
 
 

 

  

    Abstract—Based on Lyapunov stabilization theory, this paper 

proposes a proportional plus integral time-delayed controller to 

stabilize unstable equilibrium points (UPOs) embedded in 

chaotic attractors. The criterion is successfully applied to the 

classic Chua's circuit. Theoretical analysis and numerical 

simulation show the effectiveness of this controller. 
  Index Terms— Chaotic systems, proportional plus 

integral time-delayed controller, Taylor approximation. 

I. INTRODUCTION 

YNAMIC chaos is a very interesting non-linear effect 
which has been intensively studied in science and 

engineering. The effect is very common, it has been detected 
in a large number of dynamic systems of various physical 
nature. However, this effect is usually irregular, complex and 
undesirable in practice, and it restricts the operating range of 
many electronic and mechanic devices. Recently, controlling 
this kind of complex dynamical systems has attracted a great 
deal of attention within the engineering society. Chaos 
control, in a broader sense, can be divided into two 
categories: one is to suppress the chaotic dynamical behavior 
[1-12] and the other is to generate or enhance chaos in 
nonlinear systems [13,14]. Nowadays, different techniques 
and methods have been proposed to achieve chaos control. 
Among many methods, the time delayed feedback control 
DFC method [1]. This method utilizes the difference between 
the states and the delayed states as an input control provided 
that the delayed time is determined as the period of the 
unstable periodic orbits UPO to be stabilized. Furthermore 
[2,3] also proposed a DFC based controller to stabilize the 
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UPOs by virtue of the iterative learning control strategy. A 
time-delayed integrity controller is proposed in [4] to ensure 
the stabilization of UPOs in the case of sensor failures. 
Sliding mode control of uncertain unified chaotic systems is 
proposed in [5] based on a proportional plus integral sliding 
surface. dislocated and enhancing feedback control [6,7] 
which multiply the independent variable of the system 
function with coefficient and take the result as feedback gain 
(the same coefficient for all states) based on Jacobi matrix, 
speed feedback control [6-8] multiply the derivative of 
independent variable with coefficient. And other feedback 
control techniques [9-12]. At the same time, chaos 
synchronization also is an important topic, and has obtained a 
lot of availability results [15-19]. 
The aim of this paper is to proposed new scheme of 
time-delayed controller based on proportional plus integral 
(PI) to stabilize unstable equilibrium points (UPOs) 
embedded in chaotic attractors based on Lyapunov 
stabilization theory. 
The reset of the letter is organized as follows. In Section 2 the 
control problem is stated. In Section 3 PI time-delayed 
controller is proposed to stabilize UPOs using Lyapunov 
stabilization theory. The proposed controller is applied with 
numerical simulation to the classic Chua's circuit in section 4. 
Finally, some conclusions are given in section 5. 

II. PROBLEM STATEMENT 

Considering a chaotic system with state equation in the form 

)(xgAxx +=ɺ                                               (1)                                                                          

Where nRx∈  is the state vector, A nxnR∈ is constant 

matrix and )(xg is a nonlinear vector on the state vector x . 

Assuming that 

)~()~()( ~, xxMxgxg xx −=−                          (2) 

For a bounded matrix xxM ~, in which the elements are 

dependent on x  and x
~ . Most of the chaotic systems can be 

described by (1) and (2). 
General speaking, chaotic systems can be decomposed into a 
linear part and nonlinear function vector part. 
Among many chaotic systems, 
 Lorenz system [14] 
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RÖssler system [14] 
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Chua system [14] 
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(5) 
With 

         )11)((
2

1
)( −−+−+= xxbabxxf             (6) 

have the same form as Eq. (1). 
Our problem undertaken here is to construct a controller  

         ( ) 1
21 )(),.....,(),()( ×∈= nT

n Rtutututu  
to stabilize the UPOs within chaotic attractors. Therefore the 
controlled chaotic system can be described by   

         )())(()()( tutxgtAxtx ++=ɺ                              (7)                                                                                                         
Suppose that the UPO to be stabilized is T-periodic, i.e. 

