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Abstract—In this paper, we deal with well-known distribution 
problems and discuss their restrictions, extensions and 
modifications including a possible application in agriculture. We 
show that the transportation problem can be transformed to an 
assignment problem using special constraints, but because of NP-
hardness it needs quite different methods of its solving. Another 
modification of the transportation problem, the crop problem, 
has an application in agriculture, but we must deal with 
uncertain data. We propose a genetic algorithm and fuzzy logic 
approach for solving these problems.      

Keywords—transportation; assignment problem; crop problem, 
PERT; heuristic; genetic algorithm; fuzzy number 

I. INTRODUCTION 
The Hitchcock transportation problem with m sources 

(supply points, factories) and n destinations (demand points, 
clients) can be formulated using linear programming as 
follows [1]: 

Minimise 
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where  
z is the total transportation cost,  
cij is the unit shipping cost from source i to destination j, 
xij is the number of units shipped from source i to 

destination j,  
ai is the supply of the source i,  
bj is the demand of destination j, 

and only a single commodity is transported. 

Since there is only one commodity, a d estination can 
receive its demand from more than one source. Therefore, the 
objective is to determine how much should be shipped from 
each source to each destination so as to minimise the total 
transportation cost. 

If total commodity supply equals to total demand, the 
problem is said to be a balanced transportation problem: 
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If (5) is not satisfied, then it becomes an unbalanced 
transportation problem. 
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If total supply exceeds total demand, see (6), we can 
balance the problem by adding a dummy destination to absorb 
the excess supply. Shipments to this destination are assigned a 
cost of zero. 
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If a transportation problem has a total supply that is strictly 
less than total demand, see (7), the problem has no feasible 
solution, because one or more demands cannot be satisfied. In 
such situations a penalty cost is often associated with unmet 
demand and the total penalty cost is desired to be minimal. 

There are several methods for solving the balanced 
transportation problem as follows: 

• The Northwest Corner Method 

• The Least Cost Method 

• Vogel’s Approximation Method 

We can also solve the transportation problem using 
specialised software tools, e.g. GAMS, LINDO, LINGO, or 
MS Excel Solver.  
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If it is possible to both ship into and out of the same point 
of the transport network, then we speak about a transshipment 
(or transhipment) problem. For the transshipment problem, 
you can ship from one supply point to another or from one 
demand point to another. 

The Hitchcock formulation of the transportation problem 
may also be extended considering fixed charges associated 
with supply points (e. g. warehouses), means of transport, their 
capacity, cost of transport by vehicles to 1 km, which enables 
to determine the number of trips due to volume, transport in 
two levels: primary source – warehouses – destinations, 
admitting the possibility of direct transport from the primary 
source to destinations, etc. 

Instead, we turn our attention to problems that seem to 
have nothing with transportation, but their formulation can be 
obtained from the basic model of the transportation problem. 

II. ASSIGNMENT PROBLEM 
Let us assume a balanced transportation problem in which 

all supplies and demands are equal to 1 and the same number 
of sources and destinations [2].  

An example of this situation is an assignment of tasks to 
persons or jobs to machines. Additionally, we assume that 
each person must do on e and only one task, and each task 
must be done by only one person. The problem is to find an 
assignment which minimizes the total cost (or the total time) 
for processing all tasks.    

Consider the following denotations: 

n = number of persons = number of tasks, 
xij represents the assignment of person i to task j, xij =1 if 

the assignment is done, and xij = 0 otherwise, 
cij is the cost the assignment of person i to task j. 

Hence we get the following model of the (linear) 
assignment problem (AP):  

Minimise 
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We can see that:  

(1) The assignment problem is a special case of the 
transportation problem where 

 m = n,    
 ai = 1, i = 1,2, … , m,    
 bj = 1,  j = 1,2, … , n,  
 xij ∈{0,1}, i = 1,2, … , m,  j = 1,2, … , n. 

(2) The assignment problem can also be understood as a 
problem of finding a permutation 
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where person i to task πi is assigned, i=1, … , n, and   
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Since there are n! permutations for n tasks, finding the 
solution for large instances is not reachable in a r easonable 
amount of time, and thus heuristic methods must be used. We 
present a genetic algorithm approach. 

