Vi Vi,1 Vi,2 Vi,CVi,j Vi,C-1Clear Voting Vector

NIDi . . .. . .Ci Ci,1 Ci,2 Ci,CCi,j Ci,C-1
Encrypted Voting 

Vector Ci,O

Oi

Pa
ill

ier
 E

nc
ry

pti
on

 

NIDi . . .. . .Pi Pi,1 Pi,2 Pi,CPi,j Pi,C-1ZK Proof Vector Pi,O

P.
 Z

K 
PR

OV
ER

 

NIDi

. . .. . .
Mi

Ci,1 Ci,2 Ci,CCi,j Ci,C-1Resultant Encrypted 
Voting Vector 

Ci,O

. . .. . .Pi,1 Pi,2 Pi,CPi,j Pi,C-1 Pi,O

{0,1} ZK Proof {O} ZK Proof

Paillier Public Key

 
Fig. 2 Encrypting and Adding ZK Proofs for One Voting Vector 

3) Digitally Signing Encrypted Voting Vector: The voting 
Message Ci+Pi is digitally signed using SHA-256 hash 
function H and RSA cryptosystem.  Digital signature is 
required to ensure authenticity and integrity of the encrypted 
voting vector and its proof. The voter private key K-

i is kept 
private while its public key K+

i is available for verification. 
The hash function computes message digest Di then the private 
key K-

i signs it. The resulting signature is the vote receipt Ri = 
K-

i(Di) = K-
i(H(Ci + Pi)).  

After the termination of the voting stage, the kiosk packages 

are set to the verification and tallying processes. Each kiosk 
package includes the voter IDs, the encrypted voting vectors 
Ci, the proofs Pi, and the voting receipts Ri. as in Fig. 3. 

B. Vote Verification Process 
Fig. 4 shows the implemented vote verification and tallying 

processes. The verification process is responsible for vote 
verification and starts with preforming the following checks 
for each voter ballot record. 

NIDi

. . .. . .
Mi

Ci,1 Ci,2 Ci,CCi,j Ci,C-1Encrypted Voting 
Vector

Ci,O

. . .. . .Pi,1 Pi,2 Pi,CPi,j Pi,C-1 Pi,O

Di

SH
A

-2
56

 B
al

lo
t D

ig
es

t

SHA-
256

Ri

Voter RSA 
Private Key RS

A
 

Si
gn

in
g

 Ballot Digest

Reciept

NIDi

. . .. . .
Mi + Ri

Ci,1 Ci,2 Ci,CCi,j Ci,C-1

Resultant Final 
Encrypted Voting Vector Ci,O

. . .. . .Pi,2 Pi,CPi,j Pi,O

Ri

Signed Encrypted Ballot

Hash 
Function

Pi,1 Pi,C-1

 
Fig. 3 Adding Digital Signature to Voting Message 

1)  Voter Eligibility and Multiple Voting Check: it is 
applied on each Voter ballot record. It checks that each voter 
NID is in the eligible voter list and votes once. Fig.5 shows 
that how it looks for this NID in the eligible voter NIDs hash 
table and count the number of its votes. The hash table data 
structure is used for its good performance. 

 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 110



 

 

 
Fig. 4 Implemented S-Vote verification and tallying processes 

0NID50 NID40 NID30 NID20 NID10 NID0

1

i

N

Index
Hash 

Function

NID3i

. . .. . .C3i,1 C3i,1 C3i,CC3i,j C3i,C-1 C3i,O

. . .. . .P3i,1 P3i,1 P3i,CP3i,j P3i,C-1 P3i,O

. . .
. . .

Eligible Voter ID Hash Table

NID51 NID41 NID31 NID21 NID11 NID1

NID5i NID4i NID3i NID2i NID1i NIDi

NID5N NID4N NID3N NID2N NID1N NIDN

NID60

. . .. . .C60,1 C60,1 C60,CC60,j C60,C-1 C60,O

. . .. . .P60,1 P60,1 P60,CP60,j P60,C-1 P60,O

NID4N

. . .. . .C4N,1 C4N,CC4N,j C4N,C-1 C4N,O

. . .. . .P4N,1 P4N,1 P4N,CP4N,j P4N,C-1 P4N,O

NID4N

. . .. . .C4N,1 C4N,1 C4N,CC4N,j C4N,C-1 C4N,O

. . .. . .P4N,1 P4N,2 P4N,CP4N,j P4N,C-1 P4N,O

. . .
. . .

