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Abstract—In today the methods reduction of large-scale linear
time invariant and complexe systems are very many, the best
choices today is the used of the krylov subspace methods based
on moment matching. As hybrid dynamical systems are of rising
spread and complexity, for these reasons, we present in this paper
two model reduction methods applied to linear switched system.
Which is an important class of hybrid and non linear system.
Tow methods for reduction systems are present. In first part
we present themodified non symmetric Lanczos algorithm, which
is numerically efficient and applicable of any order. In second
part we present the modified global lanczos algorithm, it is also
numerically efficient, applicable of any order and having a best
numerical stability. The effectivity and suitability of these new
methods is illustrated by one simulation example.

Keywords—Model-order reduction, Krylov subspace, Multiple
points moment matching, Lanczos, Hybrid systems, Switched sys-
tems.

I. I NTRODUCTION

Hybrid dynamical systems are frequently encountered
in some fields such as Electrical circuit, Power electronics
system, Thermal-fluid systems and Mechanical system,...,many
modeling and control methods are developed of large scale
system [11, 12, 13]. However, these high order models are
difficult to manipulate, the resolution of such models is
indeed very demanding in computational resources, especially
when applying a control strategy which become very difficult
to determine. Switched system, representing an important
class of hybrid system, which the latter is a general way an
interconnection of continuous and discreet dynamics [1, 14].
However, in the switched system the discreet dynamics
are reducing to switching events. Definitely, these systems
consists of a finite amountq ∈ IN of continuous dynamical
linear time invariant (LTI) subsystems, with q is a function
piecewise constant over time called a switching signal, for
simplicity we write q [14].
The states representation of switched systems is as follows
[1, 9, 10, 18]:

Σq =

{

x(t+ 1) = Aqx(t) +Bqu(t)
y(t) = Cqx(t) +Dqu(t)

(1)

In which Aq ∈ IRn×n, Bq ∈ IRn×p, Cq ∈ IRp×n,
Dq ∈ IRp×p, u(t) ∈ IRn×p, y(t) ∈ IRp×n and q is a
switching signal.
Reduction of these systems is an important task of treatment
and analysis of high order systems, especially, in the case of
determination of a controller parameters. Several approaches
exit in the literature for calculation of these parameters but
they are easy to apply on the second order system. The
problem is to obtain a reduced order model of second order,
guaranteeing stability and minimizing the error between the
original system and reduced one by the use of the Lanczos
approaches [4, 8, 9, 10].
The states representation of reduction hybrid dynamic systems
is as follows [1, 9, 12, 18]:

Σ̂q =

{

x̂(t+ 1) = Âqx(t) + B̂qu(t)

ŷ(t) = Ĉqx(t) + D̂qu(t)
(2)

In which Âq ∈ IRk×k, B̂q ∈ IRk×p, Ĉq ∈ IRp×k, D̂q ∈
IRk×k and ŷ(t) ∈ IRp×k with k << n.
For hybrid dynamical system we can not get the bode diagram
of the entire system, thus we presents the errore(t) between
the output of two systems, which defined by [1, 11]:

e(t) = y(t)− ŷ(t) (3)

This paper is organized as follows: in section 2, the some
preliminaries are given. section 3, the Modified Non Sym-
metric Lanczos method, will be presented with application
on the numerical example. In section 4, we detailed the
Modified Global Lanczos method and evaluate by the use
of the numerical example. Section 5, we give a comparison
between these proposed methods and the others methods of
the literature. The last section is dedicated to conclude this
paper.

II. SOME PRELIMINARIES

In this part we will takeq = 0 and treating the LTI system
in a general way, then the state space of system is as form
[5, 6, 7]:

Σ =

{

x(t + 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(4)
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A. Principle of The Moment Matching

The principle of the moment matching are as follows,given
a linear system in state space form equ.1 and equ.2, with the
transfer function as in this formG(s) = C(sI −A)−1B +D
[5, 6, 7], for simplicity we assume thatD = 0. if G(s) is
expanded in Laurent series around a given points0 ∈ C in the
complex plane [5, 6, 7, 8, 9]:

G(s0 + σ) = η0 + η1σ + η2σ
2 + η3σ

3 + ... (5)

The ηt are called the moments of LTI system ats0. We are
interested in determining a reduced system, which matches the
2k coefficients, such that the transfer function as in this form
ˆG(s) = Ĉ(sI− Â)−1B̂+ D̂ and the Laurent expansion of the

reduced transfer function ats0 has the form :

Ĝ(s0 + σ) = η̂0 + η̂1σ + η̂2σ
2 + η̂3σ

3 + ... (6)

With, ηj = η̂jforj = 1, 2, ..., 2k.

