

Abstract—Simple Network Management Protocol (SNMP) is a

popular protocol for network management. It is used for collecting
information from, and configuring, network devices.This
standardization gives network administrators the ability to monitor
network performance. In this paper, we highlight to analyze the
correctness and authenticity of SNMP using the formal method
Event-B and the Rodin Tool to verify the accuracy of our protocol's
performance. Event-B is formal technique that enables user to
express the problem at abstract level and then add more details in
refinement step to obtain concrete specification. This interaction
between modelling and proving reduces the complexity and helps in
assuring that the SNMP specification is correct and unambiguous.

Keywords—Simple Network Management Protocol, Formal
Modelling, Refinement, Event-B, Rodin

I. INTRODUCTION

IMPLE network Management Protocol is a
communication protocol, it is used to administer and

manage networked devices. It can be used to manage large
networks that span firewalls or embedded devices. The
specifications for this protocol can be found in Request For
Comments (RFC) 1157.
This article is an extended version of a conference paper that
appeared as [1].

Increasingly numerous communication protocols are being
employed in computer networks of various types. This
increases the need of adequate software specification
techniques and suitable development methods to make the
system more reliable.

Rajaa Filali, LMPHE laboratory, University of Mohammed V, Faculty of

sciences, Rabat ,Morocco,(e-mail: rajaa.filali@gmail.com).
Sanae El Mimouni, LMPHE laboratory, University of Mohammed V,

Faculty of sciences, Rabat ,Morocco,(e-mail: sanae.elm@gmail.com).
Anas Amamou, LMPHE laboratory, University of Mohammed V, Faculty

of sciences , Rabat ,Morocco,(e-mail: amamou.anas@yahoo.fr).
Bahija Boulamaat, LMPHE laboratory, University of Mohammed V,

Faculty of sciences, Rabat, Morocco (e-mail: boulamaatbahija@gmail.com)
Mohamed Bouhdadi, LMPHE laboratory, University of Mohammed V,

Faculty of sciences, Rabat ,Morocco,(e-mail: bouhdadi@fsr.ac.ma).

A number of formal approaches have been applied to model
and analyze these protocols, such as Petri Nets [2,3] and State
Machine [4,5]. Recently a new method Event-B [6,7] has been
developed by Jean Raymond ABRIAL who has developed the
B method [8] and the Z method [9].

In this paper, we use Event-B to model and prove the
SNMP protocol. The most important benefit of using Event-B
is its capability to use abstraction and refinement [10].

 Indeed, in this approach the modeling process starts with
an abstraction of the system which specifies the goals of the
system. The abstract level of our Event-B model shows these
goals in a very general way, and then during refinement
levels, features of the protocol are modeled and the goals are
achieved in a detailed way. Moreover the Rodin tool [11]
permits an automated proof of the different models of the
system.
 The reminder of the paper is organized as follows. Section
2, gives a brief overview of Event-B. Section 3 provides the
requirements which are informally defined. In Section 4, the
formal development is presented. Finally, a conclusion is
presented to summarize the main outcomes of this research

II. OVERVIEW OF EVENT-B

 Event-B is a formal method for specifying, modeling and
reasoning about systems, especially complex systems such as
an electronic circuit, an airline seat booking system, a PC
operating system, a network routing program, a nuclear plant
control system, a Smartcard electronic purse, etc..Event-B has
evolved from classical B.

 Key features of Event-B are the use of set theory as a
modeling notation, the use of refinement to represent systems
at different abstraction levels and the use of mathematical
proof to verify consistency between refinement levels. From a
given model M1, a new model M2 can be built as a refinement
of M1. In this case, model M1 is called an abstraction of M2,
and model M2 is said to be a concrete version of M1. A
concrete model is said to refine its abstraction. Each event of a
concrete machine refines an abstract event or refines skip. An
event that refines skip is referred to as a new event since it has
no counterpart in the abstract model. An Event-B model has
two parts, context and machine. Each context specifies the
static properties of the system, including sets, axioms, and

Formal Modeling of Simple Network
Management Protocol using Event-B

Rajaa Filali, Sanae El Mimouni, Anas Amamou, Bahija Boulamaat, and Mohamed Bouhdadi

S

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 13, 2019

ISSN: 2074-1294 37

constants. Each machine specifies the dynamic part of the
system, including variables, invariants and events. Variables
represent the current state of the system and invariants specify
the global specification of the variables and system behaviors.

