
Influence of two different crossover operators use
onto GPA efficiency

Tomas Brandejsky
dept. of Electrotechnics ans Informatics

University of Pardubice
Pardubice, Czech Republic
tomas.brandejsky@upce.cz

Abstract—Increasing capabilities of today computers,
especially size of memory and computational power open new
application areas to Genetic Programming Algorithms [1].
Unfortunately, efficiency of these algorithms is not big and
decreases with solved problem complexity. Thus, its increase is
extremely important for opening of new application domains.
There exists three main areas that should potentially influence
GPA efficiency. They are algorithms, pseudo-random number
generator behaviours and evolutionary operators. Genetic
programming algorithms use two basic evolutionary operators –
mutation and crossover in the sense of Darwinian evolution. Non-
looking to the fact, that it is possible to define additional
operators like e.g. application defined operators [2], there are
many different implementations of both basic evolutionary
operators [3] and each of them is sometimes useful in artificial
evolutionary process. Thus, the main question solved in this
paper is that it might bring some advance to use two randomly
executed different crossover operators in GPA. The study is
focused to symbolic regression problem and as GPA is used GPA-
ES, because it is capable to eliminate influence of solution
parameters (constants) identification and thus to produce more
clear results. (Abstract)

Keywords—genetic programming algorithm, evolutionary
operators, crossover, mutation, multiple crossover implementations
(key words)

I. INTRODUCTION

Increasing capabilities of today computers, especially size
of memory and computational power open new application
areas to Genetic Programming Algorithms [1] (GPA). GPAs are
special kind of Genetic Algorithms [4] or Evolutionary
Strategies [5] which do not optimise set of model parameters
but produces models itself (model is frequently described by
fitness function, but it is possible to optimize model parameters
without algebraically described fitness function using e.g.
tournament selection). Unfortunately, efficiency of these
algorithms is not big non-looking that it is better than efficiency
of many other algorithms and decreases with solved problem
complexity. Thus, its increase is extremely important for
opening of new application domains. There exists three main
areas that should potentially influence GPA efficiency. They are
own algorithms, pseudo-random number generator behaviours
and evolutionary operators. Genetic programming algorithms
use two basic evolutionary operators – mutation and crossover

in the sense of Darwinian evolution [6]. Non-looking to the
fact, that it is possible to define additional operators like e.g.
application defined operators [2], there are many different
implementations of both basic evolutionary operators [3] and
each of them is sometimes useful in artificial evolutionary
process, as it will be discussed later. Thus, the main question
solved in this paper is that it might bring some advance to use
two randomly executed different crossover operators in GPA.
While mutation randomly alters a randomly chosen part of a
selected parent model, crossover combines randomly selected
parts of predecessors to create offspring. The study is focused
to symbolic regression problem and as GPA is used GPA-ES,
because it is capable to eliminate influence of solution
parameters (constants) identification and thus to produce more
clear results.

II. CROSSOVER

This study is focused to crossover operator. Many
researches suggest do not use mutation frequently or to limit its
application to initial evolutionary cycles or to situations where
no progress is observed for many cycles. This is cased by
specific feature of mutation which is not capable significantly
change structure of the solution but it only optimizes its
properties – used operators and referred terminals (constants
and variables), see e.g. [1 to 3, 7 to 9]. Studied two versions of
crossover operator are one_point crossover [10] (a kind of
homologous crossover operator) and standard crossover [1].

There are known also many different modifications of these
operators and other crossover operators like uniform crossover
[11], context-preserving crossover [12] and size-fair crossover
[13]. Standard crossover operator selects two parents from the
members of population in the given evolutionary cycle and for
the each of them it selects crossover point. Such
implementation of crossover allows to use previously
developed structure in novel content, but frequently it generates
poor individuals, because it swaps sub-trees with different
function, purpose. Application of this kind of crossover
frequently tens to occurrence of different depth trees, it tends to
non-homogeneous populations. Thus we can conclude that
standard crossover operator is useful when population is too
uniform, loses ability of development, but in other situations in
is not efficient much.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 12, 2018

ISSN: 2074-1294 15

Another problem of standard crossover is that it supports
bloating – occurrence of extremely complex structures. It is
caused possibility to set up crossover points in different depths
of parent structures. After crossover operation complexity of
one structure might significantly increase and vice versa.

On the opposite side, one_point crossover (and many other
homologous crossover operators) searches corresponding sub-
trees in both genes. This is done by passing the same trajectory
in both genes, if it is possible. In the finish there is big
probability, that we get crossover points of the same semantic
sense (especially in the latter evolutionary cycles, when the
population is more homogeneous). On the opposite side, the
application of this kind of crossover operator makes population
homogeneous and decreases its adaptability.

