
Designing a decentralized container based Fog
computing framework for task distribution and

management
Anna Reale, Péter Kiss, Melinda Tóth, Zoltán Horváth

Abstract—In the field of Fog computing, because of the highly
dynamic nature of Mobile Networks, the problem of automating
task distribution and code migration has not yet been solved by
any resource orchestrator. In this paper, we propose a solution to
the problem in the form of an orchestrator that can build overlay
computational networks from a volatile set of nodes. Each node
of this overlay is able to deploy specific services and can satisfy
the requested task from any participant node.

We also demonstrate the infrastructure purpose by suggesting
an existing Federated Learning Application.

Index Terms—Fog computing, ad-hoc networks,orchestration,
docker containers, Federated Learning.

I. INTRODUCTION

SERVICE and network management for Fog computing
is a complex subject. On one side we have the device

heterogeneity and, on the other, the different control the
network owner has on each network node. In fact, user-owned
devices can participate actively in the service as well, by
running part of the required applications. For these reasons,
a centralized solution cannot work efficiently. Thus, other
technologies have been suggested in the literature [1], for
instance: software-defined networks; asymptotic techniques for
scaling management (e.g. declarative states as opposed to
individual commands for admin purposes); edge clouds; and
peer-to-peer (P2P) and sensor network-like approaches for
auto-coordination of applications.

Main contributions of this work are the definition of a
decentralized container based Fog computing framework for
task distribution and management (in Section II) and the
example implementation (in Section III) based on the use case
constraint described in the following paragraphs (I-A and I-B).

A. FOG

With the term Fog computing, we refer to a highly virtu-
alized platform that provides services related to computation,
storage and networking and that can be seen as a layer in
between the Data Centers and the final user equipment/devices.
This concept was introduced in paper [2]. Since the original
definition leaves the Fog paradigm very close to other Edge
Computing ones as Multi-access Edge Computing [3] and

ELTE Eötvös Loránd University, Budapest, Hungary
Faculty of Informatics, 3in Research Group, Martonvsr, Hungary
{anna.reale, peter.kiss, toth m,hz}@inf.elte.hu
ORCID: 0000-0001-8295-2782, 0000-0001-6941-2095, 0000-0001-6300-

7945, 0000-0001-9213-2681
Manuscript received March 29, 2019;

Cloudlets [4], in this work we adopt Vaquero [5] views on
Fog computing. The author distinguishes Fog from other edge
computing architecture by specifying that the involved nodes
may be in a great quantity and extremely heterogeneous
(wireless and sometimes autonomous). Vaquero envisions Fog
nodes that can deploy decentralized communication and po-
tentially cooperate among each other to perform storage and
processing tasks in an autonomous fashion. Nodes tasks can
range from basic network functions support to new services
and applications running in a sandbox environment. Thus, the
most interesting characteristic of this interpretation would be
that users can become an active part of the Fog network, by
not only being consumers but also providers: leasing part of
their devices to host services and get incentives for doing so.

The main factors that will bring the fog can be summarized
as follows:

• Nodes edge location and geographical distribution: Fog
nodes must be deployed at the edge of the network
and must be able to locate at least their neighbours
in the local area. Due to the geographical distribution
and the closeness to the final user, they will be able to
communicate at low latency and reduce in data movement
across the network significantly.

• User mobility: fog applications can communicate directly
with mobile devices via mobility techniques and proto-
cols such as LISP [6] (Cisco’s Locator/ID Separation
Protocol) that can decouple host identity from location
identity [7].

• Nodes heterogeneity: Fog is a multi-layered hierarchical
infrastructure, with dynamic and miscellaneous nodes
deployed in a wide variety of environments, possibly in
both physical and virtual form.

• Nodes interoperability: Fog nodes must be all-purpose
and able to inter-operate even if related to different
providers’ networks.

• Nodes and users real-time interaction: services with low
latency, and involving continuous real-time interactions
between users and system.

