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Abstract—In this paper is considered a problem (P) which  contrast withheuristics(which are basic solution methods), a
consists in minimizing an objective function f while satisfying a  metaheuristicusually contains refined strategies to guide and
set of binary constraints. Function f consists in minimizing the  control the search process in the solution space. The reader
number of constraints violations. Problem (P) is NP-hard and  jnterested in a recent book on metaheuristics is referred to
has many applications in various fields (e.g., graph coloring, fre- 151 “\yhereas the reader searching for guidelines to efficiently

quency assignment, satellite range scheduling). On the contrary f : o -
to exact methods, metaheuristics are appropriate algorithms to (accordmg to various criteria) adapt a metaheuristic to a
problem is referred to [6].

tackle medium and large sized instances of (P). A specific type
of ant metaheuristics is designed to tackle (P), where in contrast
with state-of-the-art ant algorithms, an ant is a decision helper

and not a constructive procedure.

There mainly exist three families of (meta)heuristics: con-
structive algorithms (where a complete solution is built step
by step from scratch, like the greedy algorithm), local search

Keywords—Combinatorial optimization, Binary constraints, Ant  techniques (where one solution is handled and iteratively
algorithms, Metaheuristics modified), and evolutionary methods (where a population of

solutions is usually managed).
. INTRODUCTION A local searchmethod starts with an initial solution and tries
) ) ) ) .. .. to improve it iteratively. At each iteration, a modification

Consider the problem (P) which consists in minimizing (called amove of the current solution is performed in order
an objective functionf while satisfying a set”’ of binary {5 generate a neighbor solution. The definition of a move
constraints. Let = (s1,s2,...,s,) be a solution of problem (i o” the definition of theneighborhoodstructure) depends
(P). It |s_assumed that each constraintis binary: it only involveg)n, the considered problem. Popular local search methods
two variabless; ands; and can be formulated as one of the gre simulated annealing, tabu search, threshold algorithms,
following expressions: variable neighborhood search, and guided local search.

o si—s;| #ei; In evolujionary algorithmsa population of solution_s (or parts

J N of solutions) is usually handled. At each generation, the pop-
o  5;—5; >, ulation is modified according to two elemensglf-adaptation
andcollaboration Well-known evolutionary algorithms are ant
algorithms, genetic methods, adaptive memory procedures, and

In addition, the value of each variable must belong to  Scatter search.

a setD of integer values. Aconflict occurs between two In ant algorithms, the self-adaptation ingredient, modeled
variables s; and s; if their associated binary constraint is p the greedy forceis the short-term profit that each ant has
violated. The objective functiof consists in minimizing the 5 gelect a specific decision (independently from the other
number of conflicts. The density(P) of (P) is defined as  ynt5) and the collaboration is managed withrail system

the proportion of pairgs;, s;) linked with alblnary constraint,  yanresented by a central memory (build by ants from previous
among all the existing pairs (which &%=). For example, ~generations), which contains information from the past of the
if d(P) = 1, it means that all pairs of variables are linked with search process. Based on the trail system, an ant is likely
a binary constraint. One can remark thiaf”) can be defined to select the same decisions as other ants, especially if such
as ",2'7‘5‘1). decisions were performed bsany ants in good solutions
Probiem (P) is NP-hard and has many applications in grapgenerated in the past. As pointed out in [7], there exist various
coloring [1], in frequency assignment in telecommunicationpossibilities to design an ant algorithm, depending onrdie
networks [2], and in satellite range scheduling problem [3].assigned to each ant. [Bonstructive Ant Systenf€AS), an
From that literature, one can easily deduce that metaheuristiét is a constructive heuristic. IAnt Local Search(ALS)

e 5, — 585 < ugy.