In the work [14], two different implementations of the
cross-over operator applicable in GPA or GPA-ES algorithms
were studied. The paper especially focused to evaluation of
practical experiments with symbolic regression of model on the
base of pre-computed data generated by Lorenz attractor
system model. These experiments did not conclude any
significant difference between these two implementations with
small extreme near to ratio 1:1 which points that in the case of
large populations it is sometime useful to combine both
implementations. It herein presented new research the work
was focused to GPA algorithm only and to different
implementations of cross-over operator.

III. EXPERIMENT DESIGN

A. Evolutionary operator combination

In the typical situation when it is not possible either to
decide between alternative operators nor to create novel one
with optimal features is the essential to use all alternative
operators together. This the reason why this paper is devoted to
mixing of different implementations of crossover evolutionary
operator in GPA. Because it is not possible on the today state of
art to decide precisely when to apply one version of crossover
operator and when other, in this study we will test different
probabilities of their use. There are known only above
introduced common ideas when to apply standard crossover
and when one-point one, but is not easy to measure evolution
efficiency, homogeneity of population etc.

B. Used GPA-ES

As it was introduced in the first part of the paper, this study
is focused to symbolic regression problem. In the previous
years the two level GPA-ES [15] evolutionary algorithm was
developed. This algorithm described on Fig. 1 distinguishes
between structure development and parameter optimization.
First of them is solved by standard GPA algorithm, while
parameter optimization is solved by Evolutionary Strategy (ES)
algorithm. It gives GPA-ES algorithm to eliminate influence of
parameter (constant) identification and measure properties of
GPA component with respect to structural identification or
development. In the presented paper it enables more precisely
identify influence of crossover operator, because experiments
results will include only number of GPA cycles needed to
identify algebraic equations, see e.g. [16, or 17]. The work [18]

brings huge set of references to relevant literature about
structures of all typical cases of GPAs.

1) FOR ALL individuals DO Initialize() END FOR;

2) FOR ALL individuals DO
Evaluate()=>fitness END FOR;

3) Sort(individuals);
4) IF Terminal_condition() THEN STOP
 END IF;
5) FOR ALL individuals DO

 SELECT Rand() OF
 CASE a DO Mutate()=> new_individuals;
 CASE b DO Symetric_crossover() =>

new_individuals;
 CASE c DO One_point_crossover() =>

new_individuals;
 CASE d DO Re-gerating() =>

new_individuals;
 END SELECT;
 END FOR;
6) FOR ALL individuals DO Evaluate =>

new_fitness
 END FOR;
7) FOR ALL individuals DO

IF new_fitness<fitness THEN
 individual = new_individual;
 fitness = new_fitness;
 END IF;
 END FOR;
8) GOTO 3);

Fig. 1. GPA-ES algorithm

Computational complexity of GPA-ES algorithm depends on
many parameters with respect to its complexity and it was
identified in [15] as follows:
GPA population initialization complexity is given by (1) if
maximal building function arity is 2:

O(GPAINIT)=n 2l 

Where
n is number of GPA individuals
l is complexity of structures created by GPA
GPA population evaluation complexity is analogically

O(GPAevaluation)=nO(ES) 

Complexity of evaluation of ending condition is

O(GPAending)=n 

Complexity of evaluation of individuals on the base of
predefined fitness is

O(GPAeval)=n2l 

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 12, 2018

ISSN: 2074-1294 16

and complexity of population ordering is

O(GPAorderig)=nlog(n) 

For the nested ES algorithm used to optimize parameters of
each individual, the partial computational complexities are:

O(ESinit)=m2l 

Where
m is number of ES individuals
Complexity of gene evaluation is

O(ESeval)=mk=m2l 

where
k is average number of constants in GPA genes,

k=2l
.

Complexity of ES termination condition evaluation is
O(ESterm)=n (8)

Intelligent crossover evolutionary operator complexity is (9):

O(EScrossover)=mk=m 2l 

ES population ordering complexity is

O(ESsort)=mlog(m) 

Resulting complexity of whole GPA-ES algorithm is (11-12):

O(ES)=
O(ESinit)+O(ESeval)+O(ESterm)

+O(EScrossover)+O(ESsort)
❑



O(GPAES)=
O(GPAinit)+O(GPAeval)