B. The use-case

In our solution, we aim at a general framework to enable
single network nodes to outsource computationally or resource
intensive tasks. Following the idea of Fog computing, in which
individual nodes collaborate at the edge of the mobile network
in solving tasks that would exceed the capabilities of single

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 13, 2019

ISSN: 2074-1294 1

local nodes, or would be overly expensive (in terms of time,
resources or money) if performed by nodes physically further
in the network.

As a rather extreme, concrete and simple scenario, one
can think of mobile phones used to train machine learning
models for various purposes, like speech recognition, or auto-
completion for texting. The most straightforward approach to
train such models, where the training data is generated in a
massively distributed fashion, is to transmit the training data
to powerful data-centers, where the training process occurs.
Above the obvious networking overhead, this technique gives
rise to some ethical dilemmas related to users privacy. The
above use-case corresponds to the trend of federated learn-
ing [8], [9], [10].

In the use-case we can differentiate the initiator, that can
be a company providing an application that uses the learned
model, and the users who will profit from the ML model
trained in collaboration.

In this work primarily we follow the perspective of the
initiator, individual users join the network, cooperatively run
parts of the training process, and then use the common
knowledge learned and published by the initiator.

C. Paper terminology

• Initiator denotes a software or person who wants to solve
a specific problem.

• Service refers to the software to be run. We can look
at the ensemble of outsourced/deployed modules as a
service the network grants to the initiator. (And on the
other hand, it will be analogous with the terminology
used at swarms.)

• Task is the part constituting a module of the service.
• Host covers the physical machines where the task will

be eventually executed.
• Node is a uniform application run on a host, essentially

these compound together with the infrastructure for ser-
vice deployment.

II. THE FRAMEWORK

The proposed system is a peer-to-peer collaborative com-
putation network. The nodes in the network are light-weight
uniform piece of software, whose main responsibilities are:
to maintain the graph of the available nodes, to move the
code of the pieces of the deployed application and to organize
communication among the deployed modules (as represented
in Fig. 1). The framework can be regarded as a decentralized
extension to the existing distributed container technologies.

Applications that are intended to be run over the network,
must be partitioned to minimize the imposed overhead. An
idea could be to separate monolithic applications along the
minimum cuts of their function call graph (or data flow graph
or in some other balanced middle-way), to minimize data flow
in between parts [11].

In this work we regard applications as a composition of
micro-services, assuming that with more or fewer efforts any
application can be transformed into such an architecture.

Fig. 1. Our fog network implementation is perceived from the rest of the
mobile network as multiple overlays deploying different services

In such a framework we had to address in the design
process: (A) the mapping of the available resources, (B) the
creation of the deployment plan, (C) the plans and approaches
to move codes to their assigned location, and (D) the strategy
to maintain the health of the service and the shared state of the
application, that is how to transfer data between the functions,
and how to keep globals up-to-date.

A. Network mapping

When in need to deploy or execute a service, a network
user can make a decision on the deployment according to the
mapping strategies best fitting the characteristics of the service.
To make it possible, the system should provide the initiator
node information about the possible Service Level Agreements
(SLAs): the description of the available resources along with
the price of the usage of a particular resource, also expressed
in terms of latency or volatility of the perceived QoS (Quality
of Service). We will further discuss possible parameters to be
considered in the next paragraph.

B. Task assignment

With the mapping of the available network and the call-
graph/interaction graph of the service, the next task is to
map the modules to nodes. There are several methods to
do task assignments, like the placement of Virtual Machines
(VM) in cloud computing or placement of Virtual Networks
Function (VNF). The paper [12] shows a global classification
of VM placement solutions into online and offline approaches,
categorizing them based on their target objective. Some of the
solutions are single objectives, others may have several. The
point of view of the analysis may be either the final user or
the network providers. Among the objectives we can mention:

• Energy consumption: based on minimizing power con-
sumption and number of active nodes;

• Cost: as Return On Investment (ROI), resource exploita-
tion or allocation cost;

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 13, 2019

ISSN: 2074-1294 2

• QoS: can be expressed in terms of response time, over-
head time;

• Resource usage: RAM, CPU, storage;
• Reliability;
• Load balancing: avoidance of congestion, data overload.

