
Ant Decision Systems for Combinatorial
Optimization with Binary Constraints

Nicolas Zufferey
HEC - University of Geneva, Switzerland

Email: nicolas.zufferey-hec@unige.ch

Abstract—In this paper is considered a problem (P) which
consists in minimizing an objective functionf while satisfying a
set of binary constraints. Function f consists in minimizing the
number of constraints violations. Problem (P) is NP-hard and
has many applications in various fields (e.g., graph coloring, fre-
quency assignment, satellite range scheduling). On the contrary
to exact methods, metaheuristics are appropriate algorithms to
tackle medium and large sized instances of (P). A specific type
of ant metaheuristics is designed to tackle (P), where in contrast
with state-of-the-art ant algorithms, an ant is a decision helper
and not a constructive procedure.

Keywords—Combinatorial optimization, Binary constraints, Ant
algorithms, Metaheuristics

I. I NTRODUCTION

Consider the problem (P) which consists in minimizing
an objective functionf while satisfying a setC of binary
constraints. Lets = (s1, s2, . . . , sn) be a solution of problem
(P). It is assumed that each constraint is binary: it only involves
two variablessi and sj and can be formulated as one of the
following expressions:

• |si − sj| 6= εij ,

• si − sj ≥ lij ,

• si − sj ≤ uij .

In addition, the value of each variablesi must belong to
a set D of integer values. Aconflict occurs between two
variablessi and sj if their associated binary constraint is
violated. The objective functionf consists in minimizing the
number of conflicts. The densityd(P) of (P) is defined as
the proportion of pairs(si, sj) linked with a binary constraint,
among all the existing pairs (which isn·(n−1)

2). For example,
if d(P) = 1, it means that all pairs of variables are linked with
a binary constraint. One can remark thatd(P) can be defined
as 2·|C|

n·(n−1) .
Problem (P) is NP-hard and has many applications in graph
coloring [1], in frequency assignment in telecommunication
networks [2], and in satellite range scheduling problem [3].
From that literature, one can easily deduce that metaheuristics
are the most appropriate methods to tackle (P).

An exact method, like branch-and-bound or dynamic pro-
gramming, guarantees the optimality of the provided solu-
tion. However, for most real-life optimization problems, such
methods need huge computing times to find optimal solutions,
because such problems are NP-hard [4]. For these difficult
problems, one should prefer to quickly find satisfying solu-
tions, which is the goal of (meta)heuristic solution methods. In

contrast withheuristics(which are basic solution methods), a
metaheuristicusually contains refined strategies to guide and
control the search process in the solution space. The reader
interested in a recent book on metaheuristics is referred to
[5], whereas the reader searching for guidelines to efficiently
(according to various criteria) adapt a metaheuristic to a
problem is referred to [6].

There mainly exist three families of (meta)heuristics: con-
structive algorithms (where a complete solution is built step
by step from scratch, like the greedy algorithm), local search
techniques (where one solution is handled and iteratively
modified), and evolutionary methods (where a population of
solutions is usually managed).
A local searchmethod starts with an initial solution and tries
to improve it iteratively. At each iteration, a modification
(called amove) of the current solution is performed in order
to generate a neighbor solution. The definition of a move
(i.e. the definition of theneighborhoodstructure) depends
on the considered problem. Popular local search methods
are simulated annealing, tabu search, threshold algorithms,
variable neighborhood search, and guided local search.
In evolutionary algorithms, a population of solutions (or parts
of solutions) is usually handled. At each generation, the pop-
ulation is modified according to two elements:self-adaptation
andcollaboration. Well-known evolutionary algorithms are ant
algorithms, genetic methods, adaptive memory procedures, and
scatter search.