. . .

NID60NID60NID60NID60NID60NID60

NID3iNID3iNID3i

NID4NNID4NNID4NNID4N

× 

× 

√ 

√ 

√ 

Encrypted Voting Vectors

C4N,1

 
Fig. 5 Voter Eligibility and Multiple Voting Check 

1) Ballot Validity (Zero Knowledge Proof) Check: It 
checks the validity of each voting vector such that ci,j is 
within the set {0, 1} and the number of options in the 
encrypted voting vector is O. The ZK verifier calculates 
the proof values Pi,j for each ci,j using ui,j generated by the 
prover then checks the response from the prover Vsi,j, Esi,j 
and ei,j using the Fiat-Shamir heuristic which returns true if 
it is OK and accept the prover claim that ci,j in the set of 
{0, 1}, otherwise it returns false. The same check is 
performed to accept the prover claim that voting vector has 
O options by Pi,o as described in Fig. 6. 

 
Fig. 6 Ballot Validity Check (ZK Proof) 

C. Tallying Process 
In the tallying process, only encrypted ballots that pass all 

these checks are considered eligible voting vectors and are 
passed to the tallying process. Fig. 7 shows the tallying process 
that consists of: 

1) Ballot Tallying: It finds the final encrypted tally Tj for 
each Candidate j by calculating the product of pass votes 
casted for this candidate Tj = ∏N

i=1 ci,j (Eq. (3)).  
2) Result Decryption: It decrypts the final tally Tj for each 

candidate using the distributed voting private key Rj = K-
V(Tj). 

Finally, the final election results are announced.  

Tj

. . .. . .V1 C1,1 C1,2 C1,CC1,j C1,C-1

El
ig

ib
le

 E
nc

ry
pt

ed
 V

ot
in

g 
Ve

ct
or

s

Paillier Private 
Key

. . .. . .Ci,1 Ci,2 Ci,CCi,j Ci,C-1

. . .. . .Cn,1 Cn,2 Cn,CCn,j Cn,C-1Vn

Vi

. . . . . .

Fi
na

l E
le

ct
io

n 
Re

su
lts

1 2 Cj C-1

. . . . . .

E
nc

ry
pt

ed
 V

ot
es

 T
al

ly
in

g
T

al
ly

in
g 

D
ec

ry
pt

io
n

T

R

1 1

111

 
Fig. 7 Tallying Process and Final Tally’s Decryption 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 111



 

 

V. PARALLEL IMPLEMENTATIONS OF VERIFICATION AND 
TALLYING PROCESSES 

We used Java multithreaded programs to speed up the 
verification and tallying processes. The following three 
parallel schemes are implemented and evaluated. 

A. Task Parallelism Scheme 
The ballot verification process has multiple checks (tasks): 

voter eligibility, multiple voting, ballot authenticity, and vote 
validity checks. When you think in parallel execution, you start 
with dividing the problem into tasks. Accordingly, the vote 
verification checks are divided into tasks. Each task is 
responsible for one check and runs through a separate thread 
with the intention that all threads work on the entire data set, 
but each thread does a specific task.  

This scheme is known as task decomposition. The 
verification function is divided into four separated sub 
functions and the kiosk packages (ballots) are given to all 
threads for processing. The final tallying process starts after 
the finish of the last running thread.  

B. Master/Slave Parallelism Scheme 
In the Master/slave scheme, the master class spawns one 

slave thread to handle each kiosk package. This is some kind 
of data parallelism where data is partitioned to slaves and each 
slave handles one kiosk package independently, performs all 
vote verification checks, and exists when it is done. The 
number of slave threads equals the number of packages. The 
final tallying starts at the finish of the last slave.  
 