C. Deployment and Service Migration Infrastructures

Given our premises on Fog, an important task, for improving
service deployment, appears to be not only defining at what
granularity a given service should be divided among some
of the nodes, but also what is the best way to encapsulate the
application that it consists of. This will permit service division
and migration following the user movement and the rules of
geographical distribution and load balancing.

At deployment, thus, the challenge is how to move the
code and resources between the nodes. As a base scenario, we
assume that the modules of the service to be deployed resides
at the initiator. The initiator can contact the joined nodes
assigned to the tasks and push the codes and data that he needs
to run. Multiple applications, each made of several components
should simultaneously use the Fog infrastructure. Memory
isolation is necessary for security and integrity reasons but
also for bug prevention and performance tuning. The real-time
constraint is an added requirement to the migration.

Finally, the nodes of the described strongly ad-hoc system
might run over different platforms, therefore running tasks of
the service in a virtualized environment seems inevitable.

In the following paragraph, we will compare two possible
technologies to achieve the described objectives: virtual ma-
chines (VM) and container-based architecture.

1) Containers over VM for migration in a Fog: A virtual
machine based solution involves a hypervisor and can be
resource intensive and more complex to scale compared to
containers. In fact, each VM would require its own full
OS, TCP and file system stacks, significantly impacting the
processing power and memory of its host [13].

Since containers rely on the hosting operative system, they
are more compact in size and lighter to migrate thanks to their
layered architecture. In fact, in a container, some layers are
read-only while one is a read and write layer. When migrating,
only this read and write layer needs to be moved [14]. In other
words, once a container is installed, only the extra different
layers, such as additional binaries and libraries, needs actual
migration. Installations involve the image of the container,
comprised of system libraries, system tools and other platform
settings a software program needs to run on a containerization
platform.

Furthermore, containers do not waste RAM on redundant
management processes, generally consuming less RAM than
a VM. Each VM has a fixed amount of RAM, and we usually
reserve resources in each VM for the further scaling of the
application. These resources are not fully utilized, and, at the
same time, they cannot be shared with other applications due
to the lack of proper instance isolation.

Static memory allocation for virtual machines (VMs) can
lead to severe SLA violations or inefficient use of mem-
ory [15]. Few hypervisors can resize VMs while running with

the help of dynamic memory allocation mechanisms such as
ballooning [16] and memory hotplug [17] were proposed to
handle the dynamics of memory demands.

Instead, resource limits in containers can be easily changed
on the running instances without a restart. And the resources
that are not consumed within the limit boundaries are auto-
matically shared with other containers running on the same
hardware node.

Taking into account these differences and the fact that
Fog nodes are diverse, often with limited bandwidth, unstable
network connectivity, costly or limited storage and processing
capability, running a container-based solution will be much
more beneficial.

As mentioned in [18], with containers, the complexity can
be reduced through container abstraction since they avoid
reliance on low-level infrastructure services. Automation can
be supported to maximize portability. Security and governance
can be achieved by placing services outside the containers.
Higher computing capability can be provisioned with service
composition, achievable even if the containers run on different
physical machines.

2) Existing Containers Migration Technologies: Given the
above mentioned advantages, more and more mainstream op-
erating systems begin to adopt container technology to provide
isolation and resource control, which has demonstrated great
potential for service migration [19]. Live migration of contain-
ers is now possible using CRIU [20](Checkpoint Restore In
Userspace) that supports checkpoint and restore functionality
for Linux. Nowadays CRIU supports the checkpointing and
restoring of containers for OpenVZ, Linux Containers (LXC)
and Docker. The main downside of OpenVZ [21] is the usage
of a shared file system among the nodes, this solution is not
adaptable in a fog scenario.

LXC is a userspace interface for the Linux kernel contain-
ment features. Through a powerful API and simple tools, it lets
Linux users easily create and manage system or application
containers [22].