 An event is defined by the syntax: EVENT e WHEN G
THEN S END , Where G is the guard, expressed as a first-
order logical formula in the state variables, and S is any
number of generalized substitutions, defined by the syntax S
::= x := E(v) |x := z : |P(z). The deterministic substitution, x :=
E (v), assigns to variable x the value of expression E(v),
defined over set of state variables v. In a non-deterministic
substitution, x := z : |P(z), it is possible to choose non-
deterministically local variables, z, that will render the
predicate P(z) true. If this is the case, then the substitution, x
:= z, can be applied, otherwise nothing happens.

 The Rodin is the tool of the Event-B. It allows formal
Event-B models to be created with an editor. It generates
proof obligations that can be discharged either automatically
or interactively. Rodin is modular software and many
extensions are available. These include alternative editors,
document generators, team support, and extensions (called
plugins) some of which include support decomposition and
records.

The Rodin tool supports the application of the Event-B
formal method. It provides core functionality for syntactic
analysis and proof-based verification of Event-B models.
Rodin also provides extension points for a range of additional
plug-ins that enrich the core functionality through support for
features such as model checking, model animation, graphical
front ends, additional proof capabilities and code generation.
The RODIN Project was followed by the DEPLOY Project
which addressed further development of the Rodin core and
associated plug-ins in parallel with industrial-scale
deployment of the Rodin tools. Exposing the tools to serious
industrial users in DEPLOY drove the developers to
implement significant improvements in performance, usability
and stability of Rodin and key plug-ins such as ProB, the
Theory plug-in, Camille and UML-B. Of course, as well as
demanding improvements to the tool, the industrial users
demanded documentation on the tool, which led to this
handbook

III. INFORMAL DESCRIPTION OF SNMP PROTOCOL

The SNMP is a client/server (agent/manager) protocol.
SNMP is described by a series of Request for Comments
(RFCs) [12] that specifies and structures the information that
is exchanged between managing and managed systems.

The agents (Server) reside on systems that are managed.
The agent receives requests to either retrieve or change
management information by referencing MIB objects.
Management Information Base (MIB) objects are units of
information that provide information about the system and the
network to the managing system. MIB objects are referenced
by the agent whenever a valid request from an SNMP
manager is received.

The manager (Client) refers to a system that runs a managing
application or suite of applications. These applications depend
on MIB objects for information that resides on the managed
systems. Managers generate requests for this MIB
information, and an SNMP agent on the managed system
responds to these requests. A request can either be the
retrieval or modification of MIB information.
By accessing the MIB objects, the SNMP agent allows
configuration, performance, and problem management data to
be managed by the SNMP manager. This is how the agent
makes network and system information available to other
systems.
SNMP traps enable an agent to notify the management station
of significant events by way of an unsolicited SNMP message.

As shown in (Fig. 1), the setup on the left shows a network
management system that polls information and gets a
response. The setup on the right shows an agent that sends an
unsolicited or asynchronous trap to the network management
system (NMS).

Fig. 1 The two setups of the network management system

Among the SNMP commands are specific protocol

operations that facilitate in the requests and responses of
managed network devices. The most basic operations include:
Get, GetNext, Set, and Trap (see Fig. 2)
GetRequest: A Get message is sent by a manager to an agent
to request the value of a specific OID. This request is
answered with a Response message that is sent back to the
manager with the data.
GetNextRequest: A GetNext message allows a manager to
request the next sequential object in the MIB. This is a way
that you can traverse the structure of the MIB without
worrying about what OIDs to query
SetRequest: A Set message is sent by a manager to an agent in
order to change the value held by a variable on the agent. This
can be used to control configuration information or otherwise
modify the state of remote hosts. This is the only write
operation defined by the protocol..
GetResponse: This message, sent by an agent, is used to send
any requested information back to the manager. It serves as

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 13, 2019

ISSN: 2074-1294 38

both a transport for the data requested, as well as an
acknowledgement of receipt of the request. If the requested
data cannot be returned, the response contains error fields that
can be set with further information. A response message must
be returned for any of the above requests, as well as Inform
messages.
Trap: A trap message is generally sent by an agent to a
manager. Traps are asynchronous notifications in that they are
unsolicited by the manager receiving them. They are mainly
used by agents to inform managers of events that are
happening on their managed devices.

