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Abstract—In today the methods reduction of large-scale linear In which A, ¢ IR"*", B, € IR"P, C, € IRP*",
time invariant and complexe systems are very many, the best D, € IRP*P, u(t) € IR"*P, y(t) € IRP*™ andq is a
choices today is the used of the krylov subspace methods based switching signal.
on moment matching. As hybrid dynamical systems are of rising  Reduction of these systems is an important task of treatment
spread and complexity, for these reasons, we present in this paper  anq analysis of high order systems, especially, in the case of
two model reduction methods applied to linear switched system. o0 mination of a controller parameters. Several approaches

Which is an important class of hybrid and non linear system. it in the literat f lculati f th t but
Tow methods for reduction systems are present. In first part exit in the literature tor caiculation or these parameters bu

we present themodified non symmetric Lanczos algorithhwhich ~ they are easy to apply on the second order system. The
is numerically efficient and applicable of any order. In second Problem is to obtain a reduced order model of second order,

part we present the modified global lanczos algorithmit is also ~ guaranteeing stability and minimizing the error between the

numerically efficient, applicable of any order and having a best  original system and reduced one by the use of the Lanczos
numerical stability. The effectivity and suitability of these new  approaches [4, 8, 9, 10].

methods is illustrated by one simulation example. The states representation of reduction hybrid dynamic systems

Keywords—Model-order reduction, Krylov subspace, Multiple is as follows [1, 9, 12, 18]:

points moment matching, Lanczos, Hybrid systems, Switched sys- { BE41) = (1) + Bqu(t)
= .

9(t) = Cq(t) + Dqu(t)

In which A, € IR** B, € IR*?, C, ¢ IR"**, D, €
IRF*k andg(t) € IRP** with k << n.

Hybrid dynamical systems are frequently encounteredor hybrid dynamical system we can not get the bode diagram
in some fields such as Electrical circuit, Power electronic®f the entire system, thus we presents the eg(oy between
system, Thermal-fluid systems and Mechanical system,...,mari{e output of two systems, which defined by [1, 11]:
modeling and control methods are developed of large scale e(t) = y(t) — §(t) 3)
system [11, 12, 13]. However, these high order models are
difficult to manipulate, the resolution of such models isThis paper is organized as follows: in section 2, the some
indeed very demanding in computational resources, especialjfeliminaries are given. section 3, the Modified Non Sym-
when applying a control strategy which become very difficultmetric Lanczos method, will be presented with application
to determine. Switched system, representing an importarftn the numerical example. In section 4, we detailed the
class of hybrid system, which the latter is a general way afModified Global Lanczos method and evaluate by the use
interconnection of continuous and discreet dynamics [1, 14]of the numerical example. Section 5, we give a comparison
However, in the switched system the discreet dynamic®etween these proposed methods and the others methods of
are reducing to switching events. Definitely, these system#e literature. The last section is dedicated to conclude this
consists of a finite amount € I N of continuous dynamical Paper.
linear time invariant (LTI) subsystems, with g is a function

S A, x(t
tems. Y = .4 2
Cqx(t @

I. INTRODUCTION

piecewise constant over time called a switching signal, for Il.  SOME PRELIMINARIES

simplicity we write g [14]. _ _ In this part we will takeg = 0 and treating the LTI system
The states representation of switched systems is as followg g general way, then the state space of system is as form
[1, 9, 10, 18]: [5, 6, 7]:

1) y(t) = Cx(t) + Du(t

ot 41 _ ) x(t+1) = Ax(t) + Bu(?)
5, = { ( Z(t) 2 { | (4)

q(t) + Bgu(t
) +

A
Cqx(t) + Dyu(t

~——
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A. Principle of The Moment Matching C. BIBO Stability of Linear Switching Systems

The principle of the moment matching are as follows,given Theorem[16, 17] We say that the system in equation (2) is
a linear system in state space form equ.1 and equ.2, with tHBIBO stable, we can proved by the using of the exponentially
transfer function as in this forrti(s) = C(sI — A)~'B+ D  stability over the switching signal set if there exist two
[5, 6, 7], for simplicity we assume thab = 0. if G(s) is  positive constanty < ¢ < 1 and0 < p < oo, such that
expanded in Laurent series around a given psint C in the  for any switching signal; and for the identically zero-input

complex plane [5, 6, 7, 8, 9] u(t) = 0, t > 1, the norm of the reduced output sequence
G ) 9 5 5) Z(t), t > 0 can be bounded above as follows:
So+0)=mng+no+n0°+n30° + ..
()] < pe'||z(0)] (14)

The 7, are called the moments of LTI system st We are
interested in determining a reduced system, which matches t
2k _coefficients, such that the transfer function as in this form m
G(s) = C(sI — A)~'B+ D and the Laurent expansion of the
reduced transfer function at has the form :

rﬁaroof. The proof can be found in [16].

