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Abstract—Increasing  capabilities  of  today  computers,
especially  size  of  memory  and computational  power open new
application  areas  to  Genetic  Programming  Algorithms  [1].
Unfortunately,  efficiency  of  these  algorithms  is  not  big  and
decreases with solved problem complexity.  Thus,  its increase is
extremely  important  for  opening  of  new  application  domains.
There exists  three main areas that should potentially  influence
GPA efficiency.  They  are  algorithms,  pseudo-random  number
generator  behaviours  and  evolutionary  operators.  Genetic
programming algorithms use two basic evolutionary operators –
mutation and crossover in the sense of Darwinian evolution. Non-
looking  to  the  fact,  that  it  is  possible  to  define  additional
operators  like  e.g.  application  defined  operators  [2],  there  are
many  different  implementations  of  both  basic  evolutionary
operators [3] and each of them is sometimes useful in artificial
evolutionary  process.  Thus,  the  main  question  solved  in  this
paper is that it might bring some advance to use two randomly
executed  different  crossover  operators  in  GPA.  The  study  is
focused to symbolic regression problem and as GPA is  used GPA-
ES,  because  it  is  capable  to  eliminate  influence  of  solution
parameters (constants) identification and thus to produce more
clear results.  (Abstract)

Keywords—genetic  programming  algorithm,  evolutionary
operators, crossover, mutation, multiple crossover implementations
(key words)

I. INTRODUCTION 

Increasing capabilities of today computers, especially size
of  memory  and  computational  power  open  new  application
areas to Genetic Programming Algorithms [1] (GPA). GPAs are
special  kind  of  Genetic  Algorithms  [4]  or  Evolutionary
Strategies [5] which do not optimise set of model parameters
but produces models itself (model is frequently described by
fitness function, but it is possible to optimize model parameters
without  algebraically  described  fitness  function  using  e.g.
tournament  selection).  Unfortunately,  efficiency  of  these
algorithms is not big non-looking that it is better than efficiency
of many other algorithms and decreases with solved problem
complexity.  Thus,  its  increase  is  extremely  important  for
opening of new application domains. There exists three main
areas that should potentially influence GPA efficiency. They are
own algorithms, pseudo-random number generator behaviours
and evolutionary operators.  Genetic  programming algorithms
use two basic evolutionary operators – mutation and crossover

in the sense of Darwinian evolution [6].  Non-looking to the
fact, that it is possible to define additional operators like e.g.
application  defined  operators  [2],  there  are  many  different
implementations of both basic evolutionary operators [3] and
each  of  them  is  sometimes  useful  in  artificial  evolutionary
process, as it will be discussed later. Thus, the main question
solved in this paper is that it might bring some advance to use
two randomly executed different crossover operators in GPA.
While mutation randomly alters a randomly chosen part of a
selected parent model, crossover combines randomly selected
parts of predecessors to create offspring. The study is focused
to symbolic regression problem and as GPA is  used GPA-ES,
because  it  is  capable  to  eliminate  influence  of  solution
parameters (constants) identification and thus to produce more
clear results. 

II. CROSSOVER

This  study  is  focused  to  crossover  operator.  Many
researches suggest do not use mutation frequently or to limit its
application to initial evolutionary cycles or to situations where
no  progress  is  observed  for  many  cycles.  This  is  cased  by
specific feature of mutation which is not capable significantly
change  structure  of  the  solution  but  it  only  optimizes  its
properties  – used operators  and referred terminals (constants
and variables), see e.g. [1 to 3, 7 to 9]. Studied two versions of
crossover  operator  are  one_point  crossover  [10]  (a  kind  of
homologous crossover operator) and standard crossover [1].

There are known also many different modifications of these
operators and other crossover operators like uniform crossover
[11], context-preserving crossover [12] and size-fair crossover
[13]. Standard crossover operator selects two parents from the
members of population in the given evolutionary cycle and for
the  each  of  them  it  selects  crossover  point.  Such
implementation  of  crossover  allows  to  use  previously
developed structure in novel content, but frequently it generates
poor  individuals,  because  it  swaps  sub-trees  with  different
function,  purpose.  Application  of  this  kind  of  crossover
frequently tens to occurrence of different depth trees, it tends to
non-homogeneous  populations.  Thus  we  can  conclude  that
standard crossover operator  is useful  when population is too
uniform, loses ability of development, but in other situations in
is not efficient much.
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Another problem of standard crossover is that it supports
bloating – occurrence  of  extremely complex  structures.  It  is
caused possibility to set up crossover points in different depths
of parent  structures.  After  crossover operation complexity of
one structure might significantly increase and vice versa.