C. Data Parallelism Scheme 
When having many kiosk packages (data) to process, we can 

divide this large set of data among multiple threads. This 
concept is knowing as data parallelism in which each thread 
does the same work but on its subset of data. Supercomputers 
have excelled at for years. In presence of this, the numbers of 
simultaneously running threads will be equivalent to the 
numbers of physical cores to get higher efficiency.  Each 
thread performs the verification and tallying processes as the 
way as the sequential implementation does but on a sub set of 
data. The kiosk packages (data) will be dynamically 
distributed among the different threads in a round robin 
manner during the run time.          

Master class spawn threads as many as the number of 
physical cores. Each running thread asks for an available kiosk 
package to process. Accordingly, this class updates the global 
kiosk counter and gives the requester thread an available 
package. The kiosk assignment step is synchronously executed 
so that only one thread can be served at a time to keep data 
consistency.  

Java lock() and unlock() method are used to control the 
access to this shared resource by the multiple threads. 
Commonly, lock() grants on thread at a time an exclusive 
access to kiosk assignment procedure, and it is released for 
another thread by unlock(). Finally, by the end of the last kiosk 
package processing, the electoral process ends.  

VI. EXPERIMENTAL RESULT 
In this section, we present the evaluation results of the 

sequential and three parallel schemes. We also evaluate and 
discuss the best adopted parallel scheme. 

All experiments were done on a server with four 8-core Intel 
Xeon processors E7-8837, 2.67 GHz clock rate, and 256 GB 
memory. The Java JRE 1.7 project is compiled using GNU 
Complier for Java (GCJ) version 4.8 and run on an Ubuntu 
12.04 virtual machine. The host is Windows Server 2012 R2 
Datacenter Edition. The virtual machine monitor is Microsoft 
Hyper-v 2012 R2. 

The selected number of ballots per kiosk package is 500 
ballots, the number of candidates is 16, and the number of 
options is 4. For this configuration, the ballot size is 52 KB: 
each encrypted vote ci,j along with its ZK proof is 3 KB, the 
encrypted number of options and its ZK proof is 3 KB, and the 
digital signature is 1 KB. This size, as a function of the 
number of candidates, is: 

Ballot Size (KB) = 3C + 3 + 1 = 3C + 4.  (15) 

Additionally, Runtime.getMemory() java instrumentations 
are used to estimate the memory usage for verifying a ballot. 
273 KB is occupied to verify a ballot and 308 MB for creating 
the NID hash table with 2,000,000 entries. 

A. Sequential Implementation Results   
Fig. 8 shows the execution time of the sequential 

implementation of the verification and tallying processes as a 
function of the number of ballots.  As expected, there is a 
direct linear relationship between the execution time and the 
number of ballots. This implies that we can predict the 
execution time for any large election. For example, processing 
2 million ballots would take 627 hours (15 days). 

1.58

3.09

4.65

6.27

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

 -  5,000  10,000  15,000  20,000

Ex
ec

ut
io

n 
Ti

m
e 

(h
ou

r)

Number of Ballots  
Fig. 8 The execution time of the sequential implementation 

B. Alternative Parallel Schemes Results   
We present here the results of evaluating the three parallel 

schemes: Task, Master/slave, and Data. We evaluate them by 
finding their execution times relative to the sequential one 
using four cores and number of ballots B = 20,000. Fig. 9 
shows the speedup of these three schemes. 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 112



 

 

1.06

3.66 3.61

0.0

1.0

2.0

3.0

4.0

Task Master/Slave Data

Sp
ee

du
p

 
Fig. 9 Parallel schemes speedups with four cores 

Task has the worst speedup. This scheme does not divide 
the problem into equivalent tasks as shown in Fig. 10, which 
shows the breakdown of the sequential time shown in Fig. 8. 
The vote validity check involving the long ZK proof 
computations takes about 95% of the time. Tallying and 
authenticity and eligibility checks take the rest 5%. Therefore, 
the thread responsible of the vote validity task has much more 
load than other threads and finishes long after they finish. 