In ant algorithms, the self-adaptation ingredient, modeled
by thegreedy force, is the short-term profit that each ant has
to select a specific decision (independently from the other
ants), and the collaboration is managed with atrail system
represented by a central memory (build by ants from previous
generations), which contains information from the past of the
search process. Based on the trail system, an ant is likely
to select the same decisions as other ants, especially if such
decisions were performed bymany ants in good solutions
generated in the past. As pointed out in [7], there exist various
possibilities to design an ant algorithm, depending on therole
assigned to each ant. InConstructive Ant Systems(CAS), an
ant is a constructive heuristic. InAnt Local Search(ALS)
methods, an ant is a local search technique. InAnt Decision
Systems(ADS), an ant is a decision helper within a local search
framework.

The goal of this paper is to generalize the ant decision
systems proposed in [8] and [7] for combinatorial optimization
problems with binary constraints. Among the motivations of
this work, it is important to mention that an ADS approach was
already successfully adapted to the graphk-coloring problem

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2020.14.8

Volume 14, 2020

ISSN: 2074-1294 44

(see again [8] and [7]), which is a reduced version of (P) as
the binary constraints have always the form|si − sj | 6= 0
for adjacent vertices. It was showed that ADS significantly
outperforms CAS for that problem, for various densitiesd(P)
of (P) ranging from 0.1 to 0.97. The remaining part of
this paper is organized as follows. The ant decision systems
are discussed in Section II, and positioned according to the
standard constructive ant systems. Then, an ADS approach is
designed to tackle problem (P) in Section III. The paper ends
up with a conclusion in Section IV, along with avenues of
research.

II. A NT ALGORITHMS: CAS AND ADS APPROACHES

As described in [7], in most ant algorithms, the role of
each ant is to build a solution step by step. At each step,
an ant adds an element to the current partial solution. Each
decisionor movem is based on two ingredients: thegreedy
force GF (m) (short-term profit for the considered ant, also
calledvisibility or heuristic information) and thetrail Tr(m)
(information obtained from other ants). The probabilitypi(m)
that anti chooses decisionm is given by Equation (1).

pi(m) =
GF (m)α · Tr(m)β

∑

m′∈Mi

GF (m′)α · Tr(m′)β
(1)

where α and β are parameters (which strongly depend on
the considered problem and algorithm), andMi is the set of
admissible decisions that anti can perform at that time. Let
M be the set of all possible decisions. When each ant of the
population has built a solution, the trails are generally updated
as presented in Equation (2).

Tr(m) = ρ · Tr(m) + ∆Tr(m), ∀m ∈ M (2)

where ρ ∈]0, 1[is a parameter representing the evaporation
of the trails, which is usually close to or equal to 0.9, and
∆Tr(m) is a term which reinforces the trails left on decision
m by the ant population. That quantity is usually proportional
to the number of times the ants performed decisionm, and
to the quality of the obtained solutions when decisionm was
performed. More precisely, letN be the number of ants, then
the reinforcement term can be set as indicated in Equation (3).

∆Tr(m) =
N
∑

i=1

∆Tri(m), (3)

where∆Tri(m) is proportional to the quality of the solution
provided by anti if it has performed decisionm. The pseudo-
code of such constructive ant systems (CAS) is given in
Algorithm 1. A generationconsists in performing steps (1)
to (2). A stopping condition can be a maximum number of
generations or a maximum time limit. For a recent survey on
ant algorithms, the reader is referred to [9].

Instead of being a constructive heuristic, a single ant can
help to select a decision within a procedure which makes only
one solution evolve. More precisely, if one uses the commonly
used local search terminology, each ant helps to move from a
current solution to aneighborsolution by performing minor
modifications on the current solution. Again and by definition
of an ant algorithm, the motor of each ant is based on the
greedy force and the trail. The general method, calledAnt
Decision System(ADS), is summarized in Algorithm 2.

Algorithm 1 Constructive Ants System (CAS)

While no stopping condition is met,do:
1) for i = 1 to N , do:

a) anti builds a solutionsi step by step based
on Equation (1);

b) locally update the trails by the use ofsi
(optional);

2) globally update the trails by the use of a subset of
{s1, . . . , sN};

Output: best encountered solution during the search.