Docker [23] extends LXC with a kernel- and application-
level API that together runs processes in isolation: CPU, mem-
ory, I/O, network, and so on. Docker also uses namespaces
to completely isolate the application view of the underlying
operating environment, including process trees, network, user
IDs, and file systems [24].

Docker containers are created using a base image: it can
include just the OS fundamentals, or it can consist of a
sophisticated application stack. When building images each
action taken forms a new layer on top of the previous one.

Previous works proved slightly better performance and
flexibility for Linux Containers compared to Docker [25].
The authors privileged Docker mostly because of ease of use:
Docker seems a more likely commercial and user-friendly
solution. Also, Dockers are standalone applications running in
an isolated environment, thus better respecting our necessities.

D. Maintaining the health of the network

After deploying an asymptotically optimal architecture in
the overlay network, the main task is to keep the quality

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 13, 2019

ISSN: 2074-1294 3

of service at an acceptable level. In a Fog computing envi-
ronment, an obvious challenge is the strong variance of the
communication channels or the workload at the nodes, that
makes relocation of tasks necessary.

The workload may change also due to nodes abandoning
or joining the network. This high turnover rate makes redun-
dancy necessary: duplicating processes over statistically more
reliable nodes like those more strongly connected to the fixed
network of the network provider.

1) Open Source Containers Orchestration: As far as man-
agement platforms go, the two most used solutions for Docker
engines are Kubernetes or Docker Swarm. Kubernetes is
currently considered a standard platform. Kubernetes works
around the concept of pods, which are scheduling units (able to
deploy one or more containers) in the Kubernetes ecosystem.
Pods are distributed among nodes to provide high availability.
It presents plenty of helpful resources, and guidance available
thanks to its online community.

In Kubernetes each pod deserves its own, unique IP address
that is reachable from any other pod in the cluster, whether
they are co-located on the same physical machine or not [24].

On the other hand, Docker Swarm has the advantage of
being tightly integrated into the Docker ecosystem, using
its own API. Swarm has a filtering and scheduling system
allowing selection of optimal nodes in a cluster to deploy
containers.

A major downside for Kubernetes is not being a complete
solution and requiring custom plug-ins to set up. Instead, in
Swarm, dependencies are handled well within the ecosystem,
making installation and setup user-friendly. However, most
cloud providers today offer Kubernetes as a service. Finally,
fault tolerance handled in a better way in Kubernetes.

2) Migration Support: To our knowledge, Kubernetes does
not presently support live migration of its pods and the feature
is not actively being worked on. Pods are scheduled, started,
and eventually terminate. They are replaced with new pods by
the replication controller. Today pods are replaced reactively,
but eventually, it will replace pods proactively for planned
moves [26]. Currently, new pods have no obvious relationship
to the original pods they replace. They have different names,
different user ids, different IP addresses, different hostnames
(since we set the pod hostname to pod name), and newly
initialized volumes.

Migration strategy in Kubernetes seems to be cold: it shut
down, move and restart, losing any intermediate state.

As mentioned before, Swarm could potentially use docker
experimental feature integrating CRIU basic live migration.
However, this has to be completely configured and handled
by the user.

Currently, Docker can deploy a hot migration: using the
experimental mode, one can suspend the container, move it
to the destination host and resume the computation while
preserving the persistent applications state.

III. EXPERIMENTAL SETTINGS

In this paper we make an attempt to describe a potential
model implementation of a Fog computing environment fulfill-
ing the requirements described at Section II, using existing and

more or less mature technologies as Docker, Docker Swarm,
CRIU and runc. The proposed system adds an additional or-
chestrator over the combination of the mentioned systems. The
orchestrator enables dynamic adjustments on the underlying
infrastructure where the managed service is running on.