Fig. 2 The permitted operations between managers and agents

As an example: an SNMP manager requests configuration

information for a particular system. The manager formats this
request in a GET protocol data unit (PDU) and transmits the
request to the agent using a communication service. After the
manager's request has been received, the agent packages the
requested MIB object information in a RESPONSE PDU and
transmits it back to the manager

IV. MODELING OF SNMP PROTOCOL

A. Initial Model

The first model is the most abstract specification of the
system.

We can use two variables to represent the state of the initial
model: reqt to denote the number of requests that have been
sent, and resp to indicate the number of responses that have
been given.

We have three invariants: inv1 and inv2 denotes that the
two variables reqt and resp are natural numbers. inv3 specifies
that the communication is synchronous: either the number of
requests is the same as the number of responses or it is greater
than the number of responses by 1 in the case where a
response is expected before another request can be created.

VARIABLES

reqt
resp
INVARIANTS

inv1 : reqt ∈ Գ
inv2 : resp ∈ Գ
inv3 : reqt=resp ∨ reqt=resp+1

Initially, there are no requests or responses hence both

variables are initialed by 0.

INITIALISATION

 act1 : resp:=0
 act2 : reqt:=0

Finally, we define two events in our abstract model. An

event Manager_request represents the sending request
from the manager to the agent, starts when the number of
requests and the number of responses are identical and
increases the number of requests by 1. An event
Agent_response represents the response sent from the agent
to the manager, guards of this event state that the number of
requests and responses are different.

Manager_request

WHEN
grd1 : reqt=resp
THEN
act1 : reqt:=reqt+1
END

Agent_response
WHEN
grd1 : reqt≠resp
THEN
act1 : resp:=resp+1
END

B. First Refinement

First, we define three carrier sets:
Requests: set of messages which can be sent by the manager,
it contains three constants (GetRequest, GetNextRequest and
SetRequest) defined by the axioms (axm1, axm2 and axm3).
Responses: set of responses sent by the Agent, it contains the
constant GetResponse which represented by the axiom
(axm4).
Notification: set of messages sent by the Agent to inform the
Manager. The axiom (axm5) represent that this set contains
the constant Trap.

AXIOMS

axm1 : GetRequest ∈ Requests
axm2 : GetNextRequest ∈ Requests
axm3 : SetRequest ∈ Requests
axm4 : GetResponse ∈ Responses

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 13, 2019

ISSN: 2074-1294 39

axm5 : Trap ∈ Notification

In this first refinement, we introduce the channels and the

messages sent between the manager and the agent, because in
the reality the message needs to be sent via some channel
between two parties.

We add three variables reqtChan, respChan and
notifChan which represent respectively the channel of
messages sent by the manager, the channel of messages sent
by the agent and the channel of messages sent by the Agent to
inform the Manager.

INVARIANTS

inv1 : reqtChan ⊆ Requests
inv2 : respChan ⊆ Responses
inv3 : notifChan ⊆	Notification

We define now our events:

Manager_send_request: refining the abstract event
Manager_request: the manager sends a message to the agent.
Agent_receive_request: the agent receives the request sent by
the manager.
Agent_send_response refining the abstract event
Agent_response: after receiving the request, the agent sends a
response to the manager.
Manager_receive_response: the manager receives the
response sent by the agent.
Notify: the agent can send a trap, or asynchronous notification,
to the manager

Manager_send_request

REFINES
Manager_request
ANY msg WHERE
grd1 : reqt=resp
grd2 : msg ∈ Requests
grd3 : msg ∉ reqtChan
THEN
act1 : reqt≔reqt+1
act2 : reqtChan ≔ reqtChan ∪ {msg}
END

Agent_receive_request

ANY msg WHERE
grd1 : msg ∈ reqtChan
THEN
act1 : reqtChan≔ reqtChan ∖ {msg}
END

Agent_send_response

REFINES
Agent_response

 ANY msg WHERE
grd1 : reqt≠resp
grd2 : msg ∈ Responses

grd3 : msg ∉ respChan
THEN
act1 : resp≔resp+1
act2 : respChan ≔ respChan ∪ {msg}
END

Manager_receive_response
ANY msg WHERE
grd1 : msg ∈ respChan
THEN
act1 : respChan ≔ respChan ∖ {msg}
END

Notify
 ANY msg WHERE
 grd1 : msg ∈ Notification
 THEN
 act1 : notiChan ≔ notiChan ∪ {msg}
 END

C. Second Refinement

 In this refinement, the overtime retransmission mechanism
is added to ensure the correctness and the completeness of the
data transmission. This means that a request from the manager
may not arrive at the agent, and the agent's reply may not
make it back to the manager. The manager probably wants to
implement a timeout and retransmission.