B. Moment matching through Lanczos Methods

Take is a linear dynamical system in a state space form
equ.1 and equ.2. Let us define a initial vectorsr0, q0 and
a matrix ψ. The Lanczos process is based to compute two
rectangular matricesWk, Vk ∈ IRn∗k which satisfy the
biorthogonality conditionW k

TVK = I and the Krylov subspace
conditionscolspVk = Kk(ψ, r0) andcolspWk = Kk(ψ

T , q0),
where the Krylov subspace are as follows [2, 3]:

Kk(ψ, r0) = span{r0, ψr0, ..., ψk−1r0} (7)

and

Kk(ψ
T , q0) = span{q0, ψT q0, ..., ψ

k−1T q0} (8)

Where, in the general caseψ = A, r0 = B andq0 = C.
After K steps, the Lanczos Algorithm can iteratively generate
two orthonormal basisVk andWk ∈ IRn∗k from the succes-
sive Krylov subspace [1, 2, 3]:

Kk(ψ, r0) = span{v1, v2, ..., vk} (9)

and

Kk(ψ
T , q0) = span{w1, w2, ..., wk} (10)

Wherevi ∈ Vk andwi ∈Wk, for i = 1, ..., k.
During the iteration process, a tridiagonal MatrixTk ∈ IRk∗k

is generate that satisfies the following relationships:

AVk = VkTk + δk+1vk+1e
T
T (11)

and

ATWk =WkT
T
k + βk+1wk+1e

T
T (12)

Whereeq is theqth unit vector inIRk.

Tq =





















α1 β3 . . . . . .
δ2 α2 β2 . . . . .
. δ3 α3 . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . βk
. . . . . . δk αk





















(13)

C. BIBO Stability of Linear Switching Systems

Theorem.[16, 17] We say that the system in equation (2) is
BIBO stable, we can proved by the using of the exponentially
stability over the switching signal setq, if there exist two
positive constants0 < ǫ < 1 and 0 < µ < ∞, such that
for any switching signalq and for the identically zero-input
u(t) = 0, t ≥ 1, the norm of the reduced output sequence
x̂(t), t ≥ 0 can be bounded above as follows:

‖x(t)‖ ≤ µǫt‖x(0)‖ (14)

Proof. The proof can be found in [16].

III. M ODIFIED NON SYMMETRIC LANCZOS FOR
SWITCHED L INEAR SYSTEM

Take a linear switched system as the form:

x(t+ 1) = Aqx(t) +Bqu(t) (15)

y(t) = Cqx(t) +Dqu(t) (16)

In our case, we takem = p = 1, we seek to find the reduced
model as this form:

x̂(t+ 1) = Âqx(t) + B̂qu(t) (17)

ŷ(t) = Ĉqx(t) + D̂qu(t) (18)

The order of reduced model is equal ofk << n, such
that the first2k Markov parametersηi(q) := CqA

i−1
q Bq and

η̂i(q) := ĈqÂ
i−1
q B̂q,of each original sub-system and reduced

sub-system respectively are matched:

ηi(q) = η̂i(q) , for i = 1, ..., 2k (19)

The parameters of the reduced order model are
obtained by using the following biorthogonal projection
x̂(t) = WT

k(q)
x(t)Vk(q)

.
The reduced sub-system parameters in equ.3 and equ.4 can
be obtained by the congruence transformation [4, 9]:
Âq = WT

k(q)
AqVk(q)

, B̂q = WT
k(q)

Bq, Ĉq = V T
k(q)

Cq, D̂q =
Dq.
The detail of the Modified Lanczos algorithm can be found
in Table1 [7, 2, 3]:
Table1:Lanczos
Modified Lanczos Algortihm:(Input:Aq,Bq,Cq,Dq,r0,q0,k,q;
Output:Wkq

,Vkq
)

