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Abstract—In this paper, we present the modified Tarannikov’s
construction. This method allows improving the cryptographic
criteria: algebraic degree, resiliency, nonlinearity and algebraic
immunity. Thus, we can use this iteratively construction to build:
from any optimal resilient functions achieving Siegenthaler’s
bound and Sarkar et al.’s bound, a large class of optimal function
achieving Siegenthaler’s bound and Sarkar et al.’s bound.

Index Terms—Resilient Function, Stream Cipher, Siegen-
thaler’s construction, Tarannikov’s construction.

I. INTRODUCTION

The Boolean functions are crucial cryptographic primitives
in stream cipher and cryptography in general. In the case of the
combination of several registers by nonlinear Boolean, these
functions must satisfy certain cryptographic properties such
as: high algebraic degree, balanced, high order of correlation
immunity, high nonlinearity and high algebraic immunity
degree to resist different attacks: Berlekamp-Massey algorithm
[1] and [2], correlation attack [3], [4], linear attack [5] and
algebraic attack[6], [7], [8], [9], [10].

Unfortunately, when searching the constructions of Boolean
functions intervening in cryptography, we are immediately
faced to the following problem: is it impossible for a Boolean
function to satisfy simultaneously and optimally the following
criteria: high algebraic degree, balanced, the highest possible
order of correlation immunity and high nonlinearity. This
means a cryptographer to seek compromise. Most often, in
the phase of construction the algorithm.

A. Bent function and algebraic degree

An n-variable Boolean function f is bent, then we have:
• If n ≥ 4, then we have deg(f) ≤ n

2 ;
• If n = 2, then we have deg(f) = 1;

Where n is even.
An n-variable Boolean function f is bent, then its algebraic

degree is upper bounded by n
2 .

B. Bent Function and Balanced

An n-variable Boolean function f is called balanced if and
only if Wf(u) = 0. Where Wf is Walsh-Hadamard transform
of f . An n -variable Boolean function f is bent if and only

if Wf(u) = 2
n
2 , for every u ∈ Fn

2 . These two criteria are
incompatible. A bent function cannot be balanced.

C. Order of Correlation Immunity and Algebraic Degree

Siegenthaler proved in [11] that any n-variable t-resilient
function used in a stream cipher cannot both have a high
algebraic degree and high order of correlations immunity, since
its degree is upper bounded by n − t. If f is t-th order
correlation immune function (0 ≤ t ≤ n) has an algebraic
degree smaller than or equal to n − t. Moreover, if f is t-
resilient function (0 ≤ t ≤ n) has an algebraic degree smaller
than or equal to n − t − 1 if t ≤ n − 2 and equal to 1 if
t = n− 1.

D. High Nonlinearity and Correlation Immunity

Sarkar and Maitra demonstrated in [12] that the divisibility
bound on the Walsh transform values of an n-variable, t-
th order correlation immune (resp. t-resilient) function, with
t ≤ n− 2: these values are divisible by 2n−1 − 2t+1(resp by
2n−1 − 2t+2). This will provide a nontrivial upper bound on
the nonlinearity of resilient functions (and also of correlation
immune functions, but non-balanced functions present less
cryptographic interest). The nonlinearity of any n-variable, t-
resilient function is upper bounded by 2n−1 − 2t+1, this is
independently obtained by Tarannikov [13] and by Zheng and
Zhang [14]. Tarannikov demonstrated that resilient functions
achieving this bound must have degree n − t − 1 (which
is achieving Siegenthaler’s bound); thus, they achieve best
possible trade-offs between resiliency order, algebraic degree
and nonlinearity.

This paper gives a secondary construction of resilient func-
tion. The paper is organized as follows. In section two we
recall the basic notions and concepts of Boolean functions. In
section three we introduce the proposed construction. Finally
section four concludes the paper.

II. PRELIMINARIES

A Boolean function on n-variable may be viewed as a map-
ping from the vector space Fn

2 in to F2. By ⊕ we denote sum
modulo 2. The Hamming weight wt(f) of a Boolean function
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f on Fn
2 is the size of its support{x ∈ Fn

2 ; f(x) = 1}. An
n-variable Boolean function f has unique algebraic normal
form (ANF):
f(x1, · · · , xn) = a0⊕

∑
1≤i≤n aixi⊕

∑
1≤i≺j≤n aijxixj⊕

· · · ⊕ a12···nx1x2 · · ·xn.
Where the coefficients a0, ai, aij , a12···n belong to F2.
The algebraic degree deg (f) of a Boolean function f is

defined as the number of variables in the longest term of f . If
the algebraic degree of f is smaller than or equal to one then
f is called affine function. An affined function with a constant
term equal to zero is called a linear function. Let f be Boolean
function on Fn

2 . Then the Walsh-Hadamard transform of f is
defined as:

Wf(u) =
∑
x∈Fn

2

(−1)f(x)⊕u·x. (1)

Where u · x = u1x1 ⊕ · · · ⊕ unxn, denotes the usual scalar
product of vectors u and x.