+O(GPAEnding)+O(GPAordering)
❑



C. Problem of GPA experiment evaluation

Because GPAs are stochastic algorithm strongly influenced
pseudo-Random Number Generators (pRNGs), it is not
possible to stand up conclusions on small number of
observations.
SW implemented pRNGs in difference to true RNGs typically
implemented in HW generates from single initial state one
immutable data array. Different series are generated on the
base of initial seed value change. Different situation occurs
when pRNG is used in parallel algorithm with multiple threads
or tasks. Parallel tasks bring new situation, because there is
strong influence of task switching (which is influenced by

other processes in computer). It makes generated random
series hardly repeatable. Thus experiments with GPA shall be
free of multitasking (the use of thread safe implementation of
pRNGs is not sufficient) and it is need to use experiments
with many different initial seed magnitudes.
In the presented experiments GPA-ES system runs as single-
thread application to prevent above described influences.
Experiment results are compared on the base of needed
computational cycles and not computational times, because
speed of processors changes with each novel model.
Lorenz attractor system (13 and 14) was used for
comparability with other experiments provided within our
research in the are of symbolic regression. To increase
comparability of experiments, the large number of test
functions is frequently applied by many researchers and
benchmark sets were formed. Because it is need to use large
number of seed magnitudes for each function and large
populations in each experiment, there it is extreme
computational power need and experiments are calculated on
supercomputer.

x'(t)=σ (y (t)-x (t)) ,
y'(t)=x (t)(ρ-z(t))-y(t) ,
z' (t)=x (t) y(t) - β z(t) (13)

σ=16
β= 4
ρ= 45.91 (14)

Fig. 2. Lorenz attractor in phase space

Because the Lorenz attractor system equations [19] are simple
a they produce in the case of Extremely Accurate Symbolic
Regression too simple equations to identify influences of
selected crossover operator mix, the test cases ware extended
by second, more complicated system – Roessler attractor
system [20] (15 and 16).

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 12, 2018

ISSN: 2074-1294 17

x ' (t)=− y (t)−z (t)
y ' (t)=x(t)+ay(t)
z ' (t)=b+z (t) (x(t)−c)

(15)

a=0.1, b=0.1, c=5.7 

Data series produced by pRNGs shows very long
perturbations, as it is given by long periods of their functions.
Unpredictable task switching even these periods many times
multiplies. Thus, it is need to use many experiments based on
these series with different initial seed magnitudes or the results
are confusing. Unfortunately, frequently used GPA
benchmarks do not solve this problem, does not suggest
requirements to pRNGs, there is not given any limit to quality
of solution – residual sum of error squares and many functions
forming benchmark set and some functions forming
benchmark problem set are very similar as in cases of
benchmarks on [17].
If structure of the algorithm is known, it is possible to estimate
probability of occurrence of given structure in the population
and transpose results from measured experiments to another
test case, as it was presented in [17, 13 and 21, where the first
monograph presents many ways based especially on the
schema theory, the second paper brings approach close to
Markov processes. As it was published in [21], if we have
sufficient number of experiments and if we solve symbolical
regression problems with small residual error, average results
depends only on statistical properties of initial population
generator and applied evolutionary operators and it is possible
to estimate them by application of Markov chain.

IV. RESULT DISCUSSION

From the above described reasons, the experiments were
provided with data representing three equations of Lorenz
attractor system. There were 500 samples. Experiments stopped

when sum of error squares was less than 10−7
. The

experiments were repeated 10000 times for different initial
seed magnitudes of used pRNG (standard rand() function of
C++ stdlib function) and for different proportions of probability
of standard and one-point crossover application.

Table 1 and Fig. 3 presents computed average numbers of
iterations for different proportions of standard and one-point
crossover and for variables x, y and z of Lorenz attractor
system. There is minimal influence of this proportion for
variables x and z, because their generating differential
equations are simple and linear. Magnitudes of variable y are
computed from non-linear and more complex equation and
there might be observed, that mixing of both operators with
proportion about 50% to 50% brings increase of GPA algorithm
efficiency.

TABLE I. TABLE 1 AVERAGE NO OF ITERATIONS DEPENDING ON
PROPORTION F STANDARD AND ONE-POINT CROSSOVER FOR LORENZ

ATTRACTOR

Fig. 3. Average No of iterations depending on proportion of crossover
operators for variables x, y and z

Fig. 4 to 6 illustrates change of average iteration number of
variables x, y and z respectively for different number of
experiments. These graphs illustrates that it is need to use about
10000 experiments to achieve average error less than 1%.