Switch q{
(1):/*Initialize*/
β1q :=

√

CqBq,
γ1q := sgn(CqBq)β1q ,
v1q := Bq/β1q ,
w1q := C∗

q /γ1q
(2):/*Generate the new orthonormal vector*/
for j=1,...,k do
αjq := w∗

jq
Aqvjq

rjq := Aqvjq − αjqvjq − γjqvj−1q
qjq := A∗

qwjq − αjqwjq − βjqwj−1q

βj+1q =
√

|r∗jq |
γj + 1q = sgn(r∗jqqjq )βj+1q

vj+1q = rjq/βj+1q
wj+1q = qjq/γj+1q
end for
}
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Fig. 1. Switching Signal

A. Numerical example

To evaluate this approach we take the model used by [Gao
Huijun] in the paper [5] and a switched signal where q=1,2
[5],which parameters of States representation are as follows:

A1 =







0.1612 0.0574 −0.0144 0.1846
0.0434 −0.3638 0.5258 −0.0357
−0.0747 −0.3146 −0.0487 −0.1043
−0.1664 0.4031 0.0347 0.2864






,

B1 = B2 =







0.2023
−0.2313
−0.1137
0.1279






,

C1 = C2 = (1.4419 0.672 0.1387 −0.8595) ,
D1 = D2 = 1.
The input signal u(t) is:

u(t) =

{

exp(0.1(−t+ 10)) + 0.1sin(0.3t) if 10 ≤ t ≤ 50
0 otherwise

The switching signal is generate randomly as:
{2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2,
1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2,
2, 1, 1, 1}.
The figure 1 present the arbitrary switching signal generate

by Matlab with a possible case.

The output trajectories of the original system and reduced
one of second order and the input signal are show in the
figure 2, we see that a good correlation between the output
trajectories of original and reduced system. The output error
between the original system and reduced one is depicts in
figure 3, we note a slight variation of error, the maximum
value of error is equal to0.12.

IV. M ODIFIED GLOBAL LANCZOS FORSWITCHED
L INEAR SYSTEM

The Global Lanczos Algorithm is an overall improvement
of the standard Lanczos algorithm applied to the matrix pairs
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Fig. 2. Output trajectories of order reduction 2 by Modified Non Symmetric
Lanczos method
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Fig. 3. Output errors of order reduction 2 by Modified Non Symmetric
Lanczos method

(ψq, ξq)and (ψT
q , CT

q ) where ψ = (s1qE − Aq)
−1E and

ξ = (s1qE −Aq)
−1Bq.

This method can be generate recursively two Frobenuis or-
thonormal bases for two Krylov subspaces [15]:

Kkq
(ψq, ξq) = span{ξq, ψqξq, ..., ψ

k−1
q ξ} (20)

Lkq
(ψT

q , C
T
q ) = span{CT

q , ψqC
T
q , ..., ψ

k−1
q CT

q } (21)

The detail of the Modified Lanczos algorithm can be found in
Table2 [15]:
Table2:Global Lanczos
Modified Global Lanczos Algortihm:(Input:Aq,Bq,Cq,Dq,ψq,
ξq,k,q; Output:Wg,kq

,Vg,kq
)

Switch q{ (1):/*initialize*/ Set ψq = −(sqE −Aq)
−1E,

Setξq = (sqE −Aq)
−1E,

Setβ1q = sqrt(trace(abs(ξqCq))),
Setδ1q = β1qsgn(trace(Cqξq)),
DefineV1q = ξq/δ1q ,
DefineW1q = Cq/β1q ,
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Let Vg,kq
= [V1q ],

Let Wg,kq
= [W1q ].

(2):/*Generate the new orthonormal vector*/
for i=1,2,...,k do
αiq = trace((WT

iq
)ψqViq ),

V̂(i+1)q = ψqViq − αiqViq − βiqV(i−1)q
(Wheniq=1, takeβ1qV0 = 1),
Ŵ(i+1)q = ψT

q Wiq − αiqWiq − δiqW(i−1)q
(Wheniq=1, takeδ1qW0 = 1),
β(i+1)q = ‖Ŵ(i+1)q , V̂(i+1)q‖F ,
δ(i+1)q = β(i+1)q .sgn[trace(Ŵ

T
(i+1)q

V̂(i+1)q )],

V(i+1)q = V̂(i+1)q/δ(i+1)q ,
W(i+1)q = Ŵ(i+1)q/β(i+1)q ,
Vg,kq

= [Vg,kq
V(i+1)q ],

Wg,kq
= [Wg,kq

W(i+1)q ].
end for }
During the iteration process, a tridiagonal MatrixT(g,k)q ∈
IRk∗k and two Frobenius orthonormal basesVg,kq