are the most appropriate methods to tackle (P). methods, an ant is a local search techniqueAmt Decision
. . SystemgADS), an ant is a decision helper within a local search
An exact methodlike branch-and-bound or dynamic pro- frgmewgék. ) P

gramming, guarantees the optimality of the provided solu-

tion. However, for most real-life optimization problems, such  The goal of this paper is to generalize the ant decision
methods need huge computing times to find optimal solutionssystems proposed in [8] and [7] for combinatorial optimization
because such problems are NP-hard [4]. For these difficuftroblems with binary constraints. Among the motivations of
problems, one should prefer to quickly find satisfying solu-this work, it is important to mention that an ADS approach was
tions, which is the goal of (meta)heuristic solution methods. Inalready successfully adapted to the grapboloring problem
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(see again [8] and [7]), which is a reduced version of (P) ad\lgorithm 1 Constructive Ants System (CAS)
the binary constraints have always the fofs — s;| # 0 _ . -
for adjacent vertices. It was showed that ADS significantlyWhile no stopping condition is metjo:

outperforms CAS for that problem, for various densiti¢#) 1) fori=1to N, do:

of (P) ranging from 0.1 to 0.97. The remaining part of a) anti builds a solutions; step by step based
this paper is organized as follows. The ant decision systems on Equation (1);

are discussed in Section I, and positioned according to the b) locally update the trails by the use of
standard constructive ant systems. Then, an ADS approach is (optional);

designed to tackle problem (P) in Section lll. The paper ends 5y o 5h4y ypdate the trails by the use of a subset of
up with a conclusion in Section IV, along with avenues of (51 sn b

research. . .
Output: best encountered solution during the search.

II. ANTALGORITHMS: CAS AND ADS APPROACHES

As described in [7], in most ant algorithms, the role OfAIgorlthm 2 Ant Decision System (ADS)

each ant is to build a solution step by step. At each ste
an ant adds an element to the current partial solution. Eac . - .
decisionor movem is based on two ingredients: tlggeedy 1) genc;:‘rate (rand*omly or greedily) an initial squtlgn .
force GF(m) (short-term profit for the considered ant, also  2)  Sets” = sandf* = f(s) (best encountered solution);
called visibility or heuristic informatiop and thetrail 7r(m)  While no stopping condition is meto:

nitialization:

(information obtained from other ants). The probabijitym) 1) some ants modify the solution(let B be the set of
that anti chooses decisiom is given by Equation (1). the associated decisions);
2) globally update the trails based on the gt

GF(m)~ - Tr(m)?
> GFE(m!)>-Tr(m/)s

m’eM;

(1) 3) if f(s) < f*, sets* =s and f* = f(s);
Output: best encountered solutios.

pi(m) =

where o and g are parameters (which strongly depend on
the considered problem and algorithm), ahf] is the set of IIl. ADS FOR(P)
admissible decisions that antcan perform at that time. Let '

M be the set of all possible decisions. When each ant of the Remind that the value of each should belong to seb

population has built a solution, the trails are generally updatedf integers. Consider an ant as a possible valu® ofnitially,
as presented in Equation (2). q (positive and integer parameter) ants of each valu® d$
Tr(m) = p-Tr(m) + ATr(m), Ym € M (2)  associated with each variabig Let Gé“ be the group of ants
) ) _associated witly; at the end of iteration. Note that the index
wherep €]0,1] is a parameter representing the evaporation) referring to the iteration will be often ignored to simplify
of the trails, which is usually close to or equal to 0.9, andthe text. Several ants with the same value can belong to each
ATr(m) is a term which reinforces the trails left on decision ;. At iteration ¢, let ASSIGN(U;) be a procedure able to
m by the ant populgtlon. That quantity is usually proport|onalassign a value irGEt) to eachs;, for all the s;'s belonging
to the num_ber of times Fhe ants performed deCI_sn_mnand to the setU;. At each iterationt, the following steps are
to the quality of the obtained solutions when decisinrwas performed:
performed. More precisely, eV be the number of ants, then '

the reinforcement term can be set as indicated in Equation (3). 1)  modify the distribution of the ants over some decision

N variables (i.e. modify som&’s), based on the greedy
ATr(m) = ATr(m), 3) forces and the trail system;
im1 2) determine the set; of decision variables for
which the value has to be recomputed by procedure

where ATr;(m) is proportional to the quality of the solution
provided by ant if it has performed decisiom. The pseudo-

code of such constructive ant systems (CAS) is given in
Algorithm 1. A generationconsists in performing steps (1)

to (2). A stopping condition can be a maximum number of
generations or a maximum time limit. For a recent survey on
ant algorithms, the reader is referred to [9].

ASSIGN;

3) performASSIGN (Uy);

4) evaluate the resulting neighbor solution with the
objective functionf.