Algorithm 2 Ant Decision System (ADS)

Initialization:
1) generate (randomly or greedily) an initial solutions;
2) sets⋆ = s andf⋆ = f(s) (best encountered solution);

While no stopping condition is met,do:
1) some ants modify the solutions (let B be the set of

the associated decisions);
2) globally update the trails based on the setB;
3) if f(s) < f⋆, sets⋆ = s andf⋆ = f(s);

Output: best encountered solutions⋆.

III. ADS FOR (P)

Remind that the value of eachsi should belong to setD
of integers. Consider an ant as a possible value ofD. Initially,
q (positive and integer parameter) ants of each value ofD is
associated with each variablesi. Let G(t)

i be the group of ants
associated withsi at the end of iterationt. Note that the index
(t) referring to the iterationt will be often ignored to simplify
the text. Several ants with the same value can belong to each
Gi. At iteration t, let ASSIGN(Ut) be a procedure able to
assign a value inG(t)

i to eachsi, for all the si’s belonging
to the setUt. At each iterationt, the following steps are
performed:

1) modify the distribution of the ants over some decision
variables (i.e. modify someGi’s), based on the greedy
forces and the trail system;

2) determine the setUt of decision variables for
which the value has to be recomputed by procedure
ASSIGN ;

3) performASSIGN(Ut);
4) evaluate the resulting neighbor solution with the

objective functionf .

At the above second step, it is important to reassign a
value to the following decision variables: (1) all the decision
variablessj with a different group of ants on it (because it
is forbidden to give a value tosj which is not represented
by at least one ant onsj); (2) all the conflicting decision
variables (because the final goal is still to try to remove some
conflicts). More precisely, at iterationt, the setUt provided to
the ASSIGN procedure is given in Equation (4).

Ut = {decision variables involved in a move at iterationt}
∪ {conflicting decision variables at iterationt− 1} (4)

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2020.14.8

Volume 14, 2020

ISSN: 2074-1294 45

Note that U0 is initialized to {s1, . . . , sn}. The procedure
ASSIGN is performed in the following way. First, the value of
each decision variable belonging toUt is temporarily removed.
Then, a value is given to the decision variables ofUt as
follows. At each step, select the decision variablesi ∈ Ut

with the largestsaturation(see its definition below), and give
the best value tosi, which is the one inG(t)

i minimizing the
augmentation of the number of conflicts. If there are several
possibilities, chose the most represented value inG

(t)
i (ties are

broken randomly).

The saturationsat(si) of a decision variablesi is now
defined. LetA(si) denote the set of decision variables which
are linked tosi with a constraint. In addition, letv(si) be the
value assigned tosi. Further, letV (si) be the set of values
defined as

⋃

sj∈A(si)
{v(sj)}. Note that the same value cannot

appear more than one time inV (si). The saturation ofsi is
defined assat(si) = |V (si)|. One can remark that the larger
sat(si) is, the less values are available forsi, and thus the
more saturated issi.

At each iteration, the goal is to change the value of
a randomly chosen conflicting variablesi. For illustration
purpose, letv1 and v2 be two ants (i.e. two integer values).
Suppose thatv1 is on the conflicting variablesi (i.e. v1 ∈ Gi),
and v2 is on variablesj (conflicting or not). A movem =
(si, v1) ↔ (sj , v2) consists in switching the antsv1 andv2 on
variablessi andsj. In other words,v2 (resp.v1) is moved from
Gj (resp.Gi) to Gi (resp.Gj). Suppose that the valuev(si) of
si is v1 becausep ants of valuev1 are on variablesi. In order
to be sure to remove the conflicting valuev1 from variable
si (at the considered iteration), a sequence ofp moves has
to be performed: all the ants of valuev1 have to be replaced
by ants of other values. After such an iteration, in order to
help to avoid cycling (i.e. coming back to an already visited
solution), atabu status can be put on the pair(si, v1): it is
forbidden to putv1 in Gi for tab (parameter) iterations. This
kind of feature reminds the well-known tabu search algorithm.
For more information on tabu search, the reader is referred to
[10].