A. Network mapping

Before the deployment phase, a peer sends a request to
the neighbouring nodes with a unique identifier. As a node
receives this request it returns an acknowledgement, through
which the actual latency can be learned. A receiver then
forwards the request to its neighbours, who are statistically
predicted to be within the remaining latency constraint, mea-
sures the actual latency and so on. If a peer has already
received a mapping request with the same id, it only sends
back the acknowledgements since the sub-network that is
reachable through it is already submitted in another mapping
path. This helps to avoid network overflowing with useless
traffic. The results will be sent back recursively to the requiring
node, eventually reaching the originator, where a local picture
of the neighbouring nodes will be assembled.

The mapping could be carried out in two phases. The
first randomized phase is about maintaining the shape of the
network along with some important statistics of the available
resources of the nodes and the quality of the links between
them. Based on this later on, when the system makes the
deployment plan it can incorporate the learn knowledge on
the volatility of the availability of the components.

B. Task assignment

Task assignment phase covers the creation of a deployment
strategy for the tasks in the service, that is a mapping between
the physical network and our task call graph, which is the
result of partitioning the software to be deployed. The topic
of this task assignment is often referred to as Path Computation
and Function Placement and is described in [27]. For this
scope, we selected an eager randomized approach of random-
ized rounding introduced in [27].

According to this method, the service chain graph, repre-
senting the application tasks and their interaction, is traversed
in Breadth-First Search fashion, assigning the root task to
the initiator node. At edges in the graph (calls between the
modules/tasks), the location of the subsequent task will be
chosen pseudo-randomly from the neighbouring nodes of the
source task node. This happens so that hosts with higher
capabilities and/or better communication links from the node
of the parent task will be chosen with a higher chance.
Different policies can be provided. A more detailed description
of the process is given in [11].

C. Deployment

The mentioned need for interoperability urges the use of
virtualization techniques. Based on the motivation stated in
Section II-C2, we choose Docker containers to encapsulate
tasks.

To reduce the complexity of routing the communication
between tasks located at different hosts, the containers carrying

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 13, 2019

ISSN: 2074-1294 4

the code of the tasks will be deployed to a Docker swarm,
assigning a unique port to each task. At the deployment,
the initiator node of the service creates a swarm and sends
a request to the nodes that are the assigned location of
the individual tasks to join the swarm. The way the source
containers are created at the nodes depends on the caches of
the node.

At the first deployment of the service, when no images exist
for the tasks, the efficient way to move and execute codes at
deployment is to move the all the service-specific volumes and
build the images and containers at the destination node. In this
case, the source code of a task along with the data needed at
the execution is passed by the nodes through TCP sockets.

D. Maintaining the health of the network

In a fog environment, one can always expect that the
efficiency of the built service will drop. There are various
reasons for that, for example, the overloading of a given host
or network channel. In the following, we describe the defined
orchestrator infrastructure and the selected migration support
strategies.

1) Management Orchestration layer: The Management and
Orchestration layer is responsible for building up and main-
taining an overlay network, that is capable of running the ser-
vice at predefined QoS (as shown in Fig. 1). The orchestrator
consists of a set of peer applications that run on each physical
machine. When a node joins a network, it contacts an old
node whose address could be obtained through trackers. The
old node then shares some of its own connections, to make the
network more connected. When a node needs to submit a task
it has to map the available network. The notion ”availability”
includes the feasibility of the QoS requirements of the given
task, in the meaning of taking into consideration the bandwidth
requirements and acceptable total network latency.

Technically these nodes should be implemented in a cross-
platform language. Thus, we have chosen Java for this purpose.
The control communication, that is sending connection or
mapping requests, or making agreements on secondary chan-
nels uses REST protocols over a standard TCP connection. The
nodes maintain the addresses of the nearby nodes along with
network segment reachable within a given time constraint.

2) Migration Support: The problem of relieving the work-
load of struggling hosts, or reducing the increased commu-
nication latency can be addressed through tasks relocation.
The best strategy we have found to approach the idea of live
migration is the incremental checkpointing of the state of the
task to be removed. To implement iterative migration, we rely
on runc containers, that are natively integrated with CRIU.