On other hand, Data and Master/server show good 
speedups, implying high efficiencies and low costs. Although 
Master/slave shows the best speedup here, it is not a scalable 
solution. The cost of thread creation increases as the number 
of kiosk packages increases and the computer will straggle 
with large number of threads handling many packages 
concurrently. Excessive number of live threads leads to 
performance degradation due to competition on limited 
number of cores, available memory, and other resources. 
Running this program on a large number of packages crashes 
the system when it runs out of virtual memory. 

The Data scheme is the most preferable scheme. Beside its 
good performance, it limits the number of spawned threads, 
and proportionally maps threads to physical cores. It 
dynamically balances the load as packages are distributed on 
demand to free threads. Accordingly, we adopt this scheme.  

0%

20%

40%

60%

80%

100%

5K 10K 15K 20K
Number of Ballots

Tallying

Authenticity
Check
Eligibility Check

Validity Check

 
Fig. 10 The breakdown of the sequential execution time 

C. Data Parallelism Scheme Evaluation   
We present here an evaluation for the Data scheme on a 

varying number of cores and a number of ballots B = 64,000. 
The number of spawned threads is selected to match the 
number of available cores. Table I shows the parallel 
execution time, speedup, efficiency, and cost of this scheme 
compared with the sequential implementation. As Fig. 11 
illustrates, a sub-linear speedup is achieved as we increase the 

number of cores. As the speedup and efficiency drop with 
more cores, the cost increases. The number of threads are 
increased to match the number of available cores. Thus, the 
assigned workload becomes smaller as the number of threads 
increased and reduces the overall computation time.   Based on 
this, we can determine the hardware specifications 
requirements for serving a number of ballots within 8 hours for 
example. 

Table I Evaluation of data scheme 
Cores Time (hr) Speedup Efficiency Cost 

Sequential 19.50 - - 19.50 

4 4.99 3.9 98% 19.95 

8 2.67 7.3 91% 21.32 

16 1.32 14.8 92% 21.13 

32 0.71 27.5 86% 22.68 

3.9
7.3

14.8

27.5

0

8

16

24

32

0 4 8 12 16 20 24 28 32
Sp

ee
du

p

Number of Cores  
Fig. 11 Data parallelism speedup. 

On the other hand, when the number of threads is increased, 
the synchronization delay becomes larger and the contention 
on the memory and storage increases. In average, each thread 
will ask for a kiosk package K/T times. The thread waits up to 
T time units till it has an exclusive access to kiosk assignment 
procedure. Thus, each thread has K overhead time. For this 
reason, Fig. 12 shows a slight degradation in parallelization 
efficiency as the number of threads increases due to the 
synchronization of kiosk assignment.    

 
Fig. 12 Data Parallelism Efficiency 

The efficiency decreases with more cores because the ballot 
packages are divided among more cores resulting in smaller 
fraction of the parallel region to the serial region.  

Moreover, a set of experiments are conducted to check the 
scalability of data parallelism scheme based on the 
isoefficiency metric. Fig. 13 plots speedup against number of 
cores for different values of B up to 32 cores.  

The result listed in table II and shown in Fig.13 show the 
efficiency of the 16 configurations and illustrate two things. 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 113



 

 

First, for a given problem instance, the speedup does not keep 
the linear increase as the number of cores increases beyond the 
assigned workload. The speedup curve tends to saturate as in 
the instance of processing 8,000 ballots on 32 cores. In other 
words, efficiency drops with increasing the number of cores.  

Second, a larger number of B yields higher efficiency for the 
same number cores. Given that increasing the number of cores 
reduces efficiency and increasing the size of the computation 
increases efficiency, it should be possible to keep the 
efficiency constant by increasing both the size of the problem 
and the number of cores simultaneously to consider that the 
parallel system is scalable. For instance, Table II shows the 
efficiency of verifying and tallying 8,000 ballots on tallying 
machine with four cores is 86%. If the number of cores is 
increased to eight, the number of ballots is scaled up to verify 
and tally 16,000 ballots efficiency remains in average of 86%. 