         ))(()()( TtxgTtAxTtx −+−=−ɺ                (8)                                                                                             
Defining the state error as  

         )()()( Ttxtxte −−=  
The error dynamics is  

         )())(())(()()( tuTtxgtxgtAete +−−+=ɺ   
Based on Eq. (2)                                                                                   
         )()()()( )(),( tuteMAte Ttxtx ++= −ɺ                   (9)                                                                                                

With the help of the controller )(tu , the problem of 

stabilization of the T-periodic orbit becomes the problem of 
stabilization of Eq. (9) to either a periodic or equilibrium 
points.  

III. CONTROLLER DESIGN 

A proportional plus integral time-delayed controller is 
proposed to stabilize UPOs embedded in chaotic attractors. 

Controller )(tu  is chosen as 

∫ −−−−−−=
2

1

))()(())()(()(
t

t

ip dtTtxtxkTtxtxktu
                                                                       

(10) 

Where pk and ik  are diagonal matrices with diagonal gain 

elements pnpp kkk ,.....,, 21 and inii kkk ,.....,, 21  

respectively.                                                                                                                

Theorem 1 if controller )(tu  is constructed as Eq. (10), then 
the error system (9) is globally exponentially stable 

for 1<<T .if there exists a positive definite symmetric 

constant matrix P  such that
 

0
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(11) 

Where µ denotes a negative constant, and I is the identity 

matrix 
Proof  

For ,1<<T  )()()()( 2tTtxtxTtx ο+−=− ɺ , then by 

Taylor approximation, we  have TtxTtxtx )()()( ɺ=−− , 

so the controller )(tu of Eq. (10) becomes 

   ∫−−−−=
2

1

)())()(()(
t

t

ip dttxTkTtxtxktu ɺ            (12)                                               

For tt =2 and Ttt −=1  

)))()((())()(()( TtxtxTkTtxtxktu ip −−−−−−=  
                                                                        

)()()( tTektektu ip −−=                                        (13)                                                                                                      

By constructing (13) into (9) 

         )()()( )(),( teTkkMAte ipTtxtx −−+= −ɺ            (14)                                                              

Now choose the Lyapunov function 

         PeeV T=                                                       (15)                                                                                                          
where P  is a positive definite symmetric constant matrix. 
Then its derivative is 
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where ⋅ denotes the Euclidean norm. 

IV. NUMERICAL SIMULATION  

To demonstrate the use of chaos control criterion proposed 
herein, Chua's circuit is considered as an example of chaotic 
systems. 

A. Chua's circuit 

Chua's circuit can be described by (5) and (6), where ,0>α  

,0>β  0<< ba , (.)f  is a piecewise linear function. 

Chua's circuit exhibits a chaotic behavior 
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for 78.9=α , 97.14=β , 31.1−=a  and 75.0−=b  as 
shown in Fig. 1, and in Eq. (6), we have  

))()(())(())(( )(),( TtxtxkTtxftxf Ttxtx −−=−− −  

(17)                                                                      

Where )(),( Ttxtxk −  is dependent on )(tx  and )( Ttx − , and 

varies in the interval ],[ ba  for 0≥t  that is, )(),( Ttxtxk − is 

bounded by the condition of  

0)(),( <≤≤ − bka Ttxtx graphical representation of )(xf in 

[14]. 
 

  
Fig. 1. The attractors of Chua's circuit 

 
System (5) has the same form of Eq. (1) with  
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From Eqs. (14) and (18), we get 
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Choosing  
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where 1p , 2p and 3p are positive constants, then  
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In Eq. (21), we have 
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Assuming that ,01 <∆ 02 >∆ , 03 <∆ and β32 pp =  for simplicity we obtain 
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then (11) will be satisfied  
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1.0=T  we can get ,21 =pk  ,62 =pk  03 =pk , 201 =ik , 402 =ik , 

03 =ik to satisfy (26). Fig. 2 show the effectiveness of the proposed controller which is activated from 20=t  s. 
.  
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Fig. 2 the controlled states of Chua's circuit based on PI time-delayed controller with ,21 =pk  ,62 =pk  03 =pk  

and 201 =ik , 402 =ik , 03 =ik  which are activated from 20=t  s 
  

V. CONCLUSIONS 

In this paper, proportional plus integral time-delayed 
feedback scheme for chaos control based on Lyapunov 
stabilization theory is proposed. In particular, we can find 
many unstable periodic orbits and stabilized them through PI 
time-delayed feedback control. Theoretical analysis and 
numerical simulation for classic Chua's circuit show the 
effectiveness of this technique  
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