M ODIFIED NON SYMMETRIC LANCZOS FOR
SWITCHED LINEAR SYSTEM

Take a linear switched system as the form:
w(t+1) = Aga(t) + Byult) (15)
y(t) = Cya(t) + Dyul(?) (16)

In our case, we take: = p = 1, we seek to find the reduced
) I g I . model as this form:

Take is a linear dynamical system in a state space form . N 5

equ.l and equ.2. Let us define a initial vectess ¢, and Bt +1) = Agu(t) + Byu(t) (17)
a matrix ¢. The Lanczos process is based to compute two 9(t) = (jqx(t) +ﬁqu(t) (18)
rectangular matricedV,,V, € IR™* which satisfy the .
biorthogonality conditioiV: Vs = I and the Krylov subspace 1he order of reduced model is equal &f << n, such
conditionscolspVi = K (1, 70) andeolspWi = Ki(¥7, o), that the first2k Markov parameters; , := C, A, B, and

G(SQ-FO'):77A0+77A10'+7]A20'2+77A30'3+... (6)
With, n; =1, forj =1,2, ..., 2k.

B. Moment matching through Lanczos Methods

where the Krylov subspace are as follows [2, 3]: fi,, = CqAi'By,0f each original sub-system and reduced
1 sul'o—system respectively are matched:
K = - 7
k(1,70) Spa”{;07¢ro, S o} (7) Wiy =i for i=1,...2k (19)
an

The parameters of the reduced order model are
Ko7, q0) =8pan{qo,1/)TqO,---,wk_quo} 8) g?tt;eune‘gﬂbyx(;s‘lfng the following biorthogonal projection
. = Wi, kg
Where, in the general cage= A, ro = B andgo = C. The reduced sub-system parameters in equ.3 and equ.4 can
After K steps, the Lanczos Algorlthm can Iteratlvely generat%e obtained by the congruence transformation [4 9]
i nxk _ ~ ~ ~ L\
tv_vo orthonormal basi¥}, and Wk eIR from the succes A, = W/g;()AqVk(q>a B, = WkT( )Bq, C, = ka)Cq, D, =
sive Krylov subspace [1, 2, 3]: D ? a a
q-
9) The detail of the Modified Lanczos algorithm can be found

Ki(¢, o) = spanfvy, va, ..., vk } in Tablel [7, 2, 3]:

and Tablel:Lanczos
Modified Lanczos Algortihm{input:A,,B,,C,,D,,70,q0,k,q;
Kk(,ll)Tv qo) = Span{wlv W2, ...y ’U.)k;} (10) Output:qu,qu) T @700
Wherev; € Vj, andw; € Wy, fori=1,..., k. Switch o
During the iteration process, a tridiagonal Matflix € TR (1):/*Initialize*/
is generate that satisfies the following relationships: B, = /CqBy,
T Mg = SQn(Cqu)ﬂlqa
AV = Vi T + Op+1Vk41€67 (11) vy, = Bq/ﬁlq,
and w, = Co/m,
(2):/*Generate the new orthonormal vector*/

ATWy = WiT)) + Brprwirer (12) forj=1,...kdo

_ _ _ Q= wj*-quvjq

Wheree, is the gth unit vector in/R*. iy = AqUi, = 05,05, = T, Vi1,
o 63 . L . . dj, = Aqqu A, Wy, jqWi—14
6o as PBo . . . . . ﬂjJrlq = |7';q‘
03 a3 . . . .. Vi + 1q = sgn(rs, 4;,) 8541,
T, = ‘ ‘ o (13) Vi1, = T4,/ Bjit1,
. . L. . W1, = qjq/%,_Hq
: end for
Br }
5k: (677
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Fig. 1. Switching Signal Fig. 2. Output trajectories of order reduction 2 by Modified Non Symmetric