Fig. 4. Average iteration number of variable y for different number of
experiments for variable x

x y z
Crossovers 100_0 24.9 241 35.8
Crossovers 75_25 22.4 216 32
Crossovers 50_50 22.3 202 31.3
Crossovers 25_75 23.6 216 34.5
Crossovers 0_100 22.5 225 30.6

0
50

100
150
200
250

xyz

Average numbers of iterations

for different proportions of standard and one_point crossover

x

y

z

Proportions of standard and one-point crossover

Av
e
ra

g
e
 N

o
 o

f i
tte

ra
tio

n
s

Variable

0
5

10
15
20
25
30
35
40

Average No of itterations for x

for different proportions of cross-over operators
Crossovers
100_0

Crossovers
75_25

Crossovers
50_50

Crossovers
25_75

Crossovers
0_100

No of experiments

N
o

 o
f i

tte
ra

tio
n

s

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 12, 2018

ISSN: 2074-1294 18

Fig. 5. Average iteration number of variable y for different number of
experiments for variable y

Fig. 6. Average iteration number of variable y for different number of
experiments for variable z

Second group of experiments with Roessler attractor system
tend to very similar results represented by Table 2 and Fig. 5
containing averages of measured data and graph of average
iteration numbers of experiment.

TABLE II. AVERAGE NO OF ITERATIONS DEPENDING ON PROPORTIONS
OF STANDARD AND ONE-POINT CROSSOVER FOR ROESLER ATTRACTOR

Fig. 7. Average No of iterations depending on proportion of crossover
operators for variables x, y and z

V. CONCLUSION

Presented study points that it is impossible to study GPA
behaviours on the base of small number of experiments. The
paper points that it is possible to improve GPA behaviours by
application of two or more different interpretation of crossover
operator but additional time expensive test cases must be
provided.
The paper brings analysis of used GPA-ES algorithm
complexity and presents comparison of simultaneous use of
two different crossover operators with different proportion of
their application. The experiments were provided on data on
two different system differential equations representing Lorenz
and Roessler attractor systems. There were used 500 data
samples for each system and each equation. Each symbolic
regression experiment was 10000 times repeated for different
pRNG seed magnitudes to eliminate pRGN influence onto
experiment results.
The experiments conclude working hypothesis that it is better
to combine (randomly invoke) more different crossover
operators than to apply any of them.

ACKNOWLEDGMENT

x y z
Crossovers 10 22.64 226.1 31.9
Crossovers 75 22.44 215.32 31.71
Crossovers 50 22.09 210.58 30.42
Crossovers 25 22.33 212.81 30.28
Crossovers 0_ 22.47 225.45 30.53

0
50

100
150
200
250

xyz

Average numbers of itterations

for different proportions of standard and one_point crossover

x

y

z

Proportions of standard and one-point crossover

Av
e
ra

g
e
 N

o
 o

f i
tte

ra
tio

n
s

Variable

0
50

100
150
200
250
300
350
400

Average No of itterations for y

for different proportions of cross-over operators
Crossovers
100_0

Crossovers
75_25

Crossovers
50_50

Crossovers
25_75

Crossovers
0_100

No of experiments

N
o

 o
f i

tte
ra

tio
n

s

0

10

20

30

40

50

60

Average No of itterations for z

for different proportions of cross-over operators
Crossovers
100_0

Crossovers
75_25

Crossovers
50_50

Crossovers
25_75

Crossovers
0_100

No of experiments

N
o

 o
f i

tte
ra

tio
n

s

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 12, 2018

ISSN: 2074-1294 19

Computational resources were supplied by the Ministry of
Education, Youth and Sports of the Czech Republic under the
Projects CESNET (Project No. LM2015042) and CERIT-
Scientific Cloud (Project No. LM2015085) provided within the
program Projects of Large Research, Development and
Innovations Infrastructures.

REFERENCES

[1] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MA: MIT Press, 1992.

[2] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane, Genetic
Programming III: Darwinian Invention and Problem Solving. CA:
Morgan Kaufmann Publishers, 1999.

[3] "R. Poli, W. B. Langdon and N. F. McPhee, A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008.

[4] D. Goldberg, (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Reading. MA: Addison-Wesley Professional. 1989.

[5] W. G. S. Hines, "Evolutionary stable strategies: a review of basic
theory". Theoretical Population Biology. Vol. 31 (2), pp. 195–272, 1987.

[6] P. J. Bowler. Evolution: The History of an Idea (3rd completely rev. and
expanded ed.). Berkeley, CA: University of California Press, 2003.

[7] A. S. Bickel and R. W. Bickel, “Tree structured rules in genetic
algorithms”, in J. J. Grefenstette, editor, Genetic Algorithms and their
Applications: Proceedings of the second International Conference on
Genetic Algorithms, MIT, Cambridge, MA, USA, 28-31 July 1987.
Lawrence Erlbaum Associates, pp. 77–81, .