III. GENETIC ALGORITHM FOR AP 
The skeleton for GA can be described as follows [3]: 

generate an initial population ; 
evaluate fitness of individuals in the population ; 
repeat 
 select parents from the population; 
 recombine (mate) parents to produce children ; 
 evaluate fitness of the children ; 
 replace some or all of the population by the children 
until a satisfactory solution has been found ; 
 

Since the principles of GAs are well-known, we will only 
deal with GA parameter settings for the problems to be 
studied. Now we describe the general settings [4], [5]. 

Individuals in the population (chromosomes) are 
represented as binary strings of length n, where a value of 0 or 
1 at the i-th bit (gene) implies that xi = 0 or  1 in the solution 
respectively.  

The population size N is usually set between n and 2n. 
Many empirical results have shown that population sizes in the 
range [50, 200] work quite well for most problems.  

Initial population is obtained by generating random strings 
of 0s and 1s in the following way: First, all bits in all strings 
are set to 0, and then, for each of the strings, randomly 
selected bits are set to 1 until the solutions (represented by 
strings) are feasible. 

The fitness function corresponds to the objective function 
to be maximised or minimised.  

There are three most commonly used methods of selection 
of two parent solution for reproduction: proportionate 
selection, ranking selection, and tournament selection. The 
tournament selection is perhaps the simplest and most efficient 
among these three methods. We use the binary tournament 
selection method where two individuals are chosen randomly 
from the population. The more fit individual is then allocated a 
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reproductive trial. In order to produce a child, two binary 
tournaments are held, each of which produces one parent. 

The recombination is provided by the uniform crossover 
operator, which has a better recombination potential than do 
other crossover operators as the classical one-point and two-
point crossover operators. The uniform crossover operator 
works by generating a random crossover mask B (using 
Bernoulli distribution) which can be represented as a binary 
string B = b1b2b3 ··· bn-1bn where n is the length of the 
chromosome. Let P1 and P2 be the parent strings P1[1], ... 
,P1[n] and P2[1], ... ,P2[n] respectively. Then the child solution 
is created by letting: C[i] = P1[i] if bi = 0 and C[i] = P2[i] if bi 

= 1. Mutation is applied to each child after crossover. It works 
by inverting M randomly chosen bits in a string where M is 
experimentally determined. We use a mutation rate of 5/n as a 
lower bound on the optimal mutation rate. It is equivalent to 
mutating five randomly chosen bits per string. 

When v child solutions have been generated, the children 
will replace v members of the existing population to keep the 
population size constant, and the reproductive cycle will 
restart. As the replacement of the whole parent population 
does not guarantee that the best member of a population will 
survive into the next generation, it is better to use steady-state 
or incremental replacement which generates and replaces only 
a few members (typically 1 or 2) of the population during each 
generation. The least-fit member, or a randomly selected 
member with below-average fitness, are usually chosen for 
replacement. 

Termination of a GA is usually controlled by specifying a 
maximum number of generations tmax or relative improvement 
of the best objective function value over generations. Since the 
optimal solution values for most problems are not known, we 
choose tmax ≤ 5000. 

In our implementation the population was set to 50 and the 
number of iterations to 10 × n2. 

Permutations of n tasks for the initial population are best to be 
generated randomly, e.g. by the following procedure: 

Randomize; 
for i := 1 to n do { 1, 2, … , n } 
 perm[i] := i; 
for i := n downto 2 do 
 begin  j := 1+Trunc(i∗Random) 
  x := perm[i]; perm[i] := perm[j]; 
  perm[j] := x 
 end; 

 

As to the crossover operation, we cannot use the traditional 
two-point crossover, because it would lead to infeasible 
solutions. If we change the middle parts of the parent 
chromosomes P1=(1,10,7,2,8,9,4,6,5,3), 
P2=(5,8,2,9,7,4,1,10,3,6) between the 4-th and 7-th position, 
then we would obtain offspring (1,10,7,9,7,4,1,6,5,3) and 
(5,8,2,2,8,9,4,10,3,6) that correspond to no permutations, 
because some jobs are duplicated or omitted. We used the so 
called crossover in a p artially mapped representation where 

the genes in the middle part of one chromosome are ordered in 
its offspring by their occurrence in the second parent 
chromosome.  

In the literature, slight modifications of these shift 
operations can be found, e.g. 1stSwap, FullSwap, DoubleCut, 
DoublePointShift and RightDoublePoint [6], [7]. 