On the opposite side, one_point crossover (and many other
homologous crossover operators) searches corresponding sub-
trees in both genes. This is done by passing the same trajectory
in  both  genes,  if  it  is  possible.  In  the  finish  there  is  big
probability, that we get crossover points of the same semantic
sense  (especially  in  the  latter  evolutionary cycles,  when the
population is more homogeneous).  On the opposite side,  the
application of this kind of crossover operator makes population
homogeneous and decreases its adaptability.

In  the  work  [14],  two  different  implementations  of  the
cross-over operator applicable in GPA or GPA-ES algorithms
were  studied.  The paper  especially  focused  to  evaluation  of
practical experiments with symbolic regression of model on the
base  of  pre-computed  data  generated  by  Lorenz  attractor
system  model.  These  experiments  did  not  conclude  any
significant difference between these two implementations with
small extreme near to ratio 1:1 which points that in the case of
large  populations  it  is  sometime  useful  to  combine  both
implementations.  It  herein  presented  new research  the  work
was  focused  to  GPA  algorithm  only  and  to  different
implementations of cross-over operator.

III. EXPERIMENT DESIGN

A. Evolutionary operator combination

In  the  typical  situation  when  it  is  not  possible  either  to
decide between alternative operators nor to create novel one
with  optimal  features  is  the  essential  to  use  all  alternative
operators  together. This the reason why this paper is devoted to
mixing of different implementations of crossover evolutionary
operator in GPA. Because it is not possible on the today state of
art to decide precisely when to apply one version of crossover
operator  and when other,  in this study we will  test  different
probabilities  of  their  use.  There  are  known  only  above
introduced  common ideas  when  to apply standard  crossover
and when one-point one, but is not easy to measure evolution
efficiency, homogeneity of population etc.

B. Used GPA-ES

As it was introduced in the first part of the paper, this study
is  focused  to  symbolic  regression  problem.  In  the  previous
years the two level GPA-ES [15] evolutionary algorithm was
developed.  This  algorithm described  on  Fig.  1  distinguishes
between  structure  development  and  parameter  optimization.
First  of  them  is  solved  by  standard  GPA algorithm,  while
parameter optimization is solved by Evolutionary Strategy (ES)
algorithm. It gives GPA-ES algorithm to eliminate influence of
parameter  (constant)  identification and measure properties of
GPA component  with  respect  to  structural  identification  or
development. In the presented paper it enables more precisely
identify influence of crossover operator,  because experiments
results  will  include  only  number  of  GPA cycles  needed  to
identify algebraic equations, see e.g. [16, or 17]. The work [18]

brings  huge  set  of  references  to  relevant  literature  about
structures of all typical cases of GPAs.

1) FOR ALL individuals DO Initialize() END FOR;

2) FOR ALL individuals DO 
Evaluate()=>fitness END FOR;

3) Sort(individuals);
4) IF Terminal_condition() THEN STOP 
   END IF;
5) FOR ALL individuals DO

 SELECT Rand() OF
        CASE a DO Mutate()=> new_individuals;
        CASE b DO Symetric_crossover() => 

new_individuals;
        CASE c DO One_point_crossover() => 

new_individuals;
        CASE d DO Re-gerating() => 

new_individuals;
     END SELECT;
       END FOR;
6) FOR ALL individuals DO Evaluate => 

new_fitness 
   END FOR;
7) FOR ALL individuals DO 

IF new_fitness<fitness THEN
         individual = new_individual;
         fitness = new_fitness;
        END IF;
       END FOR;
8) GOTO 3);

Fig. 1. GPA-ES algorithm

Computational complexity of GPA-ES algorithm  depends on
many parameters  with  respect  to  its  complexity  and  it  was
identified in [15] as follows:
GPA population  initialization  complexity  is  given  by  (1)  if
maximal building function arity is 2:

O(GPAINIT )=n 2l 

Where
n is number of GPA individuals
l is complexity of structures created by GPA
GPA population evaluation complexity is analogically

O(GPAevaluation)=nO(ES) 

Complexity of evaluation of ending condition is

O(GPAending)=n 

Complexity  of  evaluation  of  individuals  on  the  base  of
predefined fitness is

O(GPAeval)=n2l 
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and complexity of population ordering is

O(GPAorderig)=nlog(n) 

For the nested ES algorithm used to optimize parameters of
each individual, the partial computational complexities are:

O(ESinit )=m2l 

Where
m is number of ES individuals
Complexity of gene evaluation is

O(ESeval)=mk=m2l 

where
k is  average  number  of  constants  in  GPA  genes,

k=2l
.

Complexity of ES termination condition evaluation is
O(ESterm)=n (8)

Intelligent crossover evolutionary operator complexity is (9):

O(EScrossover )=mk=m 2l 

ES population ordering complexity is

O(ESsort)=mlog(m) 

Resulting complexity of whole GPA-ES algorithm is (11-12):

O(ES)=
O(ESinit )+O(ESeval)+O(ESterm)

+O(EScrossover)+O(ESsort )
❑



O(GPAES)=
O(GPAinit )+O(GPAeval)

+O(GPAEnding)+O(GPAordering)
❑



C. Problem of GPA experiment evaluation

Because  GPAs  are  stochastic  algorithm  strongly  influenced
pseudo-Random  Number  Generators  (pRNGs),  it  is  not
possible  to  stand  up  conclusions  on  small  number  of
observations.
SW implemented pRNGs in difference to true RNGs typically
implemented  in  HW generates  from single  initial  state  one
immutable  data  array.  Different  series  are  generated  on  the
base  of  initial  seed value  change.  Different  situation occurs
when pRNG is used in parallel algorithm with multiple threads
or tasks.  Parallel  tasks bring new situation, because there is
strong  influence  of  task  switching  (which  is  influenced  by

other  processes  in  computer).  It  makes  generated  random
series hardly repeatable. Thus experiments with GPA shall be
free of multitasking (the use of thread safe implementation of
pRNGs  is not sufficient)  and it  is need to use experiments
with many different initial seed magnitudes. 
In the presented experiments GPA-ES system runs as single-
thread  application  to  prevent  above  described  influences.
Experiment  results  are  compared  on  the  base  of  needed
computational  cycles  and  not  computational  times,  because
speed of processors changes with each novel model.
Lorenz  attractor  system  (13  and  14)  was  used  for
comparability  with  other  experiments  provided  within  our
research  in  the  are  of  symbolic  regression.  To  increase
comparability  of  experiments,  the  large  number  of  test
functions  is  frequently  applied  by  many  researchers  and
benchmark sets were formed. Because it is need to use large
number  of  seed  magnitudes  for  each  function  and  large
populations  in  each  experiment,  there  it  is  extreme
computational power need and experiments are calculated on
supercomputer. 

x'( t )=σ ( y ( t )-x (t )) ,
y'( t )=x (t )( ρ-z( t ))-y( t ) ,
z' ( t )=x ( t ) y( t ) - β  z( t ) (13)

σ=16     
β= 4        
ρ= 45.91 (14)

Fig. 2. Lorenz attractor in phase space

Because the Lorenz attractor system equations [19] are simple
a they produce in the case of Extremely Accurate Symbolic
Regression  too  simple  equations  to  identify  influences  of
selected crossover operator mix, the test cases ware extended
by  second,  more  complicated  system  –  Roessler  attractor
system [20] (15 and 16).
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x ' (t)=− y (t)−z (t)
y ' (t )=x( t)+ay(t)
z ' (t )=b+z (t) ( x( t)−c )