According to (P), a consistent trail system should incor-
porate the following information. On the one hand, if an ant
of valuev just leaves variablesi (i.e. one valuev is removed
from Gi), the other ants of valuev will be poorly attracted by
variablesi. On the other hand, if an ant of valuev just arrives
on variablesi (i.e. one valuev is added toGi), then other
ants of valuev will be attracted by the groupGi. Formally, let
tr

(t)
v (si) be the trail left by ant of valuev on decision variable

si at the end of iterationt. Such values are updated at the end
of an iteration as in state-of-the-art ant algorithms as presented
in Equation (5).

tr(t)v (si) = ρ · tr(t−1)
v (si) + ∆tr(t)v (si) (5)

In addition, the trailTr(m) of a movem = (si, v1) ↔ (sj , v2)
can be computed in a straightforward fashion as proposed in
Equation (6).

Tr(m) = tr(t)v2
(si) + tr(t)v1

(sj)− tr(t)v1
(si)− tr(t)v2

(sj) (6)

The main challenge is now to design relevant ways of
determining the greedy force (i.e. the short-term profit). At
each iteration, the greedy force should focus on removing some

conflicts (if possible). In order to remove a conflict, one should
remove some ant-conflicts, where anant-conflictoccurs when
two ants of conflicting valuev1 andv2 are respectively placed
on two variablessi and sj involved in the same constraint.
Note that such an ant-conflict occurs even ifv(s1) 6= v1 and
v(s2) 6= v2, because as long asv1 and v2 are respectively
represented onsi andsj , the procedureASSIGN might give
the valuev1 to si andv2 to sj . Therefore, a move with a large
greedy force value should have the ability to reduce the number
of ant-conflicts, and consequently the number of conflicts. A
generic way of determining the greedy forces is now depicted.

Suppose that the goal of iterationt consists in changing the
valuev(si) of the conflicting decision variablesi. All the ants
of valuev(si) have thus to be removed fromGi. Therefore, a
sequence of moves of typem = (si, v(si)) ↔ (sj , v) (with i 6=
j andv 6= v(si)) has to be performed. For such a kind of move
m, the greedy forceGF (t)(m) at iterationt can be defined by
settingGF (t)(m) = A(t)(m) −D(t)(m), whereA(t)(m) and
D(t)(m) are respectively the advantage and disadvantage of
performing movem at iterationt. Note that at each iteration
t, the A(t)(m)’s and D(t)(m)’s can be easily normalized in
interval[0, 1] in order to avoid the situation where one of these
components dominates too much the other.

Additional notation is now introduced to formally define
A(t)(m) andD(t)(m). For iterationt, it is helpful to define
the following quantities.

• N
(t)
v (si): number of ants of valuev in G

(t)
i ;

• G
(t)
k,i(v): number of ants inG(t)

k that are in ant-conflict

with ant v belonging toG(t)
i (with k 6= i);

• N
(t)
v (si, sj): number of ants associated with decision

variables – different fromsj – which are in ant-conflict
with ant of valuev belonging toG(t)

i .

The smaller isN (t)
v (si, sj), the better an ant of valuev feels in

Gi, as it generates a small number of ant-conflicts. Formally,
N

(t)
v (si, sj) can be computed as proposed in Equation (7).

N (t)
v (si, sj) =

∑

k|sk∈A(si)−{sj}

G
(t)
k,i(v) (7)

Considering movem = (si, vi) ↔ (sj , vj), an ant of value
vi ∈ Gi is attracted by decision variablesj if: (1) there
are several ants of valuevi in Gj ; (2) there are several
ants associated with decision variables – different fromsj –
which are in ant-conflict with ant of valuevi belonging to
Gi. Symmetric considerations are true for the ant of valuevj
belonging toGj , which is candidate to be put inGi instead of
ant of valuevi. Thus, one can define the advantageA(t)(m)
associated with movem as expressed in Equation (8), where
the components could be weighted by parameters if necessary.