According to this, live migration of the container takes
the following steps (Figures 2, 3 and 4): (1) through the
management nodes we transmit the docker image and the task-
specific static volumes [28] (files, that are mounted into the
container), that is, the docker image containing the kernel and
libraries the task needs. (2) If there are files in the volumes,
that are written by the task, they might be synchronized
using tools like rsync [29], that provides a very fast method
for remote file synchronization. (3) When the above steps

Fig. 2. Before migration

Fig. 3. Migration

Fig. 4. After migration

are done, it is possible to create the container at the target
destination.

What left is to transmit the internal state of the migrated
process. For achieving the least process downtime possible,
one can execute incremental checkpointing [30] of the process
to be relocated. At first, (4) one or more pre-dump needs to
be taken, which keeps the original process alive, while starts
tracking memory changes. After a number of these pre-dump
operations, when everything is ready on the receiver side, the
last dump can be taken (5), that kills the process at the original
location.

The shipping of the dumps of the old container should take
place using the CRIU page server [31], that is a component
that has been developed to move user memory to a destina-
tion system. This enables disk-less transmission of the state,
loading the taken dumps into the so-called tmpfs [32] mount
at the destination container. The tmpfs mounts make possible
to write temporary files in the system memory. For that (6) the
system starts the container at the destination host and mounts
the volume and the tmpfs, where the dumps from the old node
will be saved.

After the transmission of the final dump, the state of the
old task can be restored at the new one. When the migrated
process is up, the neighbouring tasks in the call graph will
communicate with the new tasks. Since the described system
uses Docker swarm, there is no need to rewire the connections,

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 13, 2019

ISSN: 2074-1294 5

because it grants us relocation transparency.
Meanwhile, on the original node, it is possible to detach the

node from the swarm, since the dump operation stopped the
process of it.

IV. RELATED WORKS

In the last years, the interest over service placement tech-
niques has piqued, because of the many network paradigm
that has arisen especially in connection with 5G and Edge
Computing.

Among the works on Service Migration for Edge Comput-
ing the paper [18] discusses two concepts similar to service
migration: live migration for data centers and handover in
cellular networks. The authors present an extensive taxonomy
on the topic. They favor Agent-based solutions over VM and
containers but stress how these technologies are still at a too
early stage.

Also [12] shows a global classification of VM and VFN
placement solutions categorizing them based on their target
objective. The point of view of the analysis may be either
the final user or the network providers. Further analysis of
the topic can be found also in our previous work on service
placement [11].

Recent works have been done also in the direction of
applying containers for service migration. In [33], after a
systematic study of Docker container layer management and
image stacking, the authors propose a migration method that
reduces file system synchronization overhead, without depen-
dence on the distributed file system. The first evaluation result
in a reduction of the total service handoff time by 80% with
network bandwidth 5Mbps.

In [25] three different mechanisms are proposed and eval-
uated to improve the end user experience by using container-
based live migration paradigm. The author privilege LXC
over Docker because of their lighter structure. The described
methods are the classical approaches for VM and distributed
systems: temporary file system (tmpfs) and disk-less based
lightweight container migration, and the shared file system.

Basic notions on the topic of containers checkpointing and
live migration can be found in [19]. Also, [34] summarizes
the differences between LXC and Docker and introduce the
success of Kubernetes.

Related to our use case, in [9] a comprehensive description
has been given on the advantages of the federated learning
approach, with a range of applicable algorithms. In [8] the
authors present a practical method, named Federated average,
and through a series of experiments, they show that the idea
of federated learning can be effectively and efficiently used in
similar scenarios to the ones described in Section I-B.

V. CONCLUSION AND FUTURE WORKS

Current orchestrators for mobile networks cannot handle the
complexity added by new paradigms such as Fog computing.
Having to integrate and manage such peer-to-peer and ad-hoc
solutions requires the introduction of: (A) mapping of available
and mutable resources, (B) creation of a dynamic deployment
plan, (C) infrastructures to guarantee codes and application

location assignment, and (D) the strategy to maintain the health
of the service; especially the shared state of the application.