=
[V1qV2q ...Vkq

] ∈ Kkq
(ψq, ξq) andWg,kq

= [W1qV2q ...Wkq
] ∈

Lkq
(ψT

q , C
T
q ) are generate that satisfies the following recur-

sively relations:

ψqVg,kq
= Vg,kq

˜Tg,kq
+ δ(k+1)qV(k+1)qE

T
q (22)

ψT
q Wg,kq

=Wg,kq

˜T T
g,kq

+ β(k+1)qW(k+1)qE
T
q (23)

Where ˜T T
(g,k)q

= T(g,k)q ⊗ Ik.
The parameters of the reduced order model are obtained
by using the following biorthogonal projection̂x(t) =
˜WT

(g,k)(q)
x(t)V(g,k)(q) .

Where˜WT
(g,k)(q)

=W(g,k)(q) (W
T
(g,k)(q)

V(g,k)q )
−T .

The reduced sub-system parameters in equ.3 and equ.4 can be
obtained by the congruence transformation:
Âq = ˜WT

(g,k)(q)
AqV(g,k)(q) , B̂q = ˜WT

(g,k)(q)
Bq, Ĉq =

V T
(g,k)(q)

Cq, D̂q = Dq.

Since that˜WT
(g,k)(q)

V(g,k)q = Ik is an identity matrix.

A. Numerical example

To evaluate this approach we take the same model used
previously, with the same switching signal. In the first, we
make various s, taken s around zeros1 = 0 for each subsystem
and takess2 ≃ ∞.

The figure 4 and 6 show the output trajectories of the
original system 15, and reduced one of second order around
two expansion point (s1 and s2) respectively ,due to the above
input signal, we see a good correlation between the output of
the original system and reduced one.
The figure 5 and 7 present the output error between the original
system and reduced one,we note that the choice of expansion
point influences in the variation of error, for s1 we see that the
maximum of value of error is equal to 0.23, but by the use of
s2 is equal to 0.02.
The figure 8 show the output trajectories of the original system
and reduced one by the use of two methods.
The variation of error is given in figure 9. We can see from
these figures the results obtained by the Modified Global
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Fig. 4. Output trajectories of order reduction 2 (s1) by Modified Global
Lanczos method
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Fig. 5. Output errors of order reduction 2 (s1) by Modified Global Lanczos
method

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

O
ut

pu
t T

ra
je

ct
or

ie

 

 
u
Y(Original order 4)
Y(order2)

Fig. 6. Output trajectories of order reduction 2 (s2) by Modified Global
Lanczos method
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Fig. 9. Output errors of order reduction 2 by Modified Non symmetric
Lanczos and Modified Global Lanczos method

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(s)

O
ut

pu
t T

ra
je

ct
or

ie

 

 
u
Y(Original)
Y(GL order2)
Y(Lanczos order2)
Y(Arnoldi order2)
Y(LMI order 2)

Fig. 10. Output errors of order reduction 2 by some methods
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Fig. 11. Output errors of order reduction 2 by some methods

Lanczos method are better that those obtained by the Modified
Non Symmetric Lanczos.

V. COMPARISON STUDY

In this section we compare the results obtained by the
Lanczos methods with other methods of the literature (Arnoldi,
linearization approach (LMI))[1, 9].
We present tow figures,the figure 10 present the output tra-
jectory by for methods (Non symmetric Lanczos, Global
Lanczos, Arnoldi and Linearization approach) we see that the
good result is obtained by the Global Lanczos of order 2 if
compare with the input U; Figure 11 shows the variation of
error trajectory, we note the best result is obtained by Global
Lanczos.

VI. CONCLUSION

In this paper we have proposed a news methods for reduc-
tion of linear switched systems based on generation of Krylov
subspace for each sub-systems. We present the modified
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Non symmetric Lanczos and Modified Global Lanczos. This
methods are numerically efficient, guarantee the stability of
subsystems, gives good results and easy to study compared to
other methods (Arnoldi,LMI,...). To evaluate and demonstrate
the accuracy and efficient of these methods, we present also
a comparative study with the other methods. From simulation
results we noted that the best results is obtained by Modified
Global Lanczos Algorithm around a large expansion point.
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