Thus, Although the efficiency drops with more cores, it 
increases with larger numbers of ballots. Note that if the 
number of ballots is increased proportional to the number of 
cores (diagonal cases), efficiency stays constant about 86%. 

Accordingly, the S-Vote with data parallelism is scalable 
since the efficiency of data parallel execution maintained at a 
constant value by simultaneously increasing the number of 
cores and the number of ballots being verified. 

Table II Isoefficiency of the data scheme 
Ballots 4 cores 8 cores 16 cores 32 cores 

8K 86% 72% 68% 34% 

16K 89% 87% 81% 69% 

32K 94% 89% 85% 77% 

64K 98% 91% 92% 86% 

 
Fig. 13 Data Parallelism Isoefficiency Metric 

D. Studying the Effect of Number of Candidates and 
Options    

As another point of view, we study the factors that may 
affect the ZK proof itself. The next two experiments are 
performed to study the effects of numbers of the candidates C 
and options O on the ZK proof check.  

The experiment is running on 32 cores using the data 
parallelism scheme, B=64,000, and O=2. 

Fig. 14 shows that the ZK proof  has a direct linear 
relationship with the number of candidates. The ZK proof is a 
function of the number of votes per ballot. This true as the ZK 
proof is conducted for each encrypted vote within the ballot 
and its execution time proportioned to the increase number of 
votes within the ballots.   

 
Fig. 14 Number of Candidates Effect on the ZK Proof 

On the other hand, the number of options per ballot does not 
affect the ZK proof as only one proof is required to ensure that 
there are O options in each ballot regardless what is the value 
of O is as demonstrated in Fig. 15. The experiment is running 
on 32 cores and number of ballots B=64,000. 

 
Fig. 15 Number of Options Effect on the ZK Proof 

E. Discussion 
The execution time is clearly dependent on the number of 

ballots. The Data scheme can reduce this time to an acceptable 
time using sufficient number of cores. The size of the parallel 
computer can be determined according to the election process 
size and time allowed to process all ballots. In a country like 
Jordan, we need enough cores to process around 2 million 
ballots in less than eight hours. Recalling from Table I that 32 
cores process 64,000 ballots in 0.71 hour, then using 128 cores 
allows processing these ballots in 5.5 hours (0.71 × 
(2,000,00/64,000) × (32/128) = 5.5). 

We have also evaluated the effects of changing the number 
of candidates and the number of options on the execution time. 
We found that the execution time linearly depends on the 
number of candidates, but is not affected by the number of 
options. 

VII. CONCLUSION AND FUTURE WORK  
S-Vote homomorphic e-voting system is adopted in this 

study for its e-voting requirements satisfaction. S-Vote uses 
public key cryptography, hashing techniques, homomorphic 
cryptography, and zero knowledge proofs for achieving the e-
voting requirements of privacy, authentication, and validation 
of data integrity 

We have implemented the voting, verification, and tallying 
processes of the S-Vote e-voting system. The sequential 
implementation shows that the verification and tallying 
processes take long execution time and have linear relationship 
with the number of voters. We have implemented three parallel 
schemes aimed to reduce this execution time: Task, 
Master/slave, and Data. The Task scheme is not scalable and is 
inefficient due to the load unbalance of the various verification 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 114



 

 

tasks. Although the Thread scheme shows good speedup with 
small number of ballot packages, it crashes with large 
numbers. In Data scheme, a number of threads equals the 
number of physical cores are spawned and they dynamically 
request and process ballot packages until all packages are 
processed.  This scheme shows good speedup and efficiency 
and scales well as the number of ballots and the number of 
cores are increased. This scheme processes 64,000 ballot using 
32 cores in 0.71 hours with 27.5 speedup and 86% efficiency. 
Therefore, a large national election of 2 million ballots can be 
processed in an acceptable time of 5.5 hours using 128 cores. 

The cost of processing cores is decreasing with time. 
However, we could get higher speedups and large cost 
reduction by porting the Data scheme to a graphics processing 
unit (GPU). Many applications have shown great speedups by 
exploiting the thousands of processing units now available on 
high-end GPUs. 