In this paper we described some of the current technology,
their benefit and how we combine them, to build a framework
tackling all four of these needs. To illustrate a possible appli-
cation, we described a Federated Learning case scenario. At
present the orchestrator functionalities Network mapping,Task
assignment and Deployment are fully implemented. In the
next iteration, we would like to optimize the current migration
strategy, based on experimental Docker CRIU calls, with what
described in Migration Support (Section III-D2).

ACKNOWLEDGMENT

The research has been supported by the European Union,
co-financed by the European Social Fund (EFOP-3.6.2-16-
2017-00013, Thematic Fundamental Research Collaborations
Grounding Innovation in Informatics and Infocommunica-
tions).

REFERENCES

[1] K. Kai, W. Cong, and L. Tao, “Fog computing for vehicular ad-
hoc networks: paradigms, scenarios, and issues,” the journal of China
Universities of Posts and Telecommunications, vol. 23, no. 2, pp. 56–96,
2016.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[3] E. T. S. I. 2, Multiaccess Edge Computing (MEC); Technical Require-
ments, ETSI ETSI ETSI GS MEC-IEG 004 V1.1.1 (2015-11), 2015.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
no. 4, pp. 14–23, 2009.

[5] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the
fog: Towards a comprehensive definition of fog computing,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 27–32,
2014.

[6] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, “The locator/id
separation protocol (lisp),” CISCO, Tech. Rep., 2013.

[7] P. Raad, S. Secci, D. C. Phung, A. Cianfrani, P. Gallard, and G. Pu-
jolle, “Achieving sub-second downtimes in large-scale virtual machine
migrations with lisp,” IEEE Transactions on Network and Service
Management, vol. 11, no. 2, pp. 133–143, 2014.

[8] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

[9] J. Konecný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
CoRR, vol. abs/1610.02527, 2016.

[10] Google AI Blog., “Federated Learning: Collaborative Machine Learning
without Centralized Training Data.” [Online]. Available: ”https:
//ai.googleblog.com/2017/04/federated-learning-collaborative.html”

[11] A. Reale, P. Kiss, C. Ferrari, B. Kovács, L. Szilágyi, and M. Tóth,
“Application functions placement optimizaton in a mobile distributed
cloud environment.” Studia Universitatis Babes-Bolyai, Informatica,
vol. 63, no. 2, 2018.

[12] A. Laghrissi and T. Taleb, “A survey on the placement of virtual
resources and virtual network functions,” IEEE Communications Surveys
& Tutorials, 2018.

[13] A. M. Joy, “Performance comparison between linux containers and
virtual machines,” in 2015 International Conference on Advances in
Computer Engineering and Applications. IEEE, 2015, pp. 342–346.

[14] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration mod-
eling and learning algorithms for containers in fog computing,” IEEE
Transactions on Services Computing, pp. 1–1, 2018.

[15] H. Liu, H. Jin, X. Liao, W. Deng, B. He, and C.-z. Xu, “Hotplug
or ballooning: A comparative study on dynamic memory management
techniques for virtual machines,” IEEE Transactions on parallel and
distributed systems, vol. 26, no. 5, pp. 1350–1363, 2015.

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 13, 2019

ISSN: 2074-1294 6

[16] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
ACM SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003,
pp. 164–177.

[17] S. S. Pinter, Y. Aridor, S. Shultz, and S. Guenender, “Improving machine
virtualization with’hotplug memory’,” in 17th International Symposium
on Computer Architecture and High Performance Computing (SBAC-
PAD’05). IEEE, 2005, pp. 168–175.

[18] S. Wang, J. Xu, N. Zhang, and Y. Liu, “A survey on service migration in
mobile edge computing,” IEEE Access, vol. 6, pp. 23 511–23 528, 2018.

[19] A. Mirkin, A. Kuznetsov, and K. Kolyshkin, “Containers checkpointing
and live migration,” in Proceedings of the Linux Symposium, vol. 2,
2008, pp. 85–90.

[20] C. Feb, “Checkpoint/restore in userspace,” https://criu.org/Main Page,
2019.