The nonlinearity Nf of an n-variable function f is the min-
imum distance from the set of all n-variable affine function,
it is equal to:

Nf = 2n−1 − 1

2
max
u∈Fn

2

|Wf(u)|. (2)

Boolean functions used in stream ciphers must have high
nonlinearity. A high nonlinearity weakens the correlation be-
tween the input and output and prevents the attacker from
using linear approximations of the function.

A Boolean function f on Fn
2 is balanced if wt(f) = wt(1⊕

f). In other words, f is balanced if and only if wt(f) = 2n−1.
Correlation immune functions and resilient functions are two
important classes of Boolean functions. Xiao and Massey [15]
provided a spectral characterization of correlation immune. A
function f is t − th-order correlation immune if and only if
its Walsh transform satisfies: Wf(u) = 0, for all ∀u ∈ Fn

2 ,
such that 1 ≤ wt(u) ≤ t, where wt(u) denotes the Hamming
weight of u, and function f is balanced if moreover Wf(0) =
0. A balanced t − th order correlation immune functions are
called t-resilient functions. They are characterized by the fact
that Wf(u) = 0 for all ∀u ∈ Fn

2 , such that 0 ≤ wt(u) ≤ t.
A Boolean function f on Fn+m

2 depends on the variables
xn+1, ..., xn+m linearly if f can be represented in the form :

f (x) = h (x1, ..., xn)⊕ xn+1 ⊕ ...⊕ xn+m (3)

A Boolean function f on Fn
2 depends on the variables xi

and xj quasilinearly if we can represent f in the following
form:

f (x) = h (y)⊕ xi (4)

Where y = (x1, ..., xi−1, xi+1, ..., xj−1, xj+1, ..., xn, xi ⊕ xj).
By (N, t, d,N) , we denote a n-variable function, t-resilient

function having degree d and nonlinearity N . In the above
notation, we may replace some components by (−) if we do
not want to specify it.

Proposition 1: [11] Let f be a Boolean function on Fn+m
2 .

Then if f depends on the variables xn+1, ..., xn+m linearly,
then f is a (t + m)-resilient function with nonlinearity
Nf = 2mNh, where h is a t-resilient function used in the
representation of f in the form 3;

Proposition 2: [13] Let f be a boolean function on Fn
2 .

Then if f depends on the variables xi and xj quasilin-
early, then f is a t + 1-resilient function with nonlinearity
Nf = 2Nh, where h is a t-resilient function used in the
representation of f in the form 4.

Proposition 3: [13] Let f1 and f2 be two t-resilient
Boolean functions on Fn

2 such that Nf1 = Nf2 =
N0. Moreover assume f1 depends on the variables xi and
xj linearly and f2 depends on a pair of the variables
(xi, xj) quasilinearly. Then the function f (x1, ..., xn+1) =
(1⊕ xn+1) f1 (x1, ..., xn)⊕xn+1f2 (x1, ..., xn) is a t-resilient
function on Fn+1

2 with nonlinearity Nf = 2n−1 +N0.
Proposition 4: [16] Let g be Boolean function on Fn

2 and
l be a affine function on Fm

2 . Let g + L be a function on s
variables. If l is a function on xn+2, ..., xn+m and xn, then,
we have
AIn(g)− 1 ≤ AIs(g + l) ≤ AIn(g) + 1.
If l is a function on xn+1, xn+2, ..., xn+m, then, we have
AIn(g) ≤ AIs(g + l) ≤ AIn(g) + 1.
Proposition 5: [17] Let f1 and f2 be two n-variable

functions with AIn(f1) = d1 and AIn(f2) = d2. Let
f (x1, ..., xn+1) =
(1⊕ xn+1) f1 (x1, ..., xn)⊕xn+1f2 (x1, ..., xn) be function

on Fn+1
2 . Then:

If d1 = d2 = d, then d ≤ AIn+1(f) ≤ d+ 1.
If d1 6= d2, then AIn+1(f) = min(d1, d2) + 1.

III. PROPOSED CONSTRUCTION

In [11] Siegenthaler proposed a construction of resilient
functions. Tarannikov has proposed in [13] an important con-
struction of resilient functions. In this section, we will propose
a construction of resilient function based on the combination
between the Siegenthaler’s construction and Tarannikov’s con-
struction. Let us first present the construction.

Construction 1: Let n,m and t be positive integers such
that t ≺ n and 2 ≤ m. Let g0 be (n, t, d,N0) the Boolean
function. Let g∗0 be boolean function generated from g0 by
replacing the variable xn with (xn+1⊕xn+2). Let f1 = l1⊕g0
and f2 = l2⊕g∗0 be two Boolean functions on Fn+m

2 . Where
l1 and l2 are two affine functions on Fm

2 defined respectively
by l1 = xn+1⊕xn+2⊕ ...⊕xn+m and l2 = xn⊕xn+2⊕ ...⊕
xn+m. We construct the function g1 in (n+m+ 1)-variable
in the following way: g1 = (1⊕ xn+m+1) f1 ⊕ xn+m+1f2.
Then the following important results are obtained.