For future work, we are looking forward to extend our work 
to perform full implementation of S-Vote system. Beside of 
the parallel implementation for vote validity and authenticity 
checks, we would like to cover all aspects of S-Vote proposed 
components including the distributed key generation, threshold 
cryptography, kiosk design, and smartcard implementations. 

ACKNOWLEDGMENT 
I sincerely thank my supervisor Dr. Gheith Abandah for his 

guidance and support throughout this research. His advice, 
comments, discussions, and interpretations were very 
beneficial for my completion of this study. I learned from his 
insight a lot. I believe that I learned from the best and I deeply 
appreciate it. 

REFERENCES   
[1] M. Allansson, J. Baumann, S. Taub, L. Themnér, and P. Wallensteen, 

“The first year of the Arab Spring,” SIPRI Yearbook: Armaments, 
Disarmament and International Security, 2012, pp. 45-56. 

[2] T. Antonyan, S. Davtyan, S. Kentros, A. Kiayias, L. Michel, N. 
Nicolaou, A. Russell, and A. Shvartsman, “State-wide elections, optical 
scan voting systems and the pursuit of integrity,” IEEE Trans. 
Information Forensics and Security, vol. 4, no. 4, 2007, pp. 597–610.  

[3] A. Huszti, “A homomorphic encryption-based secure electronic voting 
scheme,” Publ. Math. Debrecen, vol. 79, no. 3-4, 2011, pp. 479-496. 

[4] K. Peng and B. Bao, “Efficient vote validity check in homomorphic 
electronic voting,” Int’l Conf. Information Security and Cryptology, 
2008, pp. 202-217. 

[5] B. Adida, Advances in Cryptographic Voting Systems, Doctoral Diss., 
Massachusetts Institute of Technology, Cambridge, 2006. 

[6] G. Abandah, K. Darabkh, T. Ammari, and O. Qunsul, “Secure national 
electronic voting system,” J. Information Science and Engineering, vol. 
30, no. 5, 2014, pp. 1339-1364.  

[7] C.A. Neff, “Verifiable mixing (shuffling) of ElGamal pairs,” VHTi 
Tech. Doc., VoteHere, Inc., 2003. 

[8] J. Groth, “Non-interactive zero-knowledge arguments for voting,” Int’l 
Conf. Applied Cryptography and Network Security, pp. 467–482, 2005. 

[9] P. Paillier, “Public key cryptosystem based on composite degree 
residuosity classes,” Int’l Conf. Theory and Applications of 
Cryptographic Techniques,1999, pp. 223-238. 

[10] K. Chidaand G.Yamamoto,"Batch processing for proofs of partial 
knowledge and its applications,"  IEICE Trans. Fundamentals E91CA, 
2008, pp.150–159. 

[11] K.Peng,C.Boyd,, and EDawson, "Batch verification of validity of bids 
in homomorphic e-auction,"  Springer Heidelberg, 2007, pp. 209–224. 

[12] K. Peng and F. Bao, “Efficient proof of validity of votes in 
homomorphic e-voting,” 4th Int’l Conf. Network and System 
Security,2010, pp. 17-23. 

[13] M. Clarkson, S. Chong, and A. Myers, "Civitas: Toward a secure voting 
system. Security and Privacy, Security and Privacy,"  IEEE, Oakland, 
2008, pp. 354 – 368               

[14]  D. Catalano, A. Juels, and  M. Jakobsson, "Coercion-resistant 
electronic elections," Computer and Communications Security, New 
York, USA, 2005, pp.61–70.               

[15] D. Kirk and D. Hwu, Programming Massively Parallel Processors: A 
Hands-On Approach, Morgan Kaufmann, San Francisco, 2010. 

[16] W. Hwu, K Keutzer, and T. Mattson, “The concurrency challenge,” 
IEEE Design and Test of Computers, vol. 25, no. 4, 2008, pp. 312-320. 

[17] H. Kasim, V. March, R. Zhang, and S. See, “Survey on parallel 
programming model,” IFIP Int’l Conf. Network and Parallel Computing, 
2008, pp. 266-275. 