(15)

a=0.1, b=0.1, c=5.7 

Data  series  produced  by  pRNGs  shows  very  long
perturbations, as it is given by long periods of their functions.
Unpredictable  task switching even these periods many times
multiplies. Thus, it is need to use many experiments based on
these series with different initial seed magnitudes or the results
are  confusing.  Unfortunately,  frequently  used  GPA
benchmarks  do  not  solve  this  problem,  does  not  suggest
requirements to pRNGs, there is not given any limit to quality
of solution – residual sum of error squares and many functions
forming  benchmark  set  and  some  functions  forming
benchmark  problem  set  are  very  similar  as  in  cases  of
benchmarks on [17]. 
If structure of the algorithm is known, it is possible to estimate
probability of occurrence of given structure in the population
and transpose results from measured experiments to another
test case, as it was presented in [17, 13 and 21, where the first
monograph  presents  many  ways  based  especially  on  the
schema  theory,  the  second  paper  brings  approach  close  to
Markov processes.  As it  was  published  in  [21],  if  we have
sufficient number of experiments and if we solve symbolical
regression problems with small residual error, average results
depends  only  on  statistical  properties  of  initial  population
generator and applied evolutionary operators and it is possible
to  estimate them by application of Markov chain.

IV. RESULT DISCUSSION

From the above described  reasons,  the experiments  were
provided  with  data  representing  three  equations  of  Lorenz
attractor system. There were 500 samples. Experiments stopped

when  sum  of  error  squares  was  less  than  10−7
.  The

experiments  were  repeated  10000  times  for  different  initial
seed magnitudes of used pRNG (standard rand() function of  
C++ stdlib function) and for different proportions of probability
of standard and one-point crossover application.

Table 1 and Fig. 3 presents computed average numbers of
iterations for  different  proportions of standard  and one-point
crossover  and  for  variables  x,  y  and  z  of  Lorenz  attractor
system.  There  is  minimal  influence  of  this  proportion  for
variables  x  and  z,  because  their  generating  differential
equations are simple and linear. Magnitudes of variable y are
computed  from  non-linear  and  more  complex  equation  and
there might be observed,  that  mixing of both operators  with
proportion about 50% to 50% brings increase of GPA algorithm
efficiency.

TABLE I. TABLE 1  AVERAGE NO OF ITERATIONS DEPENDING ON
PROPORTION F STANDARD AND ONE-POINT CROSSOVER FOR LORENZ

ATTRACTOR

Fig. 3. Average  No  of  iterations  depending  on  proportion  of  crossover
operators for variables x, y and z

Fig. 4 to 6 illustrates change of average iteration number  of
variables  x,  y  and  z  respectively  for  different  number  of
experiments. These graphs illustrates that it is need to use about
10000 experiments to achieve average error less than 1%.

Fig. 4. Average  iteration  number   of  variable  y  for  different  number  of
experiments for variable x

x y z
Crossovers 100_0 24.9 241 35.8
Crossovers 75_25 22.4 216 32
Crossovers 50_50 22.3 202 31.3
Crossovers 25_75 23.6 216 34.5
Crossovers 0_100 22.5 225 30.6
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Fig. 5. Average  iteration  number   of  variable  y  for  different  number  of
experiments for variable y

Fig. 6. Average  iteration  number   of  variable  y  for  different  number  of
experiments for variable z

Second group of experiments with Roessler attractor  system
tend to very similar results represented by Table 2 and Fig. 5
containing averages  of  measured data and graph of average
iteration numbers of experiment.

TABLE II. AVERAGE NO OF ITERATIONS DEPENDING ON PROPORTIONS
OF STANDARD AND ONE-POINT CROSSOVER FOR ROESLER ATTRACTOR

Fig. 7. Average  No  of  iterations  depending  on  proportion  of  crossover
operators for variables x, y and z

V. CONCLUSION

Presented  study  points  that  it  is  impossible  to  study  GPA
behaviours on the base of small number of experiments. The
paper points that it is possible to improve GPA behaviours by
application of two or more different interpretation of crossover
operator  but   additional  time  expensive  test  cases  must  be
provided.
The  paper  brings  analysis  of  used  GPA-ES  algorithm
complexity and presents  comparison of  simultaneous use of
two different crossover operators with different proportion of
their application. The experiments were provided on data on
two different system differential equations representing Lorenz
and  Roessler  attractor  systems.  There  were  used  500  data
samples  for  each  system and each  equation.  Each  symbolic
regression experiment was 10000 times repeated for different
pRNG  seed  magnitudes  to  eliminate  pRGN  influence  onto
experiment results.
The experiments conclude working hypothesis that it is better
to  combine  (randomly  invoke)  more  different  crossover
operators than to apply any of them.
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