Lanczos method

A. Numerical example

0.14 T T T T T T T
To evaluate this approach we take the model used by [Ga
Huijun] in the paper [5] and a switched signal where g=1,2 %127 ﬂ 1
[5],which parameters of States representation are as follows
0.1612 0.0574 —0.0144 0.1846 oLy
4 _ | 00434  —03638 0.5258 —0.0357 08l
L= —0.0747 —0.3146 —0.0487 —0.1043 ]’ g
—0.1664  0.4031  0.0347  0.2864 S oosl
0.2023 §
—0.2313 0.04f
Bi=B2=1 (1137 ]
0.1279 002
Cy =Cy = (1.4419 0.672 0.1387 —0.8595), ol 1
Dy =Dy =1.
The input signal u() is: 002, 10 20 30 4‘0() 50 6 70 80
Time(s,

u(t) = emp(O.l(—t + 10)) + 0.152n(0.3t) if10<¢t< 50 Fig. 3. Output errors of order reduction 2 by Modified Non Symmetric
0 otherwise Lanczos method

The switching signal is generate randomly as:

(2,1,2,1,2,2,1,1,2,1,2,2,2,2,1,1, 2, 2,1, 2, 1, 1, 2(%q, &Jand @7, CJ) wherey = (s, — A;)~'E and

1,1,1,1,2,1,1,1,2,1,2,1,1,2,2,1,2,2,1,2, 1,2, 2§ = (s1,F — Ag) ' B,.

2,1,1, 1. This method can be generate recursively two Frobenuis or-
he figure 1 present the arbitrary switching signal generatéhonormal bases for two Krylov subspaces [15]:

by Matlab with a possible case.

qu(qugq) = Span{gqququ-vwgilg} (20)

The output trajectories of the original system and reduced Ly, (47, CT) = span{C{,1,CT, ... vt~ 'CT}  (21)
one of second order and the input signal are show in the ] » . )
figure 2, we see that a good correlation between the Outpl}fhe detail of the Modified Lanczos algorlthm can be found in
trajectories of original and reduced system. The output errofable2 [15]:
between the original system and reduced one is depicts ifable2:Global Lanczos _
figure 3, we note a slight variation of error, the maximumModified Global Lanczos Algortihmiinput: Ay, B;,Cq,Dq,tbg,
value of error is equal t0.12. Eq:kq; OutputW i, Vo k)

Switch of (1):/*initialize*/ Set vy, = —(s,F — Ay) 'E,
Set¢, = (s,F — A,)"'E,

Setp, = sqrt(trace(abs(§,Cy))),

Setdy, = B1,sgn(trace(Cyéy)),

The Global Lanczos Algorithm is an overall improvementDefineVy, = £,/d1,,
of the standard Lanczos algorithm applied to the matrix pairDefineW,, = C, /81,

IV. MODIFIED GLOBAL LANCZOS FORSWITCHED
LINEAR SYSTEM
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LetV,, kq [Vl ]
Let Wy, = [W1,]. 12 -
(2): /*Generate the new orthonormal vector*/ %  Y(Original order 4)
for i=1,2,....,k do ir +  Y(Order2 (s1))
a’\iq = trace((WT)wq iq)
Vv(z+1) '(/)q azq iq 5zq (i—1)q
(Whemq 1, takeﬁl Vo =
Wi, = g Wi, — i, W, g = 0i, Wii-1),
(Wheni =1, takeél Wy =
B(H—l - ||W(z+1)q Vv(z—i-l)qHFa )

O(it1), = Blit1), Sgn[tra’ce(W('L-i-l)q‘/(H‘l)q)]’
Vi), = V1), /8410
Wiy, = Wiy, /By,
ik b Vo) I R I R
engdk%of} Wour, Weirn,) Time(s)
During the iteration process, a tridiagonal Matfl¥, ), €
IR** and two Frobenius orthonormal basds ;, =
[Vl VQ Vk } € qu(wngq) andeng = [qu‘/gq...qu] S
Ly, (wT CT) are generate that satisfies the following recur-

Output Trajectorie

Fig. 4. Output trajectories of order reduction 2 (s1) by Modified Global
Lanczos method