[18] K. Pusukuri, R. Gupta, and L. Bhuyan, "Thread reinforcer: Dynamically 
determining number of threads via OS level monitoring Workload 
Characterization (IISWC)," IEEE International Symposium, 2011, pp. 
116 –125. 

[19]  J. Diaz, C. Munoz-Caro, and A. Nino, "A Survey of Parallel 
Programming Models and Tools in the Multi and Many-Core Era," 
IEEE Trans. Parallel and Distributed Systems, vol. 23, 2012, pp. 1369-
1386,S 

[20] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai, 
“Robust non-interactive zero-knowledge”, Annual Int’l Cryptology 
Conf., 2001, pp. 566-598. 

[21] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to 
identication and signature problems,” Conf. Theory and Application of 
Cryptographic Techniques, 1986, pp. 186-194. 

[22] D. Jacobsen, J. Thibaulty, and I. Senocak, “An MPI-CUDA 
implementation for massively parallel incompressible flow 
computations on multi-GPU cluster,” 48th AIAA Aerospace Sciences 
Meeting and Exhibit, 2010. 

[23] T. Rauber and G. Runger, Parallel Programming for Multicore and 
Cluster Systems, Springer Science & Business Media, Berlin, 2010. 

[24] B. Barney, Introduction to parallel computing, Lawrence Livermore 
National Laboratory, https://computing.llnl.gov/tutorials/parallel comp, 
2012. 

[25] A. Grama, A. Gupta, and V. Kumar, “Isoefficiency: Measuring the 
scalability of parallel algorithms and architectures,” IEEE Parallel & 
Distrib. Technol, vol. 1, 1993, pp. 12-21. 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 11, 2017

ISSN: 2074-1294 115


	INTRODUCTION
	Related Work
	THEORITCAL BACKGROUND
	Paillier Homomorphic Cryptography
	Zero-Knowledge Proof
	Parallel Application Development

	S-Vote Implementation Details
	Simulating Voting Process
	Creating Clear Voting Vector: created by selecting O options out of C candidates (O number of ones) to produce the clear voting vector of Voter i Vi = (mi,1, mi,2, …, mi,C).
	Creating Encrypted Voting Vectors and ZK Proof (Mi): For each vote mi,j, this process generates encrypted votes ci,j = KV+(mi,j) using the public key KV+ and generates the ZK proof Pi,j. It generates first the commitments ui,j for proving that ci,j is...
	Digitally Signing Encrypted Voting Vector: The voting Message Ci+Pi is digitally signed using SHA-256 hash function H and RSA cryptosystem.  Digital signature is required to ensure authenticity and integrity of the encrypted voting vector and its proo...

	Vote Verification Process
	Voter Eligibility and Multiple Voting Check: it is applied on each Voter ballot record. It checks that each voter NID is in the eligible voter list and votes once. Fig.5 shows that how it looks for this NID in the eligible voter NIDs hash table and c...
	Ballot Validity (Zero Knowledge Proof) Check: It checks the validity of each voting vector such that ci,j is within the set {0, 1} and the number of options in the encrypted voting vector is O. The ZK verifier calculates the proof values Pi,j for each...

	Tallying Process
	Ballot Tallying: It finds the final encrypted tally Tj for each Candidate j by calculating the product of pass votes casted for this candidate Tj = ∏Ni=1 ci,j (Eq. (3)).
	Result Decryption: It decrypts the final tally Tj for each candidate using the distributed voting private key Rj = K-V(Tj). Finally, the final election results are announced.


	Parallel Implementations of Verification and Tallying Processes
	Task Parallelism Scheme
	Master/Slave Parallelism Scheme
	Data Parallelism Scheme

	EXPERIMENTAL RESULT
	Sequential Implementation Results
	Alternative Parallel Schemes Results
	Data Parallelism Scheme Evaluation
	Studying the Effect of Number of Candidates and Options
	Discussion

	CONCLUSION AND FUTURE WORK
	Acknowledgment
	References