Genetic algorithms may be enhanced by other heuristic 
methods to perform local searches. A sophisticated approach 
was presented in [8].  

First, define the distance of two permutations P1, P2. The 
most frequent definitions are the following 

• precedence distance – computed as the number of 
pairs of jobs {i, j} where i precedes j in P1, but does 
not precede it in P2, 

• positional distance – given as the sum of differences 
of jobs on the same positions in both permutations. 

This method combines the genetic algorithm with a local 
search and the Metropolis criterion used in simulated 
annealing. Its main modification is based on a s pecial 
crossover, called multistep crossover fusion (MSXF). Let P1 
and P2 be two parent permutations. On permutation P1 a local 
search is applied that is, to a cer tain extent, influenced by 
permutation P2, which serves a r eference point. All 
permutations from a neighbourhood of P1 are ordered in the 
ascending order by their distance from permutation P2. With a 
probability inversely proportional to this sequence, a 
neighbour, Ps, is selected. If this neighbour solution gives a 
shorter schedule than the one computed from the permutation 
of jobs P1, i.e. Cmax(Ps)< Cmax(P1), then Ps is accepted. In the 
opposite case, it is accepted with the probability of 

TPCPCe /))()(( 1maxsmax −−  as in the Metropolis criterion. For 
simplicity, the temperature T is considered constant. The 
selection of neighbours is repeated until a neighbour is 
selected. The number of iterations is also set fixed. From all 
the accepted permutations, only the best one is included in the 
next iteration of the genetic algorithm.  

 

 

 

Fig. 1. Shift mutation 

For mutation we considered three operators: 

• exchange mutation (it exchanges two randomly 
selected positions in a permutation), 

• shift mutation (it removes a value at one position and 
puts it at another position), see Fig. 1, and 

• mutation inspired by well-known Lin-2-Opt change 
operator usually used for solving the travelling 
salesman problem [9]. Here first two elements are 
added to the permutation (into positions 0 and |n|+1) 
and then the same values are assigned to them to 
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simulate a cyclic tour. Two 'edges' (pairs of neighbour 
elements in permutation) are randomly chosen 
((p1, p2) and (q1, q2) say), the inner elements p2, q1 are 
swapped and the elements between p2 and q1 are 
reversed. 

The best results were achieved with the shift mutation.  

IV. CROP PROBLEM 
Let us denote: 

p1, … , pm = grounds 

r1, … , rm = area of grounds 

k1, … , kn = crops 

cij , i = 1,2, … , m,  j = 1,2, … , n   

 = profit from 1 ha of ground sown by crop kj 

xij =  number of hectares of ground pi sown by crop kj 

TABLE I.  CROP PROBLEM 

           crops 
grounds 

k1 k2  kn area [ha] 

p1 c11 c12 … c1n r1 

p2 c21 c22 … c2n r2 

…     … 

pm cm1 cm2 … cmn rm 

 

In the crop problem [10], [11] is to find the optimum 
sowing of areas by crops for given yields of crops (in quintals 
per hectare) and contractual purchase prices so as to maximise 
the total profit [12].  

From Table I we get the following system of equations: 

x11 + x12 + … + x1n   ≤ r1 

  x21 + x22 + … + x2n  ≤ r2 

   … 

  xm1 + xm2 + … + xmn ≤ rm 

 xij  ≥ 0,   i = 1, 2, … , m,   j = 1, 2, … , n 

z = c11 x11 + c12 x12 + … + c1n x1n  + c21 x21 + c22 x22 + … +  
      c2n x2n + … + cm1 xm1 + cm2 xm2 + … + cmn xmn → max 

It can be expressed as follows:  

Maximise 
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If we require for each crop that were sown at a cer tain 
minimum area, then the task has become an example of 
maximisation version of the generalized distribution problem. 
It is included in Table II and the corresponding model follows: 

TABLE II.  CROP PROBLEM WITH MINIMUM REQUIREMENTS  

         crops 
grounds 

k1 k2  kn area [ha] 

p1 c11 c12 … c1n r1 

p2 c21 c22 … c2n r2 

…     … 

pm cm1 cm2 … cmn rm 

minimum 
requirements for 
crop sowing area 

d1 d2  dn  

 

Maximise 

 ∑∑
= =

=
m

i

n

j
ijij xcz

1 1
 (17)  

subject to 

 mirx i

n

j
ij ,...,1,

1
=≤∑

=
 (18) 

 njdx j

m

i
ij ,...,1,

1
=≥∑

=
 (19) 

 njmixij ,...,1,,...,1,0 ==≥  (20) 

V. CROP PROBLEM WITH UNCERTAIN YIELDS 
Of course, yields of crops are only estimated and in real 

conditions cannot be considered as deterministic. 