S|vely relatlons: 03 ;
Order2(s1)
¢qu,kq = Vg,qug,kq + 5(k+1)qv(k+1)qu (22) 0.25}F
g Wok, = Wg,kqukq + Bt 1), W), Ea (23) 02}
WhereT( = T(g k), ® 1. g oa1sf
The parameters of the reduced order model are obtaine g
by using the following biorthogonal projectiori(t) = g o1}
W(g k)()v( Wi, E)(q) " -
— -T s
WhereW( k) (o) W(g ) (q) (W(g k) () V(g k)q)
The reduced Sub- -system parameters in equ.3 and equ.4 can ol
obtained by the congruence transformation:
_ wT — A —
AZ’ - W(gik)(")A Vi By = W(g B Po G = %10 20 30 40 0 e 70 8
Vg Car Da=Dq. Time(s)

Since thath - V(g.k)q = I; is an identity matrix.
) Fig. 5. Output errors of order reduction 2 (s1) by Modified Global Lanczos
method

A. Numerical example

To evaluate this approach we take the same model use 12
previously, with the same switching signal. In the first, we
make various s, taken s around zeto= 0 for each subsystem 1L
and takess2 ~ oo

u
*  Y(Original order 4)
Y(order2) q

0.8

The figure 4 and 6 show the output trajectories of the
original system 15, and reduced one of second order arour
two expansion point (s1 and s2) respectively ,due to the abov
input signal, we see a good correlation between the output ¢
the original system and reduced one.

The figure 5 and 7 present the output error between the origini
system and reduced one,we note that the choice of expansi
point influences in the variation of error, for s1 we see that the
maximum of value of error is equal to 0.23, but by the use of
s2 is equal to 0.02. 0 10 20 30 40 50 60 70 80

The figure 8 show the output trajectories of the original systen Time(s)

and reduced one by the use of two methods.

The variation of error is given in figure 9. We can see fromFig. 6. Output trajectories of order reduction 2 (s2) by Modified Global
these figures the results obtained by the Modified Globalanczos method

0.6

0.4}

Output Trajectorie

0.2
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1.4 T§ T T
[} u
n % Y(Original)
12 n + vYGLorder2) ]
1\ Y(Lanczos order2)
1k + oo Y(Arnoldi order2) |
\ = = =Y(LMI order 2)

Output Trajectorie

-0.2 . . . .
0 10 20 30 40 50 60 70 80

Time(s)

Fig. 7. Output Error of order reduction 2 (s2) by Modified Global Lanczos Fig. 10. Output errors of order reduction 2 by some methods

method

12

-_—u
¥ Y(Original)
4+  Y(GL order2) i

Y(Lanczos order2)

0.3 T

T
ErrorGL

ErrorLanczos
0.2 ErrorArnoldi
ErrorLMI

0.1 B

0 /¥ A~

0.1} 4

Output Error

—0.2}+ i

-0.3} 4

-0.4 . . . . . . .
0 10 20 30 40 50 60 70 80

Time(s)

Fig. 11. Output errors of order reduction 2 by some methods

Fig. 8. Output trajectories of order reduction 2 by Modified Non symmetric
Lanczos and Modified Global Lanczos methods
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Lanczos method are better that those obtained by the Modified
Non Symmetric Lanczos.

V. COMPARISON STUDY

In this section we compare the results obtained by the
Lanczos methods with other methods of the literature (Arnoldi,
linearization approach (LMI))[1, 9].

We present tow figures,the figure 10 present the output tra-
jectory by for methods (Non symmetric Lanczos, Global

Lanczos, Arnoldi and Linearization approach) we see that the
good result is obtained by the Global Lanczos of order 2 if
compare with the input U; Figure 11 shows the variation of

error trajectory, we note the best result is obtained by Global
Lanczos.

VI. CONCLUSION

In this paper we have proposed a news methods for reduc-

Output errors of order reduction 2 by Modified Non symmetric tion of linear switched systems based on generation of Krylov
Lanczos and Modified Global Lanczos method

ISSN: 2074-1294
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Non symmetric Lanczos and Modified Global Lanczos. This Creative Commons Attribution License 4.0

methods are numerically efficient, guarantee the stability of ; ; ;
subsystems, gives good results and easy to study compared tc(AttrlbUtlon 4.0 Internatlonal, CCBY 4'0)

other methods (Arnoldi,LMlI,...). To evaluate and demonstrate _, . . . .
the accuracy and efficient of these methods, we present alsoThls article is published under the terms of the Creative

: : ; -~ ~“Commons Attribution License 4.0
a comparative study with the other methods. From simulation ) ) .
results we noted that the best results is obtained by Modified https://creativecommons.org/licenses/by/4.0/deed.en_US

Global Lanczos Algorithm around a large expansion point.
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