We need a new constant, T_OUT, which is the maximum
waiting time for the Manager. We add two new variables:
CurrentTime and time. CurrentTime is a variable which stands
for the current time and time is used to record the time when
the Manager sends a message to the Agent.

INVARIANTS

inv1 : time ∈ Գ
inv2 : CurrentTime ∈ Գ

Concerning Events, we refine the two events

Manager_send_request and Manager_receive_response. We
add also two new events: Resend and Clock.
 If the event Manager_receive_response has not happened
before the set time, the event Resend will happen and the
message will be resent again. For the event
Manager_receive_response the refinement is just a
superposition, time constraints are added without changing the
existing expressions. If the Manager starts to send a message,
it takes a propagation time to progress in the channel. If the
transmission is successful, the propagation time should be
shorter than T_OUT.

Manager_send_request

REFINES
Manager_send_request
WHERE
grd4 : CurrentTime < time+T_OUT
THEN
 act4 : time≔CurrentTime

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 13, 2019

ISSN: 2074-1294 40

END

Manager_receive_response
 REFINES
 Manager_receive_response
 grd3 : CurrentTime< time+T_ OUT
 THEN
 END

Resend
 REFINES

Manager_send_request
 grd4 : CurrentTime> time+T_ OUT
 THEN
 act4 : time≔CurrentTime
 END

Clock

BEGIN
act1 : CurrentTime≔CurrentTime+1
END

V. CONCLUSION

In this paper, we have modeled and proved SNMP protocol
using Event-B.

 We have explained our approach using refinement,
which allows us to achieve a very high degree of automatic
proof. The powerful support is provided by the Rodin tool.
Rodin proof is used to generate the proof obligations and to
discharge those obligations automatically and interactively.

 Modeling and analyzing SNMP specification using
formal methods can help in assuring correctness, unambiguity,
and clarity of the SNMP protocol. Since a well-defined and
verified protocol specification can reduce the cost for its
implementation and maintenance, modeling and analysis are
important steps of the protocol development life-cycle from
the point view of protocol engineering.

.

REFERENCES

[1] R. Filali ,S. El Mimouni ,A Amamou,B. Boulamat and
M. Bouhdahi, “Modeling of SNMP protocol in Event-
B “, Proceedings of the 1st International Conference on
Mathematical Methods & Computational Techniques in
Science & Engineering (MMCTSE 2014), pp.208-211

[2] Woodside, C.M., “Performance Petri net analysis of
communications protocol software by delay-equivalent
aggregation,” In Petri Nets and Performance Models,
pp. 64-73, 1991.

[3] Antonidakis, E. “Conferencing protocols and petri net
analysis”, WSEAS Transactions on Computers, vol. 5,
no 12, pp. 3112-3118, 2006

[4] Bochmann, G. “Formal Methods in Communication
Protocol Design,” IEEE Transactions on
Communication, vol.28, pp. 624-631, 1980.

[5] Al Dallal, J., "Automatic synthesis of timed protocol
specifications from service specifications." WSEAS
Transactions on Computers 5.1 (2006): 105-112.

[6] Abrial, J.R., Modeling in Event-B: system and software
engineering, Cambridge University Press, 2010.

[7] Li, X. B., and Zhao, F. X.. "Formal development of a
washing machine controller by using formal design
patterns." WSEAS International Conference.
Proceedings. Mathematics and Computers in Science
and Engineering. Ed. Lifent Xi. No. 3. World Scientific
and Engineering Academy and Society, 2009.

[8] Abrial, J.R., The B-book: assigning programs to
meaning, Cambridge University Press. 2005.

[9] Abrial, J.R., “B#: Toward a synthesis between Z and
B,” In: ZB 2003: Formal Specification and
Development in Z and B, Springer Berlin Heidelberg,
pp. 168-177, 2003.

[10] Back, R.J., On the correctness of refinement steps in
program development, Department of Computer
Science, University of Helsinki, 1978.

[11] Jones, C., Oliver, I., Romanovsky, A., and Troubitsyna,
E., RODIN (rigorous open development environment
for complex systems), University of Newcastle upon
Tyne, Computing Science, 2005.

[12] Case, J., Fedor, M., Schoffstall, M., and Davin, J.,
“RFC 1157: Simple network management protocol
(SNMP),” IETF, April, 1990

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS Volume 13, 2019

ISSN: 2074-1294 41