[21] O. Feb, “Openvz,” https://wiki.openvz.org/Main Page, 2019.
[22] L. Feb, “Linux container,” https://linuxcontainers.org, 2019.
[23] Docker, “Docker: Enterprise Container Platform.” [Online]. Available:

”https://docker.com/”
[24] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”

IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, Sep. 2014.
[25] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, and H. Flinck,

“Towards a fast service migration in 5g,” in Proceedings of the IEEE
NetSoft Conference, Montreal, QC, Canada, 2018, pp. 25–29.

[26] D. K. Rensin, “Kubernetes-scheduling the future at cloud scale,” Red-
Hat,Google, Tech. Rep., 2015.

[27] G. Even, M. Rost, and S. Schmid, “An approximation algorithm for
path computation and function placement in sdns,” in International
Colloquium on Structural Information and Communication Complexity.
Springer, 2016, pp. 374–390.

[28] Docker, “Use volumes.” [Online]. Available: ”https://docs.docker.com/
storage/volumes/”

[29] rsync, “rsync features.” [Online]. Available: ”https://rsync.samba.org/
features.html”

[30] CRIU, “Incremental dumps.” [Online]. Available: ”https://criu.org/
Incremental dumps”

[31] ——, “Disk-less migration.” [Online]. Available: ”https://criu.org/
Disk-less migration”

[32] Docker, “Use tmpfs mounts.” [Online]. Available: ”https://docs.docker.
com/storage/tmpfs/”

[33] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers via
docker container migration,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing. ACM, 2017, p. 11.

[34] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

Anna Reale is a P.h.D. student at the Eötvös Loránd
University, with a background in Information Engi-
neering and Computer Science. After her EIT Digital
double master degree in Service Design Engineering,
she joined an EIT Digital Industrial PhD program In
ELTE. Her PhD topic being 5G Edge Computing,
she works on representation of nodes resources, con-
text awareness for migration, computation offloading
and partitioning frameworks.

Péter Kiss is a P.h.D. student at the Eötvös Loránd
University, with a background in Computer Science.
After his EIT Digital double master degree in Ser-
vice Design Engineering, he joined an EIT Digital
Industrial PhD program In ELTE. His PhD topic is
Distributed Machine Learning and he works on dis-
tributed collaborative machine learning, optimization
and supporting infrastructures.

Melinda Tóth works as a senior lecturer at the
Eötvös Loránd University, teaching distributed sys-
tems and Erlang OTP technology. Melinda Tóth is
chief architect of RefactorErl, a static source code
analysis and transformation system for Erlang. She
also works as a researcher at ELTE-Soft Nonprofit
Ltd., leading the ELTE-Ericsson Software Technol-
ogy Lab.

Zoltán Horváth is a full-time professor at the
Faculty of Informatics, Eötvös Loránd University,
leading the Department of Programming Languages
and Compiler. He is also the dean of Faculty. He
is teaching and researching functional programming
and formal methods for distributed systems. Zoltn
Horvth supervised numerous national and inter-
national projects, among others he was Principal
Investigator in the Parallel Patterns for Adaptive
Heterogeneous Multicore Systems (ParaPhrase) EU
FP7 project. He is also a project manager at ELTE-

Soft Nonprofit Ltd. (Budapest, Hungary).

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 13, 2019

ISSN: 2074-1294 7

	Introduction
	FOG
	The use-case
	Paper terminology

	The framework
	Network mapping
	Task assignment
	Deployment and Service Migration Infrastructures
	Containers over VM for migration in a Fog
	Existing Containers Migration Technologies

	Maintaining the health of the network
	Open Source Containers Orchestration
	Migration Support

	Experimental Settings
	Network mapping
	Task assignment
	Deployment
	Maintaining the health of the network
	Management Orchestration layer
	Migration Support

	Related Works
	Conclusion and Future Works
	References
	Biographies
	Anna Reale
	Péter Kiss
	Melinda Tóth
	Zoltán Horváth