[8] N. L. Cramer, “A representation for the adaptive generation of simple
sequential programs”, in J. J. Grefenstette, editor, Proceedings of an
International Conference on Genetic Algorithms and the Applications,
Carnegie-Mellon University, Pittsburgh, PA, USA, 24-26 July 1985.
URL http://www.sover.net/~nichael/nlc-publications/icga85/index.html,
pp 183–187.

[9] C. Fujiki and J. Dickinson, “Using the genetic algorithm to generate lisp
source code to solve the prisoner’s dilemma”, in J. J. Grefenstette, editor,
Genetic Algorithms and their Applications: Proceedings of the second
international conference on Genetic Algorithms, MIT, Cambridge, MA,
USA, 28-31 July 1987. Lawrence Erlbaum Associates, pp. 236–240.

[10] R. Poli and W. B. Langdon, “A new schema theory for genetic
programming with one-point crossover and point mutation”, in J. R.

Koza, et al., editors, Genetic Programming 1997: Proceedings of the
Second Annual Conference, Stanford University, CA, USA, 13-16 July
1997. Morgan Kaufmann, pp. 278–285.

[11] R. Poli and W. B. Langdon, “On the search properties of different
crossover operators in genetic programming”, in J. R. Koza, et al.,
editors, Genetic Programming 1998: Proceedings of the Third Annual
Conference, University of Wisconsin, Madison, Wisconsin, USA, 22-25
July 1998. Morgan Kaufmann, pp. 293–301.

[12] P. D’haeseleer, “Context preserving crossover in genetic programming”,
in Proceedings of the 1994 IEEE World Congress on Computational
Intelligence, volume 1, Orlando, Florida, USA, 27-29 June 1994. IEEE
Press, pp. 256–261.

[13] GPA benchmarks, http://www.gpbenchmarks.org/wiki/index.php?
title=Problem_Classification, accessed 21st July 2017.

[14] T. Brandejsky, “Two different implementations of the cross-ower
operator in GPA algorithm”, in: R. Matousek., ed. 20th International
Conference on Soft Computing Mendel 2014. Brno, 25.06.2014 -
27.06.2014. Brno: VUT v Brně, Fakulta strojní. 2014, s. 55-58. ISSN
1803-3814. ISBN 978-80-214-4984-8.

[15] T. Brandejsky, “Multi-layered evolutionary system suitable to symbolic
model regression”, in: Recent Researches in Applied Informatics. 2nd
International Conference on Applied Informatics and ompuiting Theory.
Praha, 26.09.2011 - 28.09.2011. Athens: WSEAS Press, 2011, pp. 222-
225.

[16] T. Brandejsky, “Genetic Programming Algorithm with Parameters
Preoptimization - Problem of Structure Quality Measuring”, in: P.
Osmera, ed. MENDEL 2005. 11th International Conference on Soft
Computing. Brno, 15.06.2005 - 17.06.2005. Brno: Brno University of
Technology05, pp. 138-144.

[17] T. Brandejsky, and I. Zelinka, “Specific Bahaviour of GPA-ES
Evolutionary System Observed in Deterministic Chaos Regression”, in:
I. Zelinka, et al., ed. Nostradamus: Modern Methods of Prediction,
Modeling and Analysis of Nonlinear Systems. Nostradamus. Ostrava,
05.09.2012 - 07.09.2012. Heidelberg: Springer. 2013, pp. 73-81.

[18] W. B. Langdon and R. Poli, Foundations of Genetic Programming.
Springer, New York, Heidelberg, Berlin (1998).

[19] E. N. Lorenz "Deterministic nonperiodic flow". J. Atmos. Sci. 20 (2),
1963, pp. 130–141.

[20] O. E. Rössler "An Equation for Continuous Chaos". Physics Letters 57A
(5), 1976, pp. 397–398.

[21] W. B. Langdon, “Size fair and homologous tree genetic programming
crossovers”, in W. Banzhaf, et al., editors, Proceedings of the Genetic
and Evolutionary Computation Conference, volume 2, Orlando, Florida,
USA, 13-17 July 1999, Morgan Kaufmann, pp. 1092–1097.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 12, 2018

ISSN: 2074-1294 20

http://www.gp-field-guide.org.uk/
http://www.sover.net/~nichael/nlc-publications/

	I. Introduction
	II. Crossover
	III. Experiment design
	A. Evolutionary operator combination
	B. Used GPA-ES
	C. Problem of GPA experiment evaluation

	IV. Result discussion
	V. Conclusion
	Acknowledgment
	References