At the above second step, it is important to reassign a
value to the following decision variables: (1) all the decision
Instead of being a constructive heuristic, a single ant caiariabless; with a different group of ants on it (because it
help to select a decision within a procedure which makes onljs forbidden to give a value te; which is not represented
one solution evolve. More precisely, if one uses the commonlfy at least one ant om;); (2) all the conflicting decision
used local search terminology, each ant helps to move from ariables (because the final goal is still to try to remove some
current solution to aneighborsolution by performing minor conflicts). More precisely, at iteratian the setl/; provided to
modifications on the current solution. Again and by definitionthe ASSIGN procedure is given in Equation (4).
of an ant algorithm, the motor of each ant is based on the o ) ) ) ) )
greedy force and the trail. The general method, caled U, = {decision variables involved in a move at iteratign
Decision SystenfADS), is summarized in Algorithm 2. U {conflicting decision variables at iteratian- 1} (4)
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Note thatUj is initialized to {s1,...,s,}. The procedure conflicts (if possible). In order to remove a conflict, one should
ASSIGN is performed in the following way. First, the value of remove some ant-conflicts, where ant-conflictoccurs when
each decision variable belongingl is temporarily removed. two ants of conflicting value; andwv, are respectively placed
Then, a value is given to the decision variableslaf as  on two variabless; and s; involved in the same constraint.
follows. At each step, select the decision variablec U, Note that such an ant-conflict occurs even(§;) # v, and
with the largessaturation(see its definition below), and give v(s2) # v, because as long as and v, are respectively
the best value ta;, which is the one inG‘") minimizing the ~ represented ow; ands;, the proceduretSSIGN might give
augmentation of the number of conflicts. If there are severdihe valuev; to s; andv; to s;. Therefore, a move with a large

possibilities, chose the most represented valug'in (ties are greedy forcg value should have the ability to reduce the r_1umber
broken randomly). ! of ant-conflicts, and consequently the number of conflicts. A

) o . . generic way of determining the greedy forces is now depicted.
The saturationsat(s;) of a decision variables; is now

defined. LetA(s;) denote the set of decision variables which ~ Suppose that the goal of iteratioieonsists in changing the
are linked tos; with a constraint. In addition, let(s;) be the ~ Valueuv(s;) of the conflicting decision variable;. All the ants
value assigned te;. Further, letV(s;) be the set of values ©f valueuv(s;) have thus to be removed fro6i;. Therefore, a
defined ag J, . (., {v(s;)}. Note that the same value cannot S€quence of moves of type = (s, v(si)) ¢ (s, v) (With i #
J Si
appear more than one time ¥ri(s;). The saturation of; is 7 andv # v(s;)) has to 8)e performed. For such a kind of move
defined assat(s;) = |V (s:)|. One can remark that the larger ™ the gre(et()jy force’}jz) (m) at |(tte§rat|ont can beitgjefmed by
sat(s;) is, the less values are available for and thus the S€tingGF(m) = A™(m) — D' (m), where A™)(m) and
more saturated is;. D®(m) are respectively the advantage and disadvantage of
) ) ) performing movem at iterationt. Note that at each iteration

At each iteration, the goal is to change the value of; the A®)(m)'s and D®) (m)'s can be easily normalized in
a randomly chosen conflicting variable. For illustration interval[0,1] in order to avoid the situation where one of these
purpose, lety; and v, be two ants (i.e. two integer values). components dominates too much the other.
Suppose that; is on the conflicting variable; (i.e. v, € G;), . o ) i
and v, is on variables; (conflicting or not). Amovem = Additional notation is now mtrodgcgd to formally d_eflne
(si,v1) ¢ (s7,v2) consists in switching the ants andwv, on A®(m) and D™ (m). For iterationt, it is helpful to define
variabless; ands;. In other wordsp, (resp.v;) is moved from  the following quantities.
G; (resp.G;) to G; (resp.G;). Suppose that the valugs; ) of
s; is v; because ants of valuev; are on variables;. In order
to be sure to remove _the qonflicting value from variable o GEJ-(U): number of ants irGgf) that are in ant-conflict
s; (at the considered iteration), a sequencepahoves has o i @ )
to be performed: all the ants of valug have to be replaced with antv belonging toG; "~ (with k& # i);
by ants of other values. After such an iteration, in order to
help to avoid cycling (i.e. coming back to an already visited
solution), atabu status can be put on the pdis;, v1): it is i ) (t)
forbidden to put; in G, for tab (parameter) iterations. This with ant of valuev belonging toG; ™.
kind of feature reminds the well-known tabu search algorithm,