Theorem 1: Let g1 be a function defined by construction 1.
Then g1 is an (n+m+1)-variale (t+m)-resilient function has
algebraic degree d+ 1. Moreover: Ng1 = 2n+m−1 + 2mN0.

Proof :
By proposition 1 the function f1 is (t+m)-resilient function on
Fn+m
2 with nonlinearity Nf1 = 2mN0. Moreover, f1 depends

on the variables xn+1, ..., xn+m linearly.
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Let h = xn ⊕ xn+2 ⊕ g∗0 . By proposition 2 the function h
is (t + 2)-resilient function on Fn+2

2 has nonlinearity Nh =
4N0. Moreover, h depends on the variables xn+1 and xn+2

quasilinearly.
By proposition 1 the function f2 = xn+3 ⊕ ...xn+m ⊕ h is

(t+m)-resilient function on Fn+m
2 with nonlinearity Nf2 =

2m−2Nh = 2mN0.
By proposition 3 the function g1 is an (n+m+1)-variable

(n+m)-resilient function has nonlinearity Ng1 = 2n+m−1 +
2mN0.

It is obvious that it deg (g1) = deg (g0) + 1.
Corollary 1: In the construction 1, if g0 is a(
n, t, d, 2n−1 − 2t+1

)
function. Then the function g1

defined by construction 1 is an(
n+m+ 1, t+m, d+ 1, 2n+m−1 − 2t+m+1

)
.

Lemma 1: Let g1 be a function defined by construction 1.
Then
AIn(g0) ≤ AIn+m+1(g1) ≤ AIn(g0) + 3.
Proof :

First we prove the lower bound. Let algebraic immunity
of g0 be d, so AIn(g

∗
0) = d. By proposition 4 we have

AIn+m(f1) ≥ d and by proposition 4 we have AIn+m(f2) ≥
d− 1. Then by proposition 5, we have AIn+m+1(g1) ≥ d.

Now we prove the upper bound. Let g1 =
(1⊕ xn+m+1) f1 ⊕ xn+m+1f2 = (1 ⊕ xn+m+1)(l1 ⊕ g0) ⊕
xn+m+1(l2 ⊕ g∗0) = (1 ⊕ xn+m+1)g0 ⊕ xn+m+1g

∗
0 ⊕ (1 ⊕

xn+m+1)l1⊕xn+m+1l2 = (1⊕xn+m+1)g0⊕xn+m+1g
∗
0⊕α,

where α = (1⊕ xn+m+1)l1 ⊕ xn+m+1l2 has degree 2.
Let h 6= 0 be boolean function such that g0 ∗ h = 0 or

(1 ⊕ g0) ∗ h = 0. Let g0 = ϕ ⊕ φxn, where ϕ and φ are
functions on n − 1 variables, free from the variable xn. So
(1⊕ xn+m+1)g0 ⊕ xn+m+1g

∗
0 = (1⊕ xn+m+1)(ϕ⊕ φxn)⊕

xn+m+1(ϕ ⊕ φ(xn+1 ⊕ xn+2)) = xn+m+1φ(xn ⊕ xn+1 ⊕
xn+2)⊕ g0.

If g0 ∗h = 0 then g1 ∗ (1⊕α)(1⊕xn⊕xn+1⊕xn+2)∗h =
= xn+m+1φ(xn⊕xn+1⊕xn+2)⊕g0⊕α)∗ (1⊕α)(1⊕xn⊕
xn+1 ⊕ xn+2) ∗ h = 0.

If (1⊕ g0) ∗h = 0 then (1⊕ g1) ∗ (1⊕α)(1⊕xn⊕xn+1⊕
xn+2)∗h = 1⊕xn+m+1φ(xn⊕xn+1⊕xn+2)⊕g0⊕α)∗(1⊕
α)(1⊕xn⊕xn+1⊕xn+2)∗h = 0. Thus AIn+m+1(g1) ≤ d+3.

The construction 1 can be applied iteratively.

IV. CONCLUSION

In this work a modified Tarannikov’s construction method
with extended number of variables is presented. The con-
struction permitted to increase the cryptographic parameters
such as: algebraic degree, resiliency order, nonlinearity and
algebraic immunity degree, it enables also to define many
resilient functions having interesting cryptographic properties.
Thus, we can use this iteratively construction to build: from
any optimal resilient functions achieving Siegenthaler’s bound
and Sarkar et al.’s bound, a large class of optimal functions
achieving Siegenthaler’s bound and Sarkar et al.’s bound.
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