This situation can be solved with techniques inspired by 
PERT. 

Denote 

a = estimate of the crop yields under the most favourable 
conditions 

b = estimate of the crop yields under the least favourable 
conditions 

m = most likely value for the crop yields 
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PERT requires the assumption that estimated parameter 
follows a beta distribution. Then its mean values may be 
approximated by the following equation: 

 6
4 bmay ++

=  (21) 

Since the beta distribution is not guaranteed, we propose a 
fuzzy approach. 

  
Let us assume now that crop yields are given by fuzzy 

numbers [13].  

 A fuzzy number A is a fuzzy set represented by 4-tuple 
(a1, a2, a3, a4) and a piecewise continuous membership function 
with the following properties: 

• a1 ≤ a2 ≤ a3 ≤ a4  
• µA(x) = 0 for x ≤ a1, x ≥ a4 
• µA(x) = 1 for a2 ≤ x ≤ a3  
• µA is increasing on [a1, a2] and decreasing on [a3, a4]. 

The fuzzy set defined by the membership function is an 
example of fuzzy number. In this paragraph we consider 
trapezoidal fuzzy numbers, see (22) and Fig. 2. 
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Fig. 2. Trapezoidal fuzzy number 

The addition of fuzzy numbers can be derived using the 
extension principle and it is determined as follows: 

XF ⊕ YF = (x1, x2, x3, x4) ⊕ (y1, y2, y3, y4) =  
 = (x1+ y1, x2+ y2, x3+ y3, x4+ y4) (23) 

When the maximum operation would be derived in the 
same way, then its results may not be trapezoidal fuzzy 
numbers. Therefore we approximate this operation as follows. 

max(XF,YF)=(max(x1, y1), max(x2, y2), max(x3, y3), max(x4, y4)) 
(3.20) 

To find a solution of the crop problem which maximises 
the total profit, we must compare fuzzy numbers in some way, 
which is a difficult problem. An ordering relation ≤ can be 
defined e.g. as follows: 

 XF ≤ YF ⇔ (x1≤ y1) ∧ (x2≤ y2) ∧ (x3≤ y3) ∧ (x4≤ y4) (24) 

 However, this relation is not a complete ordering relation, 
as fuzzy numbers XF, YF satisfying   

 (∃ i,j ∈{1,2,3,4}): (xi<yi) ∧ (xj >yj) (25)  

are not comparable by ≤. 

It is evident that, for non-comparable fuzzy numbers XF, 
YF, this fuzzy max operation results in a fuzzy number 
different from both of them. For example, for XF =(4,9,12,16) 
and YF =(6,8,13,15), we get from (23) a fuzzy max (6,9,13,16) 
which differs from XF and YF. 

This problem can be solved by assigning a scalar value to 
each resulting fuzzy number and comparing these scalars.   

We use the fuzzy ranking method described in [14], 
modified for the case of trapezoidal fuzzy numbers. This 
method uses inverse functions  
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The ranking function is defined as the distance between the 
centroid point (x0, y0) and the origin 
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and Supp A is the support of A. 

Fuzzy numbers A, B are then ranked by their ranking 
function values R(A) and R(B). 

VI. CONCLUSIONS 
In this paper we studied the well-known transportation 

problem and presented several modifications which are 
important in various application areas.  

The assignment problem can also be derived from the 
linear transportation problem, but it cannot be solved for large 
instances using linear programming methods and heuristics 
must be used. We presented a g enetic algorithm (GA) 
approach and GA parameter settings.  

Finally, we studied the crop problem, important in 
agriculture engineering, and generalised it for case of 
uncertain crop yields. Instead of traditional interval or PERT 
approach we propose a fuzzy algebra based on fuzzy numbers 
and their transformation to scalar values.   

In the future, we foresee further tests with other stochastic 
heuristics, including more applications with special constraints 
in studied problems. 
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