: . ; iV o o i
For more information on tabu search, the reader is referred thhe smaller sV, (s;, s;), the better an ant of valuefeels in
[10]. G,, as it generates a small number of ant-conflicts. Formally,

Nét)(sl-, s;j) can be computed as proposed in Equation (7).

o N"(s;): number of ants of value in G\";

Nf,t)(si, s;): number of ants associated with decision
variables — different from; — which are in ant-conflict

According to (P), a consistent trail system should incor-
porate the following information. On the one hand, if an ant Nét)(shsj) - Z G](:i(v) (7)
of valuev just leaves variable; (i.e. one valuev is removed Klsn€A()—{s;}
from G;), the other ants of value will be poorly attracted by
variables;. On the other hand, if an ant of valugust arrives ~ Considering moven = (s;,v;) < (sj,v;), an ant of value
on variables; (i.e. one valuev is added toG;), then other wv; € Gj is attracted by decision variable; if: (1) there
ants of valuey will be attracted by the groug@;. Formally, let ~ are several ants of value; in G;; (2) there are several
trl!) (s;) be the trail left by ant of value on decision variable 2ants associated with decision variables — different frgm-
s; at the end of iteration. Such values are updated at the endWhich are in ant-conflict with ant of value; belonging to
of an iteration as in state-of-the-art ant algorithms as presentédi- Symmetric considerations are true for the ant of valpe

in Equation (5). belonging toG;, which is candidate to be put ii; instead of
9 ) ’ ant of valuev;. Thus, one can define the advantag/é (m)

tri) (si) = p - trl ™V (i) + Atr{? (s;) (5)  associated with move: as expressed in Equation (8), where

In addition, the traill'r(m) of a movem = (s;,v1) < (s;, va) the components could be weighted by parameters if necessary.
1 : 5 - Z). VAR .

Ean btt_a corgputed in a straightforward fashion as proposed in A®) (m)

auation (6). = NED(s5) + NGV (si,85)
Tr(m) = tr) (s:) + tri) (s;) = tr(]) (s0) = 1) (s5) (6) TN (s) 4 NE (s 50 ®)

The main challenge is now to design relevant ways ofln contrast with the previous paragraph, when considering a
determining the greedy force (i.e. the short-term profit). Atmovem = (s;,v;) <> (s4,v,), an ant with value); belonging
each iteration, the greedy force should focus on removing som® G; is not attracted by decision variablg if: (1) there
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are several ants of valug in G;; (2) there are several ants Creative Commons Attribution License 4.0

associated with decision variables — different freyn- which ; ; ;
will be in ant-conflict with an ant of value; if it is added (Attrlbutlon 4.0 International, CC BY 4'0)

to G;. Thus, one can define the disadvanta€’(m) as
expressed in Equation (9), where the components could again
be weighted by parameters if relevant. Note that the term
N,Sf_l)(si) is not taken into account, as all ants of valge

will be removed fromG; at iterationt.

DD (m) = NI (s;)+ NI (si,85) + NS (s5,50) (9)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en US

Vg

IV. CONCLUSION

In this paper is designed ADS (Ant Decision System), a
new type of ant algorithm, specifically dedicated to combi-
natorial optimization with binary constraints. As in every ant
algorithm, the selection of a decision relies on two ingredients:
the greedy force on the one hand, and the trail system on the
other hand. The former element represents the self-adaptation
ability of an ant, whereas the latter element is a central memory
containing relevant information on the history of the search
process. In ADS, in contrast with most of the state-of-the-art
ant algorithms, the role of each ant is limited to help to assign
a value to a single decision variable. Relevant formulas are
proposed to design the greedy force and the trail of a decision.
Among the future works in this area, one could develop ADS
approaches for specific combinatorial optimization problems
in telecommunication networks, for which the frequency con-
straints are often binary. Another avenue of research relies in
the generalization of the ADS approach for ternary constraints.
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