A(t)(m)

= N (t−1)
vi

(sj) +N (t−1)
vi

(si, sj)

+ N (t−1)
vj

(si) +N (t−1)
vj

(sj , si) (8)

In contrast with the previous paragraph, when considering a
movem = (si, vi) ↔ (sj , vj), an ant with valuevj belonging
to Gj is not attracted by decision variablesi if: (1) there

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2020.14.8

Volume 14, 2020

ISSN: 2074-1294 46

are several ants of valuevj in Gj ; (2) there are several ants
associated with decision variables – different fromsj – which
will be in ant-conflict with an ant of valuevj if it is added
to Gi. Thus, one can define the disadvantageD(t)(m) as
expressed in Equation (9), where the components could again
be weighted by parameters if relevant. Note that the term
N

(t−1)
vi (si) is not taken into account, as all ants of valuesi

will be removed fromGi at iterationt.

D(t)(m) = N (t−1)
vj

(sj)+N (t−1)
vj

(si, sj)+N (t−1)
vi

(sj , si) (9)

IV. CONCLUSION

In this paper is designed ADS (Ant Decision System), a
new type of ant algorithm, specifically dedicated to combi-
natorial optimization with binary constraints. As in every ant
algorithm, the selection of a decision relies on two ingredients:
the greedy force on the one hand, and the trail system on the
other hand. The former element represents the self-adaptation
ability of an ant, whereas the latter element is a central memory
containing relevant information on the history of the search
process. In ADS, in contrast with most of the state-of-the-art
ant algorithms, the role of each ant is limited to help to assign
a value to a single decision variable. Relevant formulas are
proposed to design the greedy force and the trail of a decision.
Among the future works in this area, one could develop ADS
approaches for specific combinatorial optimization problems
in telecommunication networks, for which the frequency con-
straints are often binary. Another avenue of research relies in
the generalization of the ADS approach for ternary constraints.

REFERENCES

[1] E. Malaguti and P. Toth, “A survey on vertex coloring problems,”
International Transactions in Operational Research, vol. 17 (1), pp.
1 – 34, 2010.

[2] K. I. Aardal, S. P. M. van Hoesel, A. M. C. A. Koster, C. Mannino,
and A. Sassano, “Models and Solution Techniques for Frequency
Assignment Problems,”4OR, vol. 1:4, pp. 261 – 317, 2003.

[3] N. Zufferey, P. Amstutz, and P. Giaccari, “Graph colouring approaches
for a satellite range scheduling problem,”Journal of Scheduling, vol.
11 (4), pp. 263 – 277, 2008.

[4] M. Garey and D. Johnson,Computer and Intractability: a Guide to the
Theory of NP-Completeness. San Francisco: Freeman, 1979.

[5] M. Gendreau and J.-Y. Potvin,Handbook of Metaheuristics, ser. Interna-
tional Series in Operations Research & Management Science. Springer,
2010, vol. 146.

[6] N. Zufferey, “Metaheuristics: some Principles for an Efficient Design,”
Computer Technology and Applications, vol. 3 (6), pp. 446 – 462, 2012.

[7] ——, “Optimization by ant algorithms: Possible roles for an individual
ant,” Optimization Letters, vol. 6 (5), pp. 963 – 973, 2012.

[8] A. Hertz and N. Zufferey, “A New Ant Colony Algorithm for Graph
Coloring,” in Proceedings of the Workshop on Nature Inspired Cooper-
ative Strategies for Optimization, NICSO 2006, June 29–30, Pelta and
Krasnogor, Eds., Granada, Spain, 2006, pp. 51–60.

[9] M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,”
Theoretical Computer Science, vol. 344 (2-3), pp. 243–278, 2005.

[10] F. Glover, “Tabu search - part I,”ORSA Journal on Computing, vol. 1,
pp. 190–205, 1989.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

INTERNATIONAL JOURNAL OF COMPUTERS AND COMMUNICATIONS
DOI: 10.46300/91013.2020.14.8

Volume 14, 2020

ISSN: 2